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ABSTRACT The artificial potential field approach is an efficient path planning method. However, to deal
with the local-stable-point problem in complex environments, it needs to modify the potential field and
increases the complexity of the algorithm. This study combines improved black-hole potential field and
reinforcement learning to solve the problems which are scenarios of local-stable-points. The black-hole
potential field is used as the environment in a reinforcement learning algorithm. Agents automatically adapt
to the environment and learn how to utilize basic environmental information to find targets.Moreover, trained
agents adopt variable environments with the curriculum learning method. Meanwhile, the visualization of
the avoidance process demonstrates how agents avoid obstacles and reach the target. Our method is evaluated
under static and dynamic experiments. The results show that agents automatically learn how to jump out of
local stability points without prior knowledge.

INDEX TERMS Reinforcement learning, neural network, potential field, path planning.

I. INTRODUCTION
With the development of artificial intelligence, the technol-
ogy of autonomous mobile agents has been widely adopted
in industry, military, and medical fields. At the same time,
tasks in uncertain environments become more complex. The
agent needs to cooperate with multi-objective tasks. There-
fore, intelligent autonomous control technology has attracted
extensive attention from academia and industry [1], [2].
As one of the main techniques, path planning is a research
hotspot in artificial intelligence.

Path planning requires that a mobile agent finds an optimal
or sub-optimal collision-free path from the start point to the
destination in the environment. At present, path planning
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techniques can be divided into two categories, i.e., global
planning and regional planning [3]. The former is a path plan-
ning in a statically known environment, which is also known
as a static path planning method [4]. There are numerous
methods such as the greedy algorithm, Dijkstra’s algorithm,
and A* algorithm. The last one is suitable for the situation
where the environmental information is unknown or partial
unknown and real-time environmental information is used
for path planning. The main approaches include the artificial
potential field [5], the genetic algorithm [6], and PSO [7], [8]
methods.

To meet the real-time requirement, a fast path planning
algorithm, probabilistic signpost algorithm (PRM) [9] is pro-
posed to preprocessing before randomly sampling in the
pose space. This algorithm has been extensively applied
to path planning within the environment which includes

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 135513

https://orcid.org/0000-0001-9706-3806
https://orcid.org/0000-0002-0762-5607
https://orcid.org/0000-0001-8475-419X
https://orcid.org/0000-0002-9142-1251
https://orcid.org/0000-0003-0070-4801
https://orcid.org/0000-0003-3870-1964
https://orcid.org/0000-0003-3079-975X


Q. Yao et al.: Path Planning Method With Improved Artificial PF

dynamic obstacles. However, it fails to solve the problem
of differential constraints in the mobile agent and leads to
path planning results unreasonable. In 1998, LaValle and
Kuffner [10] proposed a single query Rapidly-exploring
Random Trees (RRT) theory. RRT fully considers the
quantitative differential constraints of agents and generates
the search tree. However, it lacks stability in a dynamic
environment [11].

The artificial potential field is a virtual force field method
proposed by Khatib [12]. The movement of the agent in the
environment is the result of the simulated force field. The
target point generates the gravity to the agent and the obstacle
generates the repulsive force. The movement of the agent
is controlled by both gravity and repulsion. Because of its
advantages of simple mathematical analysis, low computa-
tional complexity, and a smooth path, the algorithm is widely
adopted in the field of real-time obstacle avoidance and path
planning [13].

However, traditional artificial potential field method has
one inherent defect. An agent will fall into a local-stable-
point when the resultant force is zero that happens easily
in a complex environment. The reasons for this problem
are the various shapes of obstacles and position relations in
the environment. A lot of efforts have been made to solve
these problems. Jia et al. change the repulsive potential of
obstacles by discretizing the outline of obstacles [14]. Li et al.
present an improved artificial potential field based regression
search method for autonomous mobile agent path planning
in completely known environments [15]. Orozco-Rosas et al.
propose a membrane evolutionary artificial potential field
approach to solve the mobile agent path planning problem.
This method finds the parameters for generating a feasible
and safe path with the genetic algorithm [16]. Rizqi et al.
design a potential function to guide the quadrotor to the goal
and avoid the obstacle. The algorithm solves the local-stable-
point problem by utilizing the wall-following behavior [17].
At present, the main thought to solve the local-stable-point
problem is changing the potential field to reduce the occur-
rence of local-stable-points.

This research explores the ability of reinforcement learning
in the artificial potential field. The agent will confront
different environments and has restricted access to sta-
tus information. The agent learns how to jump out of
a local-stable-point and achieves the target based on the
potential field information. This study makes the following
contributions.

1) We propose a method named black-hole potential field
(BHPF), which reduces the occurrence of local-stable-points
under multi-target circumstances. By combining BHPF and
reinforcement learning we propose a black-hole potential
field deep Q-learning (BHDQN). The experiments show that
an agent can move to the nearest target point and elude
obstacles with BHPF information without prior knowledge.

2) We test the adaptability of BHDQN with differ-
ent shapes of obstacles. The result shows that the trained
agent adapts to new surroundings quickly and escapes from

new types of the local-stable-point. Besides, the agent can
complete path planning in dynamic and static warehouse
environments.

The rest of the paper is organized as follows. Section III
introduces the artificial potential field and the block-hole
potential field. Section IV provides a method that utiliz-
ing reinforcement learning in BHPF. Section V presents
the experiments and analyzes the experimental results.
Section VI concludes this paper and discusses future work.

II. LITERATURE REVIEW
In recent years, deep learning is a widely-used method in
computer vision [18], NLP [19], the medical field [20] and
shows the power in the path planning problem. At the same
time, the network can transfer the knowledge to new scenar-
ios [21]. Yuan et al. propose a dynamic path planning method
based on a gated recurrent unit-recurrent neural network for
path planning in an undiscovered space [22]. Tai et al. design
a hierarchical structure that adopts a convolutional neural net-
work to avoid indoor obstacles [23]. A. Giusti et al. propose
an approach that uses a deep neural network as a supervised
image classifier and outputs the main direction of the trail by
deal with the whole image [24]. M. Dragoicea et al. design a
system by using the convolutional neural network to learn a
control strategy that mimics the behavior of the expert. The
quadcopter is applied to autonomously navigate indoors and
find the destination with one camera [25].

Reinforcement learning (RL) is an important branch of
the artificial intelligence technology that has strong adapt-
ability and self-learning ability in the complex environ-
ment. With the development of deep learning, the combi-
nation of the deep learning and reinforcement learning has
become a research hotspot and has been successfully applied
in many fields such as playing games [26], [27] and has
potential in many traditional fields such as business process
mining [28], transportation system [29], scheduling prob-
lems [32] andmultiresource-constrained [30], [31]. The agent
has the capacity to enhance its strategy to fulfill mission
over time with reinforcement learning. Reinforcement learn-
ing is inherently suitable for the path planning problem.
Wang et al. formulate the maximum spatial-temporal cover-
age optimization issue as a deep reinforcement learning pro-
cess. A deep reinforcement learning based vehicle scheduling
is adopted to produce an optimal solution and maximize the
spatial-temporal coverage [33]. Wei et al. train a determin-
istic policy gradient algorithm on an abstracted structure to
imitate the deformation of the path under the external force.
This method allows unmanned ground vehicle autonomously
to find collision-free paths to mobile goals in complicated
environments [34]. Tai et al. build the environment that
regards the coordinate of the agent as input and outputs the
continuous steering operation. An end-to-end asynchronous
deep reinforcement learning frame enables the partly visible
agent to moves to the assigned target without collision [35].
P. Mirowski et al. combine the goal-driven reinforcement
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FIGURE 1. The schematic diagram of origin potential field.

learning and auxiliary depth prediction for learning naviga-
tion in complicated 3D mazes [36].

III. BLACK-HOLE POTENTIAL FIELD
A. ARTIFICIAL POTENTIAL FIELD
The artificial potential field (PF) method is a path planning
method by constructing a virtual potential field in the envi-
ronment [12]. The potential field is made up of two kinds
of potential fields: gravity field and repulsion field. The
target exerts a gravity for the agent, forming the gravitational
potential field. At the same time, the obstacle generates a
repulsive force, forming a repulsive potential field. In the
artificial potential field, the potential energy is influenced by
the gravitational field and the repulsive field. The potential
energy of a location that near an obstacle is high, while the
potential energy of a location near a target is low, which
is shown in Fig. 1. Therefore, driven by the resultant force
of the repulsive and gravitational potential fields, the agent
moves from the location with high potential energy to the
low, and finds a collision-free path that can reach the target.
The gravitational attraction (i.e., gravity) of the target on the
map covers the whole map so that the agent moves toward the
target point from any location on the map. The obstacles only
repel the agent within a certain distance, because an agent
avoids obstacles when approach to obstacles.

The gravitational potential field Uatt (q) of the traditional
artificial potential field is defined as:

Uatt (q) = katt ∗
(q− qg)2

2
(1)

where qg is coordinate of the target point, Uatt (q) is the
gravitational attraction that target point qg in position q,
and katt is the attraction coefficient. The gravitational attrac-
tion of the target point augments with increasing gravita-
tional coefficient. The potential field at qg is zero. The point
has higher potential field with increasing distance from the
point qg.
Gravity is obtained from the negative gradient of the grav-

itational potential field as follows:

Fatt (q) = −∇Uatt (q) = −katt
∣∣q− qg∣∣ (2)

The repulsive potential field Urep(q) of the traditional artifi-
cial potential field is defined as:

Urep(q) =


krep
2

(
1

q− q0
−

1
p0

)2 q− q0 6 p0

0 q− q0 > p0
(3)

Urep(q) is the repulsive force in position q, krep is the repulsive
coefficient, q − q0 is the distance from the obstacle q0, and
p0 is the range of repulsive field of the obstacles.
The repulsive force is obtained from the negative gradient

of the repulsive potential field as follows:

Frep(q) = −∇Urep(q) (4)

Therefore, the total force Fq at position q is calculated by
superimposing the potential force both obstacles and targets
as follows:

Fq =
n∑
i=1

Fatt (i)+
m∑
j=1

Frep(j) (5)

The artificial potential field has the characteristics of sim-
ple principle, smooth path, and strong real-time performance.
It plays an important role in real-time path planning. How-
ever, one drawback that comes up often is the local-stable-
point problem. A local-stable-point problem is that agents
are trapped in a point that has the lowest potential energy
and cannot move to target points. This problem appears on
following situations: 1) A special-shaped obstacle appears
between the agent and the target, the agent is trapped inside
the barrier and cannot reach the target. 2) The environment
is relatively complex such as the case of multiple targets. For
example, there is n(n > 1) targets(x1, y1), (x2, y2) . . . (xn, yn)
on the map, and the total gravitational potential at qg: (x, y)
is:

Uatt (q) =
katt
2

[(x − x1)2 + (x − x2)2 + . . . (x − xn)2

+ (y− y1)2 + (y− y2)2 + . . . (y− yn)2] (6)
∂Uatt (q)
∂x

=
katt
2

(2(x − x1 + x − x2 + . . .+ x − xn))

= katt (nx − x1 − x2 . . .− xn) (7)
∂Uatt (q)
∂y

=
katt
2

(2(y− y1 + y− y2 + . . .+ y− yn))

= katt (ny− y1 − y2 . . .− yn) (8)

The location of the minimum field on the map is
( x1+x2+...+xnn ,

y1+y2+...+yn
n ). We provide an example for a

demonstration of the formation of local-stable-point. There
are three targets and one obstacle on the map. The potential
energy of the map as shown in Fig. 2. The accumulation of
the potential field of multiple targets generates a huge hole in
the center of targets. The agent on the map will drop into the
local-stable-point and cannot escape.

B. BLACK-HOLE FIELD
Multiple targets will lead to the occur of local-stable-point.
To overcome this problem, we propose a method called
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FIGURE 2. The local-stable-point in the multiple targets map.

black-hole potential field method (BHPF). Besides the single
gravitational force, we add a black-hole field force. In the
original artificial potential field, the gravitational force can
be detected globally. The black-hole field force has a small
valid range with strong attraction which can prevent multiple
gravitational superimposition. The coverage of the black-hole
field force is called the domain. Once an agent reaches the
domain, it will be pulled to the target point by the black field
force. The black-hole field force is obtained as follows:

Ustr (q) =

−
kstr
2

[ps − (q− qg)]2 q− qg 6 ps

0 q− qg > ps
(9)

Ustr (q) is the black-hole force in position q, kstr is black-
hole field coefficient, q − qg is the distance away from the
goal qg, and ps is the range of black-hole field of the goal.
It is worth noting that the value of kstr is much larger than
katt to overlay origin field force and should less than krep
for avoiding collisions. The black-hole field force Fstr (q) is
calculated as follows:

Fstr (q) = −∇Ustr (q)

=

{
−kstr [ps − (q− qg)] q− qg 6 ps
0 q− qg > ps

(10)

The external force that affects the agent is obtained as follows:

Fq =
n∑
i=1

[Fatt (i)+ Fstr (i)]+
m∑
j=1

Frep(j) (11)

where n is the number of targets and m is the number of
obstacles. For convenience, the potential field is scaled as
follows:

U ′q =
Uq − Umin
Umax − Umin

(12)

where Uq is the total field in position q, Umax is the max-
imum potential field, and Umin is the minimum potential
field.

The heat map and potential energy of BHPF on the map are
shown in Fig. 3. The potential field transforms slowly at the
position further away from the target points, but the potential
field collapses rapidly in the position near to the target point.
The agent nearby target will reach the target directly under
the vigoroso black-hole field and ignore the attraction of

FIGURE 3. The heat map and potential energy based on BHPF.

FIGURE 4. The contrast of potential field and BHPF.

other targets. An agent is added to the environment to test
the effect of BHPF, as seen in Fig. 4(a), the agent falls
into the local-stable-point when the agent is near the middle
of multiple target points in the origin PF. The result after
adding the block-hole domain is shown in Fig. 4(b). The
agent achieves the target directly under black-hole field. The
black-hole field could not only reduce the appearance of
local-stable-point, but also serve as a pattern to help the
agent discover targets with reinforcement learning in the next
section.

IV. REINFORCEMENT LEARNING WITH BHPF
A. MARKOV DECISION PROCESS
Reinforcement learning (RL) can learn how to deal with dif-
ferent environmental information. Normally, the environment
is aMarkov decision process (MDP) [37], which expressed as
a tuple M = (S,A, ρ,R, γ ). In MDP, the change of the state
st+1 is only related to the state st and the behavior at (at ∈ A)
of the agent at the previous moment t , and independent of
other elements. The agent updates its policy with received
reward rt (rt ∈ R). The environment accepts the behavior
of the agent and transfers the environment through the envi-
ronment transfer probability ρ. Finally, the agent receives an
overall reward with the step discount factor r ∈ (0, 1].
However, in most cases, an agent cannot receive the full

state of the environment and needs a more general method
such as a partially observable MDP (POMDP) [38]. POMDP
is described as a tupleM = (S,A,T ,R, γ,O). Different from
MDP, the agent receives an observation ot (ot ∈ O) instead
of the state st . This observation is obtained by a probability
distribution O(s) = P(o|s).

135516 VOLUME 8, 2020
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B. REINFORCEMENT LEARNING
Deep reinforcement learning is one of the most popular fields
in the artificial intelligence field in recent years. RL trains
the model through interactive tests and rewards in the envi-
ronment. Instead of establishing the control model, it utilizes
the reward function to motivate the agent to learn new strate-
gies. An agent interacts with the environment in a real-time
situation. By observing the current state, a value function is
established to predict rewards of different behaviors. At the
same time, the strategy generated by value function map the
current state to the corresponding behavior. The environment
responds to the behavior of the agent and returns the new
state to the agent and corresponding rewards. At this point,
the agent receives the reward from the environment and
updates its value function. Through the cycle of the above
process, the agent is trained to adapt to the environment and
make corresponding actions according to different states.

RL relies on the exploration of unfamiliar environments
and updates its policy autonomously. In this way, agents
acquire knowledge from the environment and improve their
strategy to adapt to the environment. In the RL framework,
agents interact with the environment through perception and
actions. RL can be divided into two types of modeling. The
first is the model-based algorithm, which obtains the empir-
ical knowledge from the environment to build the learning
model, and then acquires the optimal strategy through the
model. The second is themodel-free approach, which directly
selects the action and interaction with the environment.
The common model-free algorithms include AC [39] and
Q-learning [40]. Q-learning is an offline strategy and adopts
the temporal difference (TD) learning method. The propose
of Q-learning is to estimates the cumulative reward that from
t to T as follows:

Rt =
T∑
t ′=t

γ t
′
−trt ′ (13)

Q function predicts the cumulative reward by current action
and current state according to the current policy π as follows:

Qπ (s, a) = E[Rt |st = s, at = a, π] (14)

For all strategies, if the expected revenue of one strategy is
greater than or equal to the revenue of other strategies, it is
the optimal strategy, i.e.,

Q∗(s, a) = max
π

E[Rt |st = s, at = a, π] (15)

The optimal strategy conforms to the bellman equation and
can be expressed by Q value at the next moment as:

Q∗(s, a) = E[r + γ max
at+1

Q(st+1, at+1)|s, a] (16)

Traditional methods use an iterative bellman equation to
calculate Q value, but it is difficult to achieve convergence
in complex environments. The latest methods use neural
networks to approximate the Q function. Deep Q-learning
(DQN) [27] using a convolution network to predict the Q

value and update network parameters with a temporal differ-
ence method, which approximates that Q(s, a; θ ) ≈ Q∗(s, a)
and calculates goal as follows:

Yi = rt + γ max
at+1

(st+1, at+1)|θi−1 (17)

The update of DQN relies on loss function which is calculated
as follows:

L(θi) = E[(Yi − Q(st , at )|θi)2] (18)

DQN involves some ways to enhance stability, for example,
replay memory and prioritized experience replay set different
importance during sampling process [41].

FIGURE 5. The agent observes its state in the environment.

C. RL IN POTENTIAL-FIELD
To verify the method, we evaluate black-hole potential field
deep Q-learning (BHDQN) and BHPF based on a grid sim-
ulation platform which provides a map with 50 rows and
50 columns. The environment is based on Python 3.6 and
Inter Core i5-7200 with 8GRAM. Themap has several obsta-
cles and target points, which are generated randomly during
training and testing. Therefore, the agent needs enough gen-
eralization and robustness to adapt to various conditions. The
simulation platform is shown in Fig. 5. The agent can only
observe its surrounding environment. The green area is the
space that an agent can observe and its selection action relies
solely on its surrounding potential field energy. The region of
potential field energy is regarded as the input of the network.
Then, the field energy is processed by two layers of 2-D
convolutions of 16 neurons with a leaky relu activation func-
tion. The exporting convolutional feature is operated by max-
pooling operation and it is followed by two fully-connected
layers of 32 neurons. The last fully-connected layer outputs
a vector that represents the estimated reward value of nine
actions. The network calculates the loss function based on
the real reward value. The loss function and optimizer that
we use are mean square error and Adam respectively. The
agent does not know its position on the map as well as the
position information of the target point and obstacles, which
means that it is a typical POMDP. It is worth noting that the
potential field function is only affected by the superposition
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of obstacles and target points and will not be affected by
agents.

The action space of an agent includes nine actions, i.e., up,
down, left, right, left up, left down, right up, right down,
and immobility. The agent selects an optimal based on its
policy which finally outputs a one-dimensional vector, i.e.,
Q = [q1, q2, . . . , q9], where qi is the predicted Q value of
the i-th behavior. To balance the exploration and exploitation
problem in RL, this work adopts a ε greedy method. There is
a choice for a random behavior with the probability of ε. The
probability of selection based on DQN is 1 − ε, ε annealed
linearly from 0.95 to 0.05 and fixed at 0.05 thereafter.

RL improves its policy with rewards and learns to accom-
plish goals guided by the reward function, the agent pursues
positive rewards and avoid negative rewards. The final reward
is obtained as follows:

R = W1 +W2 +W3 +W4 (19)

If an agent collides with an obstacle or moves out of the
boundary, it gets a penalty of W1. W2 is the positive reward
received by the agent after it reaches the target point.W3 is a
fixed penalty that urges the agent to reach the target as soon
as possible. W4 is a reward for the change of the potential
field. Here,W4 = α(pt − pt−1), where α is hyper-parameters
(α < 0), and pt is the potential field of the position of the
agent at time t . It means that the agent is encouraged to
get close to the location with a low potential field, and this
award will help the agent quickly find the nearby target point
and keep away from the obstacles. In BHPF and BHDQN,
because the value of kstr is larger that katt , agents will receive
a high reward in the domain of a target. The general parame-
ters are illustrated in Table 1.

TABLE 1. Parameter values and definitions.

V. EXPERIMENTS
A. BASIC TRAINING
An agent studies in a simple environment first. It is tested
in the environment with three target points and ten square
obstacles. The locations of target points and obstacles in
the environment are randomly generated to help the agent
adapt to different situations gradually. The training process
converges after 100 epochs. The comparison of reward and
success rate of reaching all target points between methods is
shown in Table 2. The agent with BHDQN learns to avoid

TABLE 2. The experimental result of different methods in 100 rounds of
experiments.

FIGURE 6. Tests of an agent to search the target point. The agent learns
to avoid basic obstacles and searches for the target point through field
energy.

FIGURE 7. A visualization of the interior of the trained convolutional
network with different target locations.

obstacles and reaches the target better in multiple targets
circumstances. However, the PF fails to converge because of
the local-stable-point produced by multi-targets.

To test the generalization of BHDQN with a new envi-
ronment, a series of dense obstacles [16] is adopted to test
the ability of the agent to avoid obstacles directly. The result
is shown in Fig. 6. It can be seen that an agent with basic
training can cope with different environments and can find
target points without additional training.

135518 VOLUME 8, 2020
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FIGURE 8. A visualization of the process that an agent avoids obstacles and reaches the target.

FIGURE 9. The potential field of different categories of local-stable-points.

FIGURE 10. The scenario of intelligent warehouse.

In order to analyze how the model makes the decision,
we visualize the intermediate layer of the agent so that
we could understand whether the trained agent handles the
relationship between obstacles and target points. As shown
in Fig. 7, agents can identify target points in different direc-
tions and act differently. The upper left of each figure is
the current situation of the map, the upper right is the inter-
mediate layer visualization of the convolutional network,
the activated neuron is lighter, and the below is the evaluation

FIGURE 11. The path planning for static fishbone layout warehouse.

of different actions in the current situation, i.e., the Q value
of different actions in this state. R, L, D, U, L-D, L-U,
R-U, R-D, S mean right, left, up, lower left, upper left, upper
right, lower right, and stagnant, respectively. The result shows
that corresponding neurons will be activated to help the agent
make decisions when the target occurs in different directions,
the agent can learn how to utilize the potential field energy to
head for the target without prior knowledge.

The process of an agent searches for a target as shown
in Fig. 8, there is an obstacle between the agent and the target
point, and the agent needs to bypass the obstacle through
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TABLE 3. The experimental results of different methods over independent 20 runs. The significant difference is represented by ‘+’.

FIGURE 12. Path planning of the agent in dynamic warehouse with moving target or obstacles.

its observation. In the beginning, the agent detects the field
energy of the target and move to the corresponding direction
because the Q-value of R-U is highest. The Q-value of R-U
decreases along with the reduced distance from the obstacle,
and the agent turns to L-U to avoid a collision. This experi-
ment proves that trained neurons spontaneously react to field
energy of targets and obstacles.

B. CURRICULUM LEARNING
The artificial potential field has the local-stable-point prob-
lem which may be caused by different shapes of obstacles
such as ‘U’ shape and orthogonal shape or gravitational
superposition of obstacles and target field, as shown in Fig. 9.

For these cases, the agent fails to avoid the obstacles
because of new types of local-stable-point. To enhance the
adaptability of the agent in BHDQN, we use the curriculum
learning (CL) [42]. CL is one of the learning processes of RL.
Agents start the training with a simple, basic environment to
obtain the initial policies. Then, these policies can be used
to adapt to more complex cases. The method which learns a
universal policy and applies it into a series of related tasks that
have the increasing difficulty is called curriculum learning.
It is difficult for the agent to learn how to jump out of the
local-stable-point in difficult situations directly. Thus, the CL
is used to train the simple square obstacle with 100 epochs,
and then the training process can be extended to the com-
plex environment. After the basic training in Section V-A,
the agent can identify targets or obstacles and continue

training according to different local-stable-point situations
in Fig. 9. A trained agent after basic training adopts new
surroundings only after 20 epochs. A comparison with
the evolutionary artificial potential field (EAPF) [5] and
the pseudo-bacterial potential field (PBPF) [6] is shown
in Table 3. The result shows that BHDQN has better real-time
performance and stable path planning capability.

C. BHDQN IN WAREHOUSE
We test our method in a warehouse which comprises of
shelves, a warehouse mobile robot, and free space as shown
in Fig. 10. The shelves are regarded as static obstacles and
the warehouse mobile robot needs to plan the path within the
free space and without collision.

The warehouse environment is represented by a grid map
and each shelf or a warehouse mobile robot occupies a
grid. The map is based on the parallel layout warehouse
and fishbone layout [43]. Results in a static environment are
shown in Fig. 11. A local-stable-point exists in the warehouse
because of the location of shelves, an agent can jump out from
the local-stable-point of warehouse relying on its knowledge.

The agent in the warehouse needs to deal with dynamic
situations, such as moving objects, emergent obstacles, and
moving obstacles. We test the ability of the trained agents
to adapt to dynamic warehouse environments. The target
point on the map keeps moving. The trained agent tracks
the target point between dense obstacles on the map in the
first environment. The target remains stationary and there are
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moving obstacles and sudden obstacles in the second envi-
ronment. The agent with BFDQN can adapt to the dynamic
environment and complete the target tracking in real-time as
shown in Fig.12.

VI. CONCLUSION AND FUTURE WORK
We improve the traditional artificial potential field method
with reinforcement learning and propose a new method of
path planning. This method enables the agent to find the
target point in a multi-target environment. At the same time,
a trained agent can adapt to scenarios containing new types
of obstacles quickly and dynamic target real-time. Trained
neurons react to the partial observation of the potential field
and make decisions without human intervention.

The artificial potential field method that combines the
black-hole domain can help the agent to jump out of the local-
stable-point. The size of the domain needs to be set in advance
to adapt to different environments. The range of the too-large
domain will cause the superposition of multiple gravitational
fields, and the too-small domain value cannot be detected
by the agent. We need to further improve the adaptability
of BHPF to different environments. We will present the self-
adaption black-hole PF which expands its domain according
to environment info in our future work.

Additionally, there are multiple agents in real-world sce-
narios such as intelligent warehouses and unmanned aerial
vehicles. New problems arise with multi-agent systems such
as collisions and deadlocks that can cause collisions or con-
gestions. Multiple close robots will access to a target mean-
while and cause path redundancy. In order to optimize the
application of BHPF in multiple agents situations. We will
further improve the BHPF algorithm and establish poten-
tial field functions for agents to avoid collisions between
agents. We plan to combine the black-hole potential field and
multi-agent reinforcement learning algorithms to strengthen
agents cooperation in task scheduling and path planning
under potential field.
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