
Received June 29, 2020, accepted July 17, 2020, date of publication July 22, 2020, date of current version August 5, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3011356

Toward Robust Pedestrian Detection With
Data Augmentation
SEBASTIAN CYGERT AND ANDRZEJ CZYŻEWSKI
Multimedia Systems Department, Faculty of Electronics, Telecommunication, and Informatics, Gdańsk University of Technology, 80-233 Gdańsk, Poland

Corresponding author: Sebastian Cygert (sebastian.cygert@pg.edu.pl)

This work was supported in part by the Statutory Funds of Electronics, Telecommunications and Informatics Faculty, Gdańsk University of
Technology, and in part by the Polish National Centre for Research and Development (NCBR) through the European Regional
Development Fund entitled: INFOLIGHT–Cloud-Based Lighting System for Smart Cities under Grant POIR.04.01.04/2019.

ABSTRACT In this article, the problem of creating a safe pedestrian detection model that can operate in the
real world is tackled.While recent advances have led to significantly improved detection accuracy on various
benchmarks, existing deep learning models are vulnerable to invisible to the human eye changes in the input
image which raises concerns about its safety. A popular and simple technique for improving robustness is
using data augmentation. In this work, the robustness of existing data augmentation techniques is evaluated
to propose a new simple augmentation scheme where during training, an image is combined with a patch
of a stylized version of that image. Evaluation of pedestrian detection models robustness and uncertainty
calibration under naturally occurring corruption and in realistic cross-dataset evaluation setting is conducted
to show that our proposed solution improves upon previous work. In this paper, the importance of testing
the robustness of recognition models is emphasized and it shows a simple way to improve it, which is a step
towards creating robust pedestrian and object detection models.

INDEX TERMS Convolutional neural network, pedestrian detection, robustness, style-transfer, data aug-
mentation, uncertainty estimation.

I. INTRODUCTION
In recent years visual recognition has witnessed a significant
progress, mainly due to the introduction of Convolutional
Neural Networks (CNN) and the availability of large scale
datasets. Even though CNN based models surpassed human
performance on some of the benchmarks [1], the application
of deep learning methods in safety-critical applications like
medicine or autonomous-vehicles has been limited [2]. This
is due to the fact that CNNs often fail to generalize outside of
the training data distribution.

It is known that models can drastically change their deci-
sion due to tiny, invisible to the human eye perturbation of
the input [3], [4]. Some works show that models are also
vulnerable to small translations and rotations of the input
image [5], [6], Gaussian noise, and blur [7], different weather
conditions [8], or even different images from a similar distri-
bution of the training set [9]. What is more, current models
tend to be overconfident in their outputs [10]. The problem
is evident for the distributional shift (occurring when the
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test-time distribution of data differs from the training distri-
bution, when deep learning models predict wrong output with
high confidence [11]. It is of particular importance for models
operating in the real-world to be robust to such distributional
changes.

Vulnerability to tiny changes in the input might be
explained by the fact that neural networks tend to exploit non-
robust, high-frequency patterns in the training dataset, which
causes them to fail under the distributional shift [12]–[14].
Therefore it is of great importance to test the robustness of
the models in the out-of-distribution scenario. A common
way to study model robustness in computer vision is eval-
uation under dataset shift or by adding so-called common
corruptions [15] at test-time, which include several types
of synthetically generated distortions (e.g., Gaussian noise
and blur, JPEG compression, changes in brightness). A pop-
ular approach to improve model robustness is employing
data augmentation techniques, i.e., using style-transfer data
augmentation [16], [17]. Meanwhile, the use of only styl-
ized representation may hurt performance on clean (origi-
nal) data; hence a popular strategy is to use both clean and
stylized samples during training [18], [19]. Inspired by data
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augmentation which works on regions of the image [20], [21]
here, we propose to apply style data augmentation only to
random patches, which offers competitive accuracy on both
clean and corrupted data.

Model robustness and uncertainty calibration are of special
importance for safe autonomous driving, i.e. for pedestrian
detection, which is studied in this work. However, evaluation
of existing models in a realistic scenario where test data
comes from different distribution than during training is still
lacking. The contribution of this work is as follows:

• we analyze the impact of the distributional shift on the
accuracy of pedestrian detection models, i.e. detection
models are evaluated in cross-dataset setting, by adding
different types of image distortions and when testing on
night-time images,

• popular data augmentation methods are evaluated in
terms of model robustness and a new simple scheme for
data augmentation is proposed and used during training,
where an original image is combined with a patch of its
stylized version, which offers competitive results

• uncertainty calibration of existing models is evaluated
experimentally.

II. RELATED WORK
Pedestrian Detection is an essential topic in the context of
autonomous driving. This topic traditionally borrows a lot
from standard object detection models, current state-of-the-
art models like Faster-R-CNN [22] and Mask R-CNN [23]
are used for that purpose. There exist specialized models
which modify the loss function to handle occlusions [24], run
multi-step prediction for improved localization [25], simul-
taneously predict the full and visible boxes of pedestrians
[26] or utilize low variance in an aspect ratio of visible
pedestrians [27]. However, as it was shown a general purpose
Faster R-CNN provides very competitive results, [28], [29]
so that architecture is also used in this work.

Many large-scale benchmarkswere created to facilitate this
kind of research. Caltech dataset [30] was one of the first
examples with 13674 pedestrians annotated with bounding
boxes. The following datasets focused on dense scenes, like
CityPersons [28] that have, on average, 6.47 pedestrian per
image (comparing to 0.32 in Caltech), increasing the scale
and variety of data. EuroCity Persons [31] further increased
variety by recording data in European 12 countries in differ-
ent weather conditions. Recent NightOwls [32] dataset and
on the other hand focuses on night-time pedestrian detection.

Robustness is of great importance for many visual sys-
tems to be deployed in the real-world to improve the model
accuracy. It was shown that while modern CNN-based mod-
els often obtain very good results on the benchmark it was
trained on, they are very vulnerable to tiny changes in the
input. In order to measure the model robustness it was pro-
posed to use synthetically generated distortions during test-
ing, so-called Common Corruptions, while a use of those
corruptions for training should be avoided [15]. A popu-

lar approach to improve model robustness is using small
Gaussian noise during training [33]. However, such augmen-
tation may reduce the accuracy on the clean data, so to avoid
such side-effect Gaussian noise can be added only to the
patches of the input image [20]. Another work uses auxiliary
classifiers for training on corrupted samples, which allows to
achieve good balance between robustness and clean accuracy
[34], however it explicitly requires training on corrupted
samples which we want to avoid.

Another line of research showed that CNNs are biased
toward texture [16], which may cause a lack of robust-
ness. To increase model attention to the higher-level fea-
tures (e.g., shape), style transfer [35] data augmentation can
also be used during training, which shows promising results
in terms of model robustness [18]. Removing part of the
image during training has also shown an improvement in
model accuracy [21], [36]. Instead of occluding a portion
of an image, an approach called CutMix replaces a portion
with a patch from a different image [37]. AugMix approach
applies different augmentations to the image and interpolates
between them to obtain training samples [38]. It is also pos-
sible to learn augmentation policy; however, such a process
tends to be very costly [39]. Other approaches include using
self-supervision [40], adversarial training [41] or using large
scale pre-training [42].

A. UNCERTAINTY ESTIMATION
Providing reliable uncertainty estimates is an essential ele-
ment of safe autonomous systems [2]. It was shown that
the current deep learning models are overconfident in their
uncertainty estimates [10] and the effect is more striking
under the distributional shift [11]. One of theways to compute
calibration is computing Expected Calibration Error. The
previous finding of the poor model calibration was confirmed
in the context of object detection from LiDAR data [43].
In this work, calibration is evaluated the context of pedestrian
detection under the distributional shift.

III. PEDESTRIAN DETECTION MODEL
In this section, pedestrian detection model is presented.
Section III-A briefly describes the Faster R-CNN and the CSP
architectures for pedestrian detection. Section III-B describes
used data augmentations and the proposed approach.

A. PEDESTRIAN DETECTION
A task of pedestrian (object) detection is to return for an
image a list of bounding box coordinates, with predicted class
and its score. Faster R-CNN is a standard algorithm in generic
object detection, which is also commonly used in pedestrian
detection [28], [29], belongs to the class of two-stage object
detectors and has two main modules: Region Proposal Net-
work (RPN) and a classification layer. Both modules share
a common set of convolutional layers, which is also called
a backbone network. RPN produces a list of windows (also
called anchors) that are likely to contain an object, whereas
the classification layer is responsible for classifying each
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FIGURE 1. Different augmentation strategies. The second column shows random region removal with CutOut, and the third column shows stylized
version of the original image. The last column shows the proposed augmentation that combines CutOut with style-augmentation.

of the proposed regions into one of the predefined classes
(including background). At this step, each anchor returns
logit vector z ∈ Rk , where K is the number of classes
(in our case of pedestrian detection, there are two classes:
pedestrian and background). Further a sigmoid function is
applied p = sigmoid(z), which returns a list of predicted
class probabilities. Predicted class is the one with the biggest
probability, and the probability value for that class is used as
the confidence score. Such a model is trained by backpropa-
gation and stochastic gradient descent (SGD) by optimizing
a multi-task loss function with standard cross-entropy loss
for classification task and L1 smooth loss for regression of
bounding boxes localisations.

For the task of pedestrian detection also specialized archi-
tectures exist, and a Center-Scale-Prediction [27] (CSP) is a
recentmodel that achieves state-of-the art results. It simplifies
the object detection pipeline by simply predicting center of
the objects and their scale. Such anchor-free framework does
not require defining anchors hyperparameters, i.e. the sizes
of anchors or the number of scales (as in Faster R-CNN) and
works very well for pedestrian detection.

B. DATA AUGMENTATIONS
Style-transfer is a popular technique that allows transferring
style (texture) from one image into another image. While
such image synthesis is not perfect, many studies shown
that using style-transfer data augmentation can improve the
robustness of the model [16], [19]. However, using only
stylized data might also decrease accuracy on the original
data, so a popular approach is to train a model using 1:1 ratio
of stylized and original images [18]. Here, a popular approach
in the literature is followed, and as a source of style, texture
information from the randomly chosen image from Kaggle’s
Painter by Numbers dataset [44] is used.

1) PROPOSED AUGMENTATION
A problem with style-transfer data augmentation is that
whereas it increases the robustness of models, it can decrease
the accuracy of clean data since the stylized image differ quite
significantly from real images. Instead of mixing original

images with their stylized versions here, we tackle this prob-
lem from a different angle. There is a growing literature of
research which, during training, augments only patches of
the image. CutOut, for example, removes random patches
from the image that shows positive for model accuracy [21].
In CutMix, on the other hand, random patches are cut and
pasted among training images [37]. In this work, a similar
strategy is proposed but the patches are mixed between the
base image and its stylized version.

Our method works by adding a patch of the stylized image
to the original image to the same location. The center of
the patch is sampled to be within the image and the method
allows for varying the patch size. Details are presented in the
Alg. 1 diagram. Fig. 1 shows proposed data augmentation in
comparison to other methods. Our motivation comes from
the Patch Gaussian augmentation [20], where it was shown
that adding Gaussian noise only to patches of the image, can
improve both clean accuracy and robustness of the model.

Algorithm 1 Proposed Data Augmentation
Input: Input image I , Stylized image S,

Image width IW , Image height IH ,
Patch width PW , Patch height PH

Output: Augmented Image Iout
%Compute patch start coordinates
x1← random.normal(0, IW − PW − 1)
y1← random.normal(0, IH − PH − 1)
%Compute masks
mask[H ][W ]← {0}
mask[y1 : y1+ PH ][x1 : x1+ PW ]← {1}
mask_inverse[H ][W ]← {1}
mask_inverse← mask_inverse− mask
Iout ← mask_inverse ∗ I + mask ∗ S
%Compute final image

1: return Iout

2) GAUSSIAN AUGMENTATION
Using Gaussian augmentation also proved to be successful
in increasing model robustness; therefore it is also used for
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our experiments. Two variants (parametrized by σmax) are
evaluated:

• Gaussian augmentation. Firstly for each pixel sample σ
from uniform distribution - σ ∼ U (0, σmax). Add noise
to each pixel sampled from N (0, σ ).

• Patch Gaussian augmentation. Same as above, but the
Gaussian noise is added only to the random patch of the
image [20].

IV. EXPERIMENTAL SETUP
In this section, our experimental setup is described: datasets,
evaluation metrics, and implementation details.

A. DATASET
Citypersons [28] is a popular and challenging dataset for
pedestrian detection. It was built on top of the semantic seg-
mentation dataset CityScapes [45] for autonomous driving.
It was recorded in a diverse setting (27 cities in Germany) so
that comparing to previous datasets, it contains, on average,
7 pedestrians per image, significantly more than a popular
Caltech dataset [30]. In total, it contains 5000 images with
around 35000 manually annotated persons with bounding
boxes. Areas that contain a dense group of pedestrians in
which it is hard to distinguish between them and misleading
regions like a pedestrian reflection in the window are marked
as ignore regions. Each person is also attributed to occlusion
level.

Eurocity Persons [31] further improves the diversity of
pedestrian detection datasets. It was recorded in 31 cities
in 12 European countries. Data were collected during all
seasons in changing weather conditions. In total, there are
around 238 200 person instances manually annotated in
over 47300 images. A subset of 7000 images recorded during
the night-time was a novelty at the time of the release of the
dataset.

Nightowls [32] is a large scale dataset that focuses on
night-time pedestrian detection. In comparison to day-time
images it is a much more challenging task due to the illumi-
nation variation, light reflections, blur artifacts, and changes
in contrast. In total, there are 279 000 annotated frames
from 3 countries. Night-time pedestrian detection is very
important for robust vision applications, that is why the
authors showed that pedestrian detectors do not perform well
at night, even when they are trained on night-time data.

1) COMMON CORRUPTIONS
Robust perception system in autonomous vision must work
well in many different conditions that might occur: night-
time, severe rain or snow, fog, noise from sensors, degrada-
tion of image quality, and many more. Even though many
large scale data benchmarks exist, it is impossible to gather
all possible tests, so that is why it is necessary to test models
in an out-of-distribution setting when such conditions are
synthetically generated. Common corruptions benchmark is
widely adopted for testing the robustness of the models [10].

It contains 15 different distortion types grouped in 4 cat-
egories: noise (Gaussian noise, shot noise, impulse noise,
salt-and-pepper noise), blur (defocus blur, frosted glass blur,
motion blur, zoom blur), digital (elastic transformations,
pixelation, JPEG lossy compression) and weather corrup-
tions (snow, fog, brightness, contrast) where each corrup-
tion has 5 levels of severity. Those corruptions are used
exclusively for the test, as it is a common practice adopted
by the computer vision community. Fig. 2 present example
corruptions.

B. METRICS
1) DETECTION ACCURACY
The standard metric in pedestrian detection is the log-average
miss rate (LAMR). It requires computing the miss-rate (mr)
and false positives per image (fppi) that are computed as
follows:

mr(c) =
fn(c)

tp(c)+ fp(c)
(1)

fppi(c) =
fp(c)
#img

(2)

where fn stands for false negatives, tp for true positives, and
fp is the number of false positives for detections that have
confidence value equal to or bigger than a threshold c. A pre-
diction is marked true positive when its overlap with ground
truth is greater than the selected threshold, i.e., in pedestrian
detection, 0.5 is commonly used as the threshold. To measure
the overlap between the predicted bounding box a and its
ground truth b an Intersection-over-Union (IOU) is computed
as follows:

IOU (a, b) =
Area(a) ∩ Area(b)
Area(a) ∪ Area(b)

(3)

If multiple detections are matched with single ground-
truth, then only the detection with the highest confidence
is matched, the rest of detections are considered as false
positives. Finally, not matched ground truth bounding boxes
are considered as false negatives. Threshold c is used for
measuring the balance between the number of false positives,
false negatives, and true positives. Final LAMR metric is
computed by averaging at nine fppi rates spaced equally in
the log-space in the range from 10−2 to 100 as it is done in
the literature [30]:

LAMR(c)=exp(
1
9

∑
f

log(mr(argmaxfppi(c)<=f fppi(c))) (4)

For evaluation, the so-called reasonable setup [28] is used.
It means that for training and evaluation, only pedestrians
whose height is bigger than 50 pixels, and the occlusion level
is smaller than 0.35 are used. Note that in generic object
detection the most commonly used metric is mean average
precision (mAP). However the LAMR metric is preferred
in certain applications, such as autonomous driving as there
usually exists an upper limit of false positives per image.
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FIGURE 2. Examples of different corruption types from Common Corruptions benchmark with different severity. Note that at the lowest severity
distortions are barely visible whereas at the highest severity they are clearly visible, however semantics of the images are not changed.

2) UNCERTAINTY ESTIMATION
We are also interested in measuring the classification calibra-
tion of the trained models. Intuitively, when a well-calibrated
detection model predicts bounding-box with pedestrian class
with 80% confidence, it should be accurate in 80% of the
cases. The standard way to measure a classification calibra-
tion is to compute Expected Calibration Error (ECE) [10].
Firstly predictions are partitioned into M bins based on its
confidence, and then the metric is computed as:

ECE(c) =
M∑
m=1

|Bm|
n
|acc(Bm)− conf (Bm)| (5)

where Bm is the set of indices of samples that prediction
confidence falls into the mth interval. The lower the score,
the better calibration (0 means perfect calibration). It is also
possible to compute calibration score for the regression of
the bounding box localization; however in our setting there
is no measure of bounding box uncertainty, as there is for the
classification task (output from the softmax layer).

C. IMPLEMENTATION DETAILS
MMdetection library [46] is used for the Faster R-CNN
model, with ResNet-50 backbone. All models are pre-trained
on ImageNet [47]. Stochastic Gradient Descent with an
initial learning rate of 0.002 and a momentum of 0.9 is
used. The training lasts for 40 epochs, and the learning rate
drops to 0.0002 after 25 epochs. All models are trained
on the Cityscapes dataset. Data from 3 cities (Darmstadt,
Mönchengladbach and Ulm) from the training set are moved
into trainval set similar as in the literature [48]. The model
with the best accuracy on trainval set is used for testing.
Since no ground-truth data is publicly available for all the
datasets, results are reported on their validation sets. During
the evaluation, each training is repeated 5 times, and the mean
accuracy is the final score. All models used the same training
settings. In addition to standard random vertical flipping and
resizing of the image, each tested model adds its own data
augmentation.

For the CSP architecture, public repository published by
the authors is used.1 A training protocol from the original
paper is followed, i.e. model is trained for 37.5K iterations
and then used for the validation. The only difference is that we
employed 1 GPU for training (instead of 2). Also, as signif-
icant differences between consecutive runs may occur, each
model is trained 5 times and the mean accuracy is reported
(similarly as for the Faster R-CNN).

V. EXPERIMENTS
In this section, results of experiments are presented.
Section V-A shows how patch-size affects the accuracy of
the model. Section V-B presents the robustness to Common
Corruptions benchmark of several augmentation methods,
and in section V-C similar experiments are conducted for
cross-dataset evaluation, in particular for detecting pedes-
trians in the night-time. Section V-D shows classification
calibration of evaluated models.

A. PATCH-SIZE SELECTION
First, hyperparameter search for the optimal size of the styl-
ized patch is run. Too small patch size might reduce the
positive effects of using style-transfer for model robustness,
whereas the too big size of the patch might reduce the clean
accuracy. In the experiment the stylized patch is of size
kW x kH pixels, where kε[0, 1]. Note that when k = 0,
it means that style transfer augmentation is not used at all,
wheres when k = 1, only stylized-images are used.
Figure 3 plots the model accuracy as a function of patch

size on the CityPersons dataset. It can be noticed that the
model accuracy firstly increases with the size of the patch.
However, after the size of the patch is bigger than 0.3 of the
image size, then accuracy decreases. This is expected as the
model is biased more towards stylized images, and as a result,
accuracy on the clean data decreases. All of the remaining
experiments are conducted with the selected patch size.

1https://github.com/liuwei16/CSP
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FIGURE 3. Log-average miss rate for pedestrian detection accuracy (lower
is better) on CityPersons dataset using proposed data augmentation as a
function of the patch size. Note that the most left data point corresponds
to the baseline trained on original data, while the most right data point is
a model trained using only stylized images.

B. CityPersons AND COMMON CORRUPTIONS
In this section, different data augmentation methods are eval-
uated with regard to the model robustness. In particular, the
following models are evaluated:

• Baseline model corresponds to the model trained with
standard data augmentation,

• Sin [16] is a model trained on both clean data and the
stylized version using 1:1 ratio,

• StyleOnly model is trained using only stylized data,
• Our corresponds to the proposed augmentation model,
• CutOut [21] model with the same patch size as Our
model. It serves as another baseline to the proposed data
augmentation and as a sanity check to make sure that
similar gains cannot be obtained by simply removing
patches of the image,

• Gaussian data augmentation with σmaxε{0.1, 0.5}
• PatchGaussian data augmentation with σmaxε{0.1, 0.5}.
The same patch size is used for the Our and CutOut
model.

Table 1 shows accuracy of the trained models on the
original CityPersons dataset and as well on the Common
Corruptions benchmark grouped by distortion category.

First, the results emphasized the importance of robustness
testing. While the Baseline provides reasonable accuracy on
the clean data, it constantly has worse accuracy on all corrup-
tion types by a large margin. Further different data augmenta-
tion provides the best accuracy on different corruption types.
Our data augmentation performs the best on clean data, noise
corruption (together with Sin model), and on weather-related
corruption types. Sin model also performs the best on the
blur corruptions, whereas Gaussian augmentation helped the
most on the digital noise. Findings of other authors [20], are
confirmed and we show that while Gaussian augmentation
improves robustness, it may actually hurt performance on
clean data (21.19% LAMR when σ = 0.5), whereas using
only patches of Gaussian noise provides a balance between
clean accuracy and robustness. Finally, it can be observed that

TABLE 1. Accuracy comparison of Faster R-CNN models trained with
different augmentation strategies on clean data (first column) and related
to specific corruption types from the Common Corruptions benchmark
(the remaining columns). LAMR is reported (lower is better). For models
that used Gaussian augmentation, values in noise column are marked in
grey colour because the tested corruption type was a part of the training.

combining Style-Transfer using Our or Sin with PatchGaus-
sian provides the best accuracy across all corruption types.
However, many of the corruptions still drastically degrade the
performance, so there is still large room for improvement in
terms of increasing model robustness.

Also, it is interesting to directly compare Our and Sin
data augmentations as they are competitive approaches. For
that purpose, those two approaches are directly compared
for each corruption type. Table 2 shows that the proposed
model provides the most significant gains for fog, brightness,
and contrast deformations. This is very interesting in light of
findings by Yin et al. [4] where they perform Fourier spectral
analysis of different distortion types and find that the afore-
mentioned distortions are concentrated in low-frequencies
components of images. This means that the proposed data
augmentation might be particularly useful for low-frequency
distortions types.

Fig. 4 shows example detections for Baseline model
and model trained with proposed augmentation and Patch
Gaussian. In general, data augmentations significantly
improve model accuracy, however, there are still many sit-
uations when the model lacks robustness. Some types of
distortions (especially noise), drastically change the output of
the detection model even at the low distortion severity, when
the input image is only slightly changed. Even though our
best trained models are more robust than the Baseline model
the problem is still far from being solved.

C. EVALUATION UNDER THE DISTRIBUTIONAL SHIFT
In the previous section, synthetically generated distortion
types were used for the evaluation. However, it is very impor-
tant to test a model on different dataset because even if the
datasets look similar, there still will be a lot of differences
regarding data collection protocol (e.g., camera sensor and
its placement inside a vehicle, geographical location) which
might affect final accuracy. Further, synthetically generated
distortions are only approximation of real-world adverse con-
ditions that is why the models are also tested on night-time
images.
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FIGURE 4. Detection samples for baseline and augmented (Our + PatchGaussian_0.5) models for different corruption types. The first column - motion
blur (severity intensity of 4), the second column - Gaussian noise (severity intensity of 2), third column - artificial snow with a severity intensity of 2. Note
that the distortion for Gaussian noise is almost impercetible, yet it greatly reduces accuracy of the model. Augmented model is more robust, however in
the last column pedestrians on the right are missed by both models.

TABLE 2. LAMR for each corruption type of Faster R-CNN models.

TABLE 3. Accuracy comparison of Faster R-CNN models trained with
different augmentation strategies on day-time and night-time images
from the ECP dataset as well on NightOwls dataset (night-time). LAMR
values are reported.

Table 3 shows the accuracy of the models for different
datasets. First, a significant drop in accuracy for all the mod-
els can be noticed, i.e., Baselinemodel LAMR increases from
17.86% to 25.05% when tested on ECP-day comparing to
CityPersons. It can be explained by the fact that the ECP
dataset is more challenging for both but also because of
the dataset shift. Accuracy further drops when models were
tested on night-time images instead of day-time - for Baseline
model, the average miss-rate is almost doubled. For data aug-
mentation based on stylization or Gaussian noise the decrease
is not that severe and for best performing combination (Our
+ PatchGaussian_0.5) the average miss-rate increases only
from 20.35% to 26.13%. Further, the drop in accuracy for
NightOwls dataset is bigger than for the night-time images
from the ECP dataset. On that benchmark, simple Gaussian
augmentation obtained the best result - this might be because

the NightOwls dataset contains a lot of noise due to the very
low light intensity. It is also worth noting effect of the Cutout
data augmentation on the accuracy of the clean data, how-
ever it only slightly affected the robustness, especially when
compared to thePatchGaussian and style data augmentations.
Finally, the proposed data augmentation provides the same
or better accuracy compared to Sin across all benchmarks.
Fig. 5 shows example detections. Again model accuracy is
improved, but the augmented model still lacks robustness for
some situations (last column).

1) CENTER SCALE PREDICTION
Table 4 shows obtained results on all of the benchmarks.
Some interesting observations can be made. Firstly, in most
cases, the new architecture provides better accuracy then the
Faster R-CNN, i.e. LAMR decreases for the Baseline model
from 17.86% to 12.37% on the Cityscapes dataset, and from
25.05% to 22.06% on the ECP day-time images. Surprisingly
the new model is worse than the Faster R-CNN when testing
the Baseline model on ECP night-image images. When styl-
ized data augmentation are used the new model is better or
on par with Faster R-CNN except for the performance under
noise corruption (LAMR increases from 76.14% to 83.24%
for the Sin data augmentation.
Interestingly, while testing on the Cityscapes dataset (no

distributional shift) standard data augmentation already pro-
vides a strong baseline, and onlyCutOut augmentation is able
to slightly improve over that. The proposed data augmenta-
tion obtains the best result (by significant margin) when test-
ing on ECP day-time images. When testing on night-images,
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FIGURE 5. Detection samples for baseline and augmented model. The augmented model is more accurate on the night-time images, however some
pedestrians are still not detected.

TABLE 4. Comparison of CSP models accuracy trained with different data augmentations, on various datasets, and on specific corruption types from the
Common Corruptions benchmark applied to Cityscapes dataset (columns 2-5). For models that used Gaussian augmentation, values in noise column are
marked in grey colour because the tested corruption type was part of the training. LAMR values are reported.

both stylized augmentation provide the best accuracy. For
different types of corruptions, the best methods are the same
as in the Faster R-CNN model.

Experiments on the CSP architecture confirm that the pro-
posed data augmentation allows to obtain very competitive
results across different benchmarks and offers good balance
between accuracy on the clean dataset and under distribu-
tional shift. Additionally, we show that it is important to test
the models under different benchmarks and architectures as
the results can largely differ between those.

D. UNCERTAINTY ESTIMATION
Providing reliable uncertainty estimates is a very impor-
tant aspect of safe autonomous systems. In this section,
the ECE score is measured for all real-world benchmarks.
We find that stylized and Gaussian augmentations help to
improve prediction confidence with no clear leader between
them, so for conciseness Table 5 shows ECE scores of
Faster R-CNN models, for the Baseline, Sin, and for Our
models.

Ideally, the ECE score would be a constant and small
value across different datasets, which would mean that the
model ‘‘knows what it does not know.’’ However for the
Baseline the ECE score goes up when testing on night-time

TABLE 5. Comparison of ECE for selected Faster R-CNN models on
different datasets (lower value means better calibration).

images (jump from 0.1468 to 0.1985 on ECP dataset). Our
model has almost constant calibration error when switching
to night-time images on the ECP dataset, whereas Sin model
has even smaller calibration error. Note from the previous
section that the model accuracy drops in that case, which
means that the improved calibration cannot be only attributed
to the improved model accuracy. All of the models are signif-
icantly worse calibrated for the NightOwls dataset because
it is more challenging of both and because the distributional
shift is greater in this case.

Fig. 6 shows calibration plots. It can be observed that
the Baseline model has worse uncertainty calibration when
switching from day to night-time images, especially in the
area of high confidence predictions, which means that the
model in under-confident in its predictions. For the proposed
model (and other stylized and gaussian augmentations) there
is no clear difference in the calibration plot between day and
night-time for the ECP dataset.
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FIGURE 6. Calibration plots for selected Faster R-CNN models for
day-time and night-time images on ECP dataset. Accuracy near diagonal
means perfect calibration.

FIGURE 7. Calibration plots for Faster R-CNN and CSP architectures on
Cityscapes dataset.

CSP architecture shows similar findings - using data aug-
mentation usually improves model calibration, especially for
the large distributional shift (night-time images). Interest-
ingly we find however that CSP models are have worse cal-
ibration, e.g. for Cityscapes dataset Faster R-CNN Baseline
model has ECE score of 0.1418 whereas CSP model has a
score 0.2446 (Fig. 7).

VI. CONCLUSION
In this work, the examination was performed of pedestrian
detection models in the real-world setting when test-time
data come from a different distribution than in training: using
cross-dataset evaluation, testing the model by switching illu-
mination conditions (day to night) and through testing it on
synthetic distortions. It was confirmed that such a testing
is crucial for a realistic evaluation of the model since the
accuracy of the baseline model drops drastically. Further,
we show that data augmentations in the form of stylized and
Gaussian augmentations significantly improve the robustness

of the model. A new data augmentation scheme was proposed
that uses stylization but only on patches of the original image,
and it was shown that such augmentation offers competi-
tive accuracy. Finally, we demonstrated that the use of data
augmentations also improves classification calibration of the
pedestrian detection models.

Whereas the problem of model robustness is still not
solved, this work serves as a step towards that goal. Our work
could be combined with self-supervised learning methods,
recently gaining much attention and which also could be
beneficial to the model robustness and uncertainty.
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