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ABSTRACT As the behavior of multitasking embedded software is dependent on the underlying operating
system(s), rigorous and efficient verification in this domain requires models of operating systems (OS) that
enable OS-aware verification of application programs at reduced cost. However, the heterogeneity of the
languages used for OS models and of the program source code makes it difficult to compose these seemingly
independent components and thus requires translation of one language into another, causing various issues
in verification. To alleviate this problem, we propose a hybrid approach that composes formal OS models
with application programs in an interaction model. Based on typical OS-application interaction behavior,
our interaction model is a composition framework that connects an OS model to application programs as
long as they share the same Application Program Interface (API). It provides seamless composition of two
heterogeneous software artifacts by formulating source code annotations based on control-flow analysis and
by synchronizing state transitions over API function calls to regulate the context switching of multitasking
programs. A prototype implementation of the interaction model was applied to eight benchmark programs
of the Erika OS and a control program with real-scale complexity from the automotive domain. It was shown
that the framework supports systematic and effective verification of multitasking embedded software, which
has not been possible using code-level model checking.

INDEX TERMS Embedded software, multi-tasking, heterogeneous composition, model checking.

I. INTRODUCTION
Embedded software1 [15] controls hardware devices and
typically runs on top of an operating system as the sole
software on the target device. Some representative examples
include ECU (Electronic Control Unit) control software in
the automotive domain and control software for IoT (Internet
of Things) devices, drones, and robots. The fact that, unlike
typical general-purpose computer-based systems, the control
software does not share operating system services with other
applications makes it possible to optimize the software for
memory efficiency, system safety, and performance at the
cost of higher interdependency with its underlying operating
system. Due to this close interdependency, however, verifica-
tion of embedded software becomes more complicated, as the
correctness or safety of the control program is inseparable

1This term is sometimes used interchangeably with firmware.
The associate editor coordinating the review of this manuscript and
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from that of the operating system as well as from the interac-
tions between them.

Nevertheless, formal verification approaches formultitask-
ing embedded software have mostly focused on the control
logic separately from the OS [1], [13], [30], [35], [38]–[40],
[45], [47], which often produces a large number of false
alarms due to the over-approximation of the environment,
including the operating system. For example, the application
program shown in Figure 1 has a unique execution trace
due to the scheduling decision from its underlying operating
system. However, if we treat the two tasks as being arbitrarily
interleaved with each other without considering the behav-
ior of the underlying OS, as most existing approaches do,
there can be a maximum of 10C5 = 252 possible execution
traces, all of which but one are infeasible. It is difficult
and inefficient to manually identify one true alarm out of a
possible 252 alarms.

Anticipating the behavior of the underlying operating sys-
tem may address this problem of verification accuracy, but
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FIGURE 1. A multitasking program and its expected execution sequence.

has not been adopted as a practical solution due to the
apparent increase of verification cost: The implementation of
embedded OS typically comprises 4,000 to 10,000 lines of
code, which is larger than the typical size of control software.

This work strives to improve the verification accuracy of
multitasking embedded software while maintaining verifi-
cation cost at a practical level, noting that formal models
of operating systems can greatly help to reduce verification
complexity [14], [43]. Assuming that the OS model is com-
prehensively verified with respect to functional correctness
as well as system safety, we can perform two-step verifi-
cation: (1) verification of the OS implementation using the
OS model as a test oracle, and then (2) verification of the
embedded software by replacing the OS implementation with
the verified OS model. Such thoroughly verified operating
system models already exist, for instance OSs developed
using a proof-by-construction approach [5], [31] and formal
OS models written in formal modeling languages [7], [26],
[33], [52]. Among these, our previous approach [7] generates
formal OS models by assembling predefined formal service
patterns for a given system configuration, thereby providing a
formal framework for the verification in accordance with the
typical construction process of embedded software illustrated
in Figure 2. The remaining issue is how to compose the
generated formal OS models with control programs written
in various programming languages.

To enhance the reuse of formal OS models and the com-
posability of OS models and application programs, this work
introduces a framework consisting of an interaction model
between an OS model and the control software and a method
for embedding application programs into the interaction
model. Our framework considers an OS model as a black
box that interacts with application programs only through
APIs and can thus be applied to various OS models as
long as they are designed to react to API function calls and
allow references to internal system variables, such as internal
states of tasks or values of events handled by the kernel.

FIGURE 2. Construction of embedded software.

To embed the application source code into the interaction
model, we define an application wrapper that incorporates
a synchronization mechanism for a visible state, i.e., a state
that calls API functions or references global variables, into
the program source code. The synchronization mechanism is
used to control the granularity of the context switching among
tasks with minimum changes to the application program. It is
shown that the application wrapper is a sound abstraction of
the program source code if there is no race condition in the
program.

As our framework is designed to be independent of OS
models, we do not assume any specific scheduling algorithms
or modeling languages. To demonstrate the effectiveness of
our approach, however, we implemented the framework using
Promela [25] as the target modeling language. The effective-
ness of the framework is demonstrated through applications
on eight benchmark programs for the Erika OS [17] and a
control program with real-scale complexity from the automo-
tive domain,2 showing that the approach reduces verification
cost while improving verification accuracy.

The major contributions of this work can be summarized
as follows

• It formally defines an interaction model and an applica-
tion wrapper that enable heterogeneous composition of
a model of the operating system and the source code of
embedded control software. To the best of our knowl-
edge, this is the first work addressing the seamless com-
position of these two heterogeneous software artifacts
for verification purposes.

• Comparative experiments with existing state-of-art ver-
ification approaches on a set of benchmark programs
for Erika OS [17] and a representative embedded con-
trol software (Winlift [34]) in the automotive domain
demonstrate that the use of this interaction model
improves verification accuracy and is more scalable,
outperforming the state-of-art verification tools.

• Accurate verification of multitasking embedded soft-
ware becomes feasible with moderate cost, which has
not been possible using existing approaches.

The remainder of this paper is organized as follows:
Section II provides a brief introduction to embedded
software. Section III and Section IV define the OS-aware
interaction model and the notion of the application wrap-
per, respectively. Section V describes how to construct
an interaction model using Promela as a case example.
Section VI shows the application of the interaction model to

2We chose these programs because they are publicly available. It is rare
to find real-scale open-source programs in this domain.
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a set of control programs. After summarizing related work in
Section VII, we conclude with a discussion in Section VIII.

II. BACKGROUND
A. ELEMENTS OF EMBEDDED SOFTWARE
Embedded software controls hardware devices and typically
runs on top of an operating system as the sole software
on the target device. Some representative examples include
ECU control software in the automotive domain and control
software for IoT devices such as drones and smart watches.
The fact that, unlike typical general-purpose computer-based
systems, the control software does not share operating system
services with other applications makes it possible to opti-
mize the software for memory efficiency, system safety, and
performance at the cost of higher interdependency with its
underlying operating system.

Figure 2 illustrates a typical construction process of
embedded software. A subset of an (in-house or commer-
cial) OS implementation is selected according to the system
configuration and is compiled together with the application
control logic to generate the target embedded software. The
control program is typically multitasking, consisting of a
set of tasks (or threads). Each task has its own priority so
that a task with higher priority is scheduled earlier than
tasks with lower priority. It is also possible for a task with
lower priority to run prior to a task with higher priority if it
accesses a critical section by occupying resources. A running
task may be in a waiting state by voluntarily waiting for an
event. An embedded operating system such as Erika [17],
Zephyr [18], or FreeRTOS [19] typically maintains four inter-
nal states of each task, {running, ready, waiting, suspended},
with minor variations. A control program interacts with its
underlying operating system through API functions provided
by the OS.

B. VERIFICATION ISSUES
Simulation or Hardware-in-the-Loop(HiL) testing are typical
verification methods used in practice in this domain, but the
quality of the simulation or HiL testing largely depends on
the quality of the selected input values. These are known to
be insufficient for comprehensive verification if the goal is to
identify subtle problems in critical systems. Formal verifica-
tion approaches for control logic have been investigated since
the 1990s to address this issue. However, formalizing only the
control logic has not been sufficient for effective verification,
as it results in producing a large number of false alarms due
to the over-approximation of environments, including operat-
ing systems. Formal modeling and verification of embedded
systems has been actively investigated, but research is still
considered to be at too early a stage to be practical.

Figure 1 shows an example of an embedded application
program operated in an automotive operating system that
is compliant with the OSEK/VDX international standard
for road vehicles [12]. Given the system configuration, the
two tasks are expected to be executed as shown in the
lower right part of the figure, as the OSEK/VDX OS adopts

FIGURE 3. Schematic view of the interaction model.

a priority-based FIFO (First-In-First-Out) scheduling algo-
rithm. The autostart task t1 runs first and activates task t2,
which has higher priority. Task t2 preempts t1, runs to set
wait_sw to ON, and goes to the waiting state by callingWait-
Event(e1), giving another execution round to task t1. t1 calls
SetEvent for task t2, as the branch condition in line 04 evalu-
ates to true, which preempts t1 again and terminates. Task t1
activates t2 again, but terminates immediately as wait_sw
evaluates to ON.

The decision on which task gets CPU (Central Processing
Unit) time cannot be described in a simple scheduling algo-
rithm, as it depends on task priorities, API call sequences,
resource allocation, interrupts, events and alarms, and many
other aspects of the system. If we try to verify this multi-
tasking programwithout considering its underlying operating
system or try to do so with a highly abstracted operating
system, e.g., allowing non-deterministic scheduling, formal
verification has to consider all possible execution traces for
the same program, as context switching may occur at any
instruction of each task. This is extremely expensive both in
terms of performing the formal verification and in terms of
identifying false alarms produced by over-approximated OS
behavior.

III. OS-AWARE INTERACTION MODEL
This section introduces an OS-aware interaction model as
a composition framework for OS models and application
source code written in different languages. Figure 3 shows
an overview of the interaction model. The interaction model
consists of an OS model and an application wrapper con-
taining the target application program to be verified. The OS
model typically consists of kernel data, kernel operation, a set
of API functions, and API handlers. The target application
program is embedded into the application wrapper, which
delivers messages between the API handler of the OS model
and the application program being executed.
Definition 1: An embedded software M is a parallel

composition of an embedded operating system Mos and an
application software Mapp, synchronized over the set of API
function calls E :3

M = Mos||Mapp,

where Mos and Mapp are represented as parameterized
statemachines4 as defined in Definition 2 and Definition 4.

3Synchronized parallel composition allows each statemachine to accept
a transition while the others remain in the same state, but all statemachines
satisfying the transition conditions must undergo the transitions at the same
time.

4Each statemachine is parameterized with the system configuration and
utilized as a statemachine pattern [7].
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FIGURE 4. A model of an API handler and a task.

An embedded operating system typically consists of a
kernel for core system services, ISR handlers, and alarm
handlers. Therefore,Mos = Mkernel ||Malarm||Misr is a parallel
composition of OS kernel, periodic alarms, and interrupt
handlers. However, our interaction model abstracts Mos with
Mah, a model for API handlers, as we consider the OS as a
black box and focus on external interactions with application
programs.
Definition 2: An API handler Mah = (S,V ,E,A,R, I ),

an abstract representation of an embedded operating system
Mos, is a statemachine reacting to calls to a predefined set of
API functions, where

- S = {Off ,Ready,Processing} is a set of system states,
- V is a set of system variables (called visible variables),
- E = (6 ∪{τ })×P∗ is a set of API function calls, where
6 is the set of names of API functions, τ represents no
function call, and P is a set of parameters,

- A is a set of action sequences with an action map m :
6 × P∗ −→ A× P∗,

- R ⊆ S×E ×C[V ]×A× S is a set of transitions, where
C[V ] is a set of conditions over V , and

- I = {Off } is a set of initial states.
The top part of Figure 4 graphically illustrates Mah with

three major states, Off, Ready, and Processing. Once it starts,
it is in the Ready state and waits for external events such
as an API function call from a task, then moves to the
Processing state as it calls the processing functions m(f (x))
corresponding to the externally called API function f (x).
After the processing of m(f (x)), it sends out the result of the
processing and goes back to the Ready state. The Processing
state is highly abstracted in this figure, but it subsumes all
the activities the kernel performs, such as task management,
task scheduling, resource management, event management,
and alarm/interrupt handling. Especially the system variables,
such as the internal states of each task, are updated only
by Mos, which is hidden from the scene.

Multitasking application software consists of a parallel
composition of tasks, where each task shares global variables

and communicates with its underlying operating system
through API function calls.
Definition 3: Mapp = T1||T2|| . . . ||Tn is a paral-

lel composition of a finite number of tasks Tk =

(Nk ,Rk , {n0k}, {n
t
k},Vk ), where

- Nk ⊇ E is a set of nodes; each statement in a task is
considered as a node, including API function calls and
assignments,

- Rk ⊆ Nk × Nk is a set of directed control flow edges,
- Vk is a set of variables used in Nk , including global
variables, and

- n0k and ntk are the initial and the terminal node,
respectively.

A node n ∈ Nk represents a statement in the task and
an edge r ∈ Rk represents a control transition between two
statements. A unique initial and terminal node is assumed in
each task as multiple terminal nodes can be directed to one
terminal node by adding an edge between them.

As each task in an application program has its own control
flow structure,Mapp could have arbitrary interleavings among
multiple tasks unless it is constrained by the operating system.
In our interaction model, the original application program
Mapp is replaced with the following abstract representation:
Definition 4: M̃app = M1||M2|| . . . ||Mn is a parallel com-

position of a finite number of tasks Mk = (Sk ,Vk ,E,Rk ,
{s1}, {sf }), where

- Sk = {Ready,Waiting} ∪ (Running = {si}i∈N ) is a set of
states, where Ready is the initial state of Mk ;

- E is the same set of API function calls as in Mah;
- Rk ⊆ Sk ×E ×C[Vk ]× Sk is a set of transitions, where
C[Vk ] is a set of conditions over Vk ; and

- s1 and sf are the initial and the final sub-states of
Running, respectively.

Each task Mk consists of three major states: Ready, Wait-
ing, and Running. The Running state is further decomposed
into multiple sub-states {si}, where each state si is a group
of multiple statements that can be executed atomically. The
lower part of Figure 4 shows a fragment ofMt for a task with
id t . Once it starts, it goes to the Ready state, waiting for the
kernel scheduler to change its state to Running. If its internal
state assigned by the OS kernel becomes Running, it goes to
the initial sub-state s1 of theRunning state. Transitions among
the sub-states follow the control flow of the task except for the
case when the task calls an API function that causes a tran-
sition to the Waiting state. If the task receives the result and
its internal state assigned by the OS remains Running, it goes
back to the previous sub-state of Running. The H sign inside
the Running state in Figure 4 represents that it remembers
the last sub-state before exiting the state. If the result of the
API call changes the internal state of the task to Suspended
(which is the case when the API call is for terminating the
task), it goes back to the Ready state. Here, task_state[t] is a
shared system variable whose values can be updated only by
the OS kernel. Each state transition within the Running state
is guarded by [task_state[t]==Running], meaning
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that the transition occurs only if the internal state of the task
is Running. The task exits from Running to Ready after the
final sub-state of Running.
We note that the model does not explicitly deal with cases

caused by external interrupts. Interrupts are handled by the
OS and may change the internal state of each task as a
result. The task in the Running state waits in a sub-state if
an interrupt changes its internal state and resumes as soon as
the guarding condition to transit to the next sub-state becomes
true.

With this interaction model in mind, the subsequent sec-

tions will show how Mapp is converted into M̃app without
losing its soundness.

IV. APPLICATION WRAPPER
In order to embed the application source code into the inter-
action model with minimal modification, we first refine the
notion of control flow of each task and define the grouping
rules of the nodes to separate visible nodes from invisible
nodes.

A. EXTENDED CONTROL FLOW REPRESENTATION
Definition 5: Given a task T in an application program,5

a control flow structure TCFG = (N ,R, {n0}, {nt },V ) is
extended from Definition 3 by refining N and V as follows:

- N : Na ∪ Nc ∪ NAPI ∪ Nb ∪ Np is a set of nodes where
Na is a set of declaration/assignment nodes, Nc is a set
of application function call nodes, NAPI is a set of API
function call nodes, Nb is a set of branch nodes, and Np
is a set of pseudo nodes;

- V = Vv∪Viv is a set of (visible/invisible) variables used
in N .

Especially the set of variables V is categorized into two
parts: visible variables and invisible variables. A visible vari-
able is a global variable or system variable. An invisible
variable is a local variable used within a task. We represent
an immediate successor m of a node n as n ⇒ m and use
n0n1n2 . . . nk for a sequence of nodes that satisfies ni ⇒ ni+1,
∀i = 1..k−1. The lower part of Figure 5 shows an example of
the control flow structure visualized for a typical task written
in C, namely the Producer task shown in the upper part of the
figure.

A branch node is related to a sequence of nodes to be exe-
cuted when the branch condition is true (the true block) and a
sequence of nodes to be executed when the branch condition
is false (the false block). These blocks can be characterized
as their first nodes are successors of the given branch node
and their last nodes are predecessors of the same node that is
the start node after the branch statement. The transitions from
a branch node nb to the first node m of the true block and to
the first node l of the false block are denoted as nb ⇒t m and
nb ⇒f l, respectively.

5We assume that a task is distinguishable from ordinary functions,
e.g., by using the keyword Task, which is a typical case in embedded
software.

Definition 6: Given a branch node nb ∈ Nb, a true block
of nb, T (nb) = n0n1n2 . . . nm and a false block of nb, F(nb) =
n′0n
′

1n
′

2 . . . n
′
l are sequences of nodes, where

- nb ⇒t n0 and ni ⇒ ni+1, ∀i = 0..m− 1,
- nb ⇒f n′0 and n

′
i ⇒ n′i+1, ∀i = 0..l − 1, and

- ∃!nk ∈ N such that nm ⇒ nk and n′l ⇒ nk .

B. STATEMACHINE REPRESENTATION OF A TASK
The extended control flow structure of a task is mapped to a
statemachine representation in order to construct an applica-
tion wrapper. The application wrapper identifies API function
call nodes in compound statements, such as loop statements
and conditional statements, as a call may cause rescheduling
of tasks and change the execution sequence of the multitask-
ing program. For example, calling WaitSem(p) inside the
while loop in Figure 5 may cause control being handed over
to the OS and having to wait for the result before proceeding
to execute the next statement. In addition, nodes containing
visible variables get special treatment, as the order of assign-
ments/references to these variables may have a critical impact
on the behavior of concurrent programs. The context switch
tester identifies such influential context switching points.
Definition 7: A context switch tester

Testcs : N −→ {T (Nb),F(Nb),False,True}

is a function over a set of nodes that returns
- True, if n contains an API function call or visible vari-
ables, or if n ∈ Nb and ∃m ∈ T (n), ∃k ∈ F(n) such that
Testcs(m) = Testcs(k) = True,

- False, if n does not contain any API function call nor any
visible variables, and n ∈ Nb implies Testcs(m) = False,
∀m ∈ T (n) ∪ F(n).

- T (n), if n ∈ Nb and ∃m ∈ T (n) such that Testcs(m) =
True, but Testcs(m) = False, ∀m ∈ F(n),

- F(n), if n ∈ Nb and Testcs(m) = False, ∀m ∈ T (n), but
∃m ∈ F(n) such that Testcs(m) = True

The application wrapper constructs an abstract state out
of a group of consecutive control flow nodes, depending on
whether or not there are any API function calls and visible
variables in the nodes.
Definition 8: For a given task t = (N ,R, n0, nt ,V ),

a statemachine wrapper (or an application wrapper) Mt =

(S, s0, st , R̂) is defined as
• s0 = st = {Ready},
• S is a set of states whose elements are determined by
the grouping function g : N −→ S that satisfies the
following relations:
1) g(n0) = g(nt ) = Ready,
2) ∀n,m ∈ N such that n⇒ m, (Testcs(n) = False ∧

Testcs(m) = False) iff g(n) = g(m),
3) ∀n ∈ Nb such that Testcs(n) 6= False, g(m) 6=

g(k),∀m ∈ T (n),∀k ∈ F(n),
• R̂ ⊆ S × C × S is a set of transitions, where C is a set
of predicates over V and is defined as follows:
1) ∀s ∈ S, (s,True, s) ∈ R̂, i.e., R̂ includes

self-transition,
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2) ∀s, s′ ∈ S, (∃n ∈ s, ∃m ∈ s′such that n ⇒ m)
implies (s,True, s′) ∈ R̂,

3) For s = g(napi) ∈ S, (napi,m) ∈ R implies
(s,True,Waiting) ∈ R̂ and (Waiting, runnable[t],
g(m)) ∈ R̂,

4) For n ∈ Nb where Testcs(n) 6= False, m ⇒ n ∧
n⇒t l implies (g(m), n.condition, g(l)) ∈ Rtemp,

5) For n ∈ Nb where Testcs(n) 6= False, m ⇒ n ∧
n⇒f l implies (g(m),¬n.condition, g(l)) ∈ Rtemp,
and

6) {(si,
∧

k ck , sj) | (si, ck , sj) ∈ Rtemp} ⊂ R̂.
Intuitively, the statement wrapper defined in Definition 8

can be explained as follows: To define states in the statema-
chine wrapper, 1) both the initial and the final state in the
wrapper are Ready, 2) two assignment nodes n and m are
grouped into the same state, i.e., g(n) = g(m), if and only
if m ⇒ n or n ⇒ m and they do not contain API function
calls or visible variables, and 3) any nodes in the true block
of a branch node nb cannot be grouped into the same state
to which a node in the false block of the same branch node
belongs if Testcs(nb) 6= False.

To define transitions in the statemachine wrapper, 1) self-
transition is included for each state, 2) two states s and s′ have
a transition relation if there is a node n from s and a node m
from s′ with an edge n ⇒ m in the control flow structure,
and 3) a transition from an API call node napi to a node m is
converted into a transition from s ∈ g(napi) to Waiting and a
transition from Waiting to g(m). The last three rules are for
defining transitions from branch nodes. 4) If a branch node
n has potential switching points, the condition of the branch
condition becomes the transition condition between g(m) and
g(l), where m is the predecessor node of n and l is the first
node of its true block; likewise, 5) the negation of the branch
condition becomes the transition condition between g(m) and
g(l), where m is the predecessor node of n and l is the first
node of its false block. The final transition condition between
g(m) and g(l) is the conjunction of all transition conditions
identified from 4) or 5).

For example, as shown in the lower part of Figure 5, the
control flow structure is first annotated with np, nc, na, nb,
and napi, depending on the type of each node. The second
round performs Testcs for each branch node and annotates it
as napi if TestAPI (nb) 6= False, meaning that the branch node
is followed by an API function call or assignments/references
to visible variables and thus needs to allow a context switch
within the branch structure. As the result of the second-round
annotation, a branch node is either embedded into an invisible
state or used as a transition condition between its visible
predecessors and successors. The branch node ‘‘EE_TRUE’’
is now annotated with napi after the second-round annotation
in Figure 5. Figure 6 shows the statemachine representation
after application of the grouping rules to the annotated control
flow structure.

We assume atomic execution of the statements in each
state in the wrapper statemachine; i.e., no interrupt is allowed
while executing statements in a state. We also assume that the

FIGURE 5. A sample multitasking program and its annotated control flow
structure.

runnability of the task, which is determined by the OS
scheduler, is checked before the transition to another state.
If the task is not runnable, it stays in the same state until it
becomes runnable:

t.state == p = {n1n2n3 . . . nk }, t.runnable, (p, c, q) ∈ t.R̂, c
atomic{n1.statement; . . . ; nk .statement; }, t.state = q

,

t.state == p = {n1n2n3 . . . nk },¬t.runnable ∨ ¬c,∀(p, c, q) ∈ t.R̂
t.state = p

C. SOUNDNESS
Assuming that the OS model is a sound abstraction of all
possible implementations of the functional requirements of
the OS, the soundness of the interactionmodel depends on the
soundness of the application wrapper. We show this sound-
ness using an application with two tasks. Generalization to
arbitrary n tasks can be done in a similar way.
Theorem 1: For a givenMapp = T1||T2 = (N1×N2,R1×

R2, (n01, n
0
2), (n

t
1, n

t
2),V1 ∪ V2), let

• M̃app = MT1 ||MT2 = (S1×S2, R̂1× R̂2, (s01, s
0
2), (s

t
1, s

t
2),

V = V1 ∪ V2),
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FIGURE 6. Statemachine representation of the sample control flow
structure in Figure 5.

• α = g × g : N1 × N2 → S1 × S2 be an abstraction
function, where α(n1, n2) is defined as (g(n1), g(n2)),

• L : N1 × N2 → 2V be a labeling function for Mapp,
a valuation function for all visible variables in a node
pair,

• L̂ : S1 × S2 → 2V be a labeling function for M̃app,
a valuation function for all visible variables in a state
pair;

• � represent the abstraction relation over ((N1 × N2) ×
(S1 × S2))such that (n1, n2) � (s1, s2) if (s1, s2) =
α((n1, n2)),

then � is a simulation preorder if there is no race condition
in Mapp.

Proof: It suffices to show that (1) all initial states inMapp

are mapped to initial states in M̃app, (2) all transitions inMapp

aremapped to transitions in M̃app, and (3) the label is the same
before and after the mapping.

1) As we assumed a unique initial node in a task, there is a
unique initial node, which is (n10, n

2
0) ∈ N1 × N2. Then

α(n) = (g(n10), g(n
2
0)) = (Ready,Ready) is an initial

state of M̃app through the construction of M̃app.
2) Let p = (n1, n2) ∈ N1×N2 such that α(p) = (s1, s2) ∈

S1×S2. For any q = (n′1, n
′

2) such that (p, q) ∈ R1×R2,
(n1, n′1) ∈ R1 and (n2, n′2) ∈ R2 by the definition of
the transition relation. Then (g(n1), g(n′1)) ∈ R̂1 and
(g(n2), g(n′2)) ∈ R̂2 according to the second rule of R̂
in Definition 8. Therefore, α((p, q)) = (g(p), g(q)) ∈
R̂1 × R̂2.

3) Let n = (n1, n2) ∈ N1×N2 with α(n) = (g(n1), g(n2)).
If ni contains a visible variable, then g(ni) = {ni}
according to the construction of M̃app. If neither n1
nor n2 contains a visible variable, then neither g(n1)
nor g(n2) can contain visible variables as g groups
nodes with visible variables and nodes with invisible
variables separately. Therefore, Li(ni) = L̂i(g(ni)) for
both cases, where Li : Ni → 2V and L̂i : Si →
2V are partial valuation functions. Finally, if there are
no race conditions in Mapp, we can safely say that
L1(n1) = L2(n2) and L̂1(s1) = L̂2(s2), ∀(n1, n2) ∈
N1 × N2 and ∀(s1, s2) ∈ S1 × S2, i.e., the values of the

visible variables are consistent in each state. Therefore,
L((n1, n2)) = L̂(α((n1, n2))), ∀(n1, n2) ∈ N1 × N2.

Therefore, M̃app is a sound abstraction of Mapp.

V. CONSTRUCTION
The interaction model can be realized in many different ways
as the OS model can be constructed in any formal modeling
language. Nevertheless, this section explains the construction
of an interaction model assuming the use of Promela as the
modeling language since (1) due to its C-like syntax, it is
easier to understand for readers who are unfamiliar with
formal modeling languages, and (2) its support for C code
embedding is straightforward to understand and to use.

A. OVERVIEW OF PROMELA
Promela is the modeling language for Spin [25]. The syntax
of Promela is similar to the C language, but its semantics is
based on CSP (Communicating Sequential Processes) [24].
Major constructs of Promela include proctype, which
defines the type of a process, andchan, which defines a com-
munication channel used to pass messages among processes.
The upper right part of Figure 7 shows a process that com-
municates through the channel api_ch. Each statement in
Promela is executed only if the evaluation of the statement is
true. For example, api_ch?[_,eval(StartOS),_,_]
is executed when the api_ch channel receives a message
where the value of the second field of the message is equal to
StartOS.
There are two major constructs for embedding C source

code into Promela: c_code and c_expr. Statements inside
a c_code block are executed according to the control flow,
but value changes are not traced by the model checker.
c_expr is used to evaluate expressions in the C code embed-
ded in the model. We can use these constructs to execute a
portion of a C program and get the execution result without
keeping track of uninteresting variables. It is also possible to
trace a specific variable used inside a c_code block by using
a c_track construct, meaning that we can control the level
of abstraction of the model by tracing only those values that
are relevant for the verification goal [48].

B. INTERACTION MODEL IN PROMELA
As explained in the previous sections, we represent embed-
ded software as a composition of Mah and M̃app. Mah is
independent of the application software and can thus be
predefined and reused as a Promela model for a given set of
API functions. The statemachine model of the API handler
in the upper part of Figure 4 is realized with the proctype
construct as shown in the upper right part of Figure 7: It waits
for messages coming through the message channel api_ch.
Once a message arrives, it identifies the API function cor-
responding to the message, removes the message from the
channel, and performs the corresponding services specified
in the OS model.
M̃app is application-specific and needs to be constructed

from the program code. Therefore, only a skeleton of each
task in the application program is declared as an independent
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FIGURE 7. API handler and application wrapper in Promela.

process, as shown in the upper left part of Figure 7. A
process is activated by running the proctype App with a
specific tid. In Promela, any activated process is runnable,
but we add explicit runnability checking in the inline func-
tion for each task whose body is defined by the application
wrapper. The lower part of Figure 7 shows the inline func-
tion TASK_Producer for embedding the task Producer
shown in the upper part of Figure 5. The first while loop
is converted into the Promela do .. od; loop because the
true block of the branch node contains API function calls,
WaitSem and PostSem. The branch condition EE_TRUE
is checked within c_expr as it is declared in C source code
and the Promela model is not aware of its existence. The
inside of a true/false block may consist of several visible
states, interaction points sending and receiving messages

TABLE 1. Mapping from wrapper states to Promela.

to/from the OS model, and hybrid statements that determine
the controls of the model by evaluating branch conditions
using c_expr. In between these states, a guarding condition
task_state[tid] == Running is inserted, which
allows the execution of the state blocks only when the task
is in the running state.

Table 1 shows the mapping rule from the statemachine
wrapper for each task to the Promela constructs for embed-
ding the source code within the interaction model. Here,
RUNCHECK is used for checking the runnability of the task
by checking whether the internal state of the task (updated by
the OS) is in the Running state. If it is, the task continues to
execute the next statement; otherwise, the task is blocked until
it becomes runnable. Therefore, RUNCHECK is a potential
context switch point among tasks. APICALL and RETURN
represent making an API function call through a message
channel and sending a return message through the message
channel, respectively.

C. IMPLEMENTATION OF A PROTOTYPE TOOL
We implemented a prototype tool for the construction of the
OS-aware interaction model from four software artifacts: the
system configuration, the OS patterns, abstracted platform-
dependent library functions, and an application program,
as illustrated in the gray boxes in Figure 8.

The system configuration and the OS patterns are used for
constructing configuration-dependent OS models. We reused
the prototype tool developed for the pattern-based OS model
generation framework [7] for the OS model generation part.
The platform-dependent library functions used by the appli-
cation program were abstracted manually to make them
platform-independent. The application program was parsed
and analyzed for constructing the Control Flow Graphs
(CFGs), which are annotated with the types of nodes. We
used EclipseCDT for parsing and analyzing the CFGs. The
annotated CFGs were converted into an application wrapper.
The prototype tool generates the wrapper and composes it
with the generated OS model.
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FIGURE 8. Construction of interaction model.

VI. EVALUATION
We conducted three sets of case experiments using the proto-
type tool to answer the following questions:
RQ1 Is the proposed approach capable of identifying subtle

issues in the verification of small-scale embedded
software?

RQ2 Is the proposed approach applicable to realistic
embedded control programs?

RQ3 Does the proposed approach perform better than C
code model checking?

To answer these questions, we performed three sets of
experiments on: (1) eight benchmark programs of the Erika
OS [17] to answer RQ1 and RQ3, (2) the Winlift program
from the automotive domain [34] to answer RQ2.

All experiments were performed on a Fedora machine with
an Intel(R) Xeon(R) CPU E5-1680 v4 @ 3.40 GHz, 128 GB
of memory, with a time limit of 1 hour and a memory limit
of 70 GB.

A. ERIKA BENCHMARK PROGRAMS
Erika OS [17] is an operating system for IoT devices and
is compliant with the OSEK/VDX international standard for
operating systems for road vehicles [12]. The benchmark
programs range from 36 to 187 lines of code (excluding
libraries and header files) with 1 to 3 tasks (2 to 6 threads
including the main thread and a thread for alarm). Some of
them also include a periodic alarm and/or an ISR (Interrupt
Service Routine).

The following two properties from the OSEK/VDX speci-
fications were used:
S1. Two tasks shall not be runnable at the same time;
S2. A running task shall terminate at the end.
S1 is a property that must be satisfied by any embedded
software compliant with OSEK/VDX OSs. S2 is a desir-
able property, but does not necessarily need to be satisfied,
e.g., if a task includes an infinite loop.

1) VERIFICATION USING THE INTERACTION MODEL
We applied our OS-aware interaction model to these pro-
grams and used the Spin model checker to verify the two
properties specified in LTL as:

P1.[]!((task_state[i] == Running)&&

(task_state[j] == Running))

P2.[]((task_state[i] == Running)

→<> (task_state[i] == Suspended)),

where [] and <> represent temporal operators meaning
‘always’ and ‘some time in the future’, respectively.

Table 2 shows the result of model checking S1 and S2
on the benchmark programs after applying the interaction
model. From left to right, each column of each block presents
the amount of memory used in MBytes, the verification time
in seconds, the search depth, and the numbers of states and
transitions traversed during the verification, respectively, for
each program. For some cases (test02, test03, and test08),
it was not possible to verify the properties within the time
and memory limit due to infinitely running periodic alarms.
In such cases, the table shows the verification result with a
limited number of alarm firings (10 to 20), and the results are
written in parentheses.

Spin could not find any violations up to a search depth
of 999,999 for S1. Spin also reported that the search depth
was deep enough for these programs. For S2, Spin’s verdict
was that 6 out of the 8 programs did not satisfy the property,
identifying corner cases as counterexamples. For example,
test02 has a main thread, two tasks (Task1 with prior-
ity 1 and Task2 with priority 2), and an alarm that activates
Task1 and Task2 in order. The main thread sets the alarm
that periodically activates the two tasks. The counterexample
shows a case where Task1 starts running, but is never able
to finish due to the following reason: The alarm fires and
activates Task1 first and Task2 next. Task1 first goes
into the Running state, but is preempted by the higher-priority
task Task2. It is assumed that Task1 resumes its execution
after the termination of Task2, but the alarm fires again,
faster than the termination of Task2, activating Task1 and
Task2 once again. As the alarmfires infinitely often,Task1
never gets a chance to resume and finish its execution. The
counterexample shows that the period of time for the firing of
the alarm must be longer than the execution time of Task2.

We manually analyzed the identified counterexamples to
confirm that they were all true alarms.

2) PERFORMANCE COMPARISON WITH CODE-LEVEL
MODEL CHECKING
When it comes to the composition of two heterogeneous
components, it is not clear whether source-to-model conver-
sion or model-to-source conversion is the better choice for
verification performance, especially when an easy-to-use C
codemodel checker such as CBMC [11] exists.We performed
the second conversion by translating the OS model into C
and composed it with application code. We also annotated
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TABLE 2. Verification of S1 and S2 on Erika x86 benchmark programs using the interaction model.

TABLE 3. Verification result of S1 and S2 on Erika x86 benchmark
programs using CBMC.

synchronization points into the source code, but did not per-
form C code embedding as this was not necessary.

Table 3 shows the verification performance of CBMC,
as the unwind option – the number of loops unwinding – was
increased from 6 to 12. For each unwind option, the time, the
memory, and whether the unwind option (Unw.) was suffi-
cient (S) or insufficient (I) to ensure sound verification were
measured. The number of occurrences of alarms and ISRs
was limited to five in these experiments because allowing
up to 20 occurrences was too expensive for model checking
using CBMC.

We noted that CBMC quickly finished verification of S1
on test01 and test03 after using unwind options 6 and 9,
respectively, without producing any unwind violation. How-
ever, it could not determine whether the property was
satisfied or not on other programs after running for up
to 5,977.40 seconds, as the unwind options used were insuf-
ficient. We increased the unwind options to 15, but the
result was the same with increased cost. In comparison,
code-to-model conversion using the application wrapper
and the interaction model finished the same verification
within 148 seconds.

We note that it is not feasible to verify (or refute with a
reasonable counterexample) these properties without taking
the OS behavior into account, as the verification result is not
accurate considering the enormous number of false alarms
that need to be analyzed and dismissed one by one.

B. THE WINLIFT PROGRAM
Winlift, a control software for opening and closing the
windows of a vehicle, is being developed by Metrowerks,
Inc., as part of the HC12 OSEKturbo ANSI-C Simulator

project [34].6 The main program comprises 980 lines of code,
consisting of 5 tasks, 5 alarms, 1 ISR, 6 external events,
and 9 internal events.

The main task, the controller, controls the states of a win-
dow, which can be in any of ten states, {UP, DOWN, STOP,
CLOSE, OPEN, LOCK, UNLOCK, LOCKED, STALL,
REVERSE}. The controller indefinitely waits for external
events, computes the output to control the windows, and
changes the state of the window. The change of state requires
checking external/internal events followed by cancelling
and/or setting alarms, setting internal events, and changing
output values such as LEDs (Light-Emitting Diodes) and
control signals. Other tasks either periodically receive input
events, set or cancel alarms, or activate other tasks.

The prototype tool was used to generate a formal OS
model and apply the interaction model to compose the OS
model with the program, and to check the reachability of
each control state of Winlift using Spin. We chose relatively
simple reachability checking in this experiment because it
is not trivial to see whether each control state is actually
reachable, due to the complicated control logic and the lack
of documentation.

Our first trial failed to identify a reachable control state
after using up 70 GB of memory, due to the state explosion
caused by non-deterministic and indefinite occurrences of
interrupts and alarms. We were only able to find reachable
traces after limiting the number of interrupts and alarms to
between 5 to 10.

The left part of Table 4 (labeled with Interaction Model)
shows the performance of the reachability checking. We were
able to identify execution traces to each control state
within 25 seconds using 2 to 4 GBytes of memory. All states
except forUPwere identified as reachable with amaximumof
five occurrences of alarms and interrupts. UP was not reach-
able under the same condition, given the memory threshold of
70 GBytes, but required a maximum of eight occurrences of
alarms and interrupts, searching over a search depth of 7 mil-
lion. STOP is the initial state and is thus reachable by default.
Therefore, we checked whether the control state can go back
to STOP after changing to other states. We used bitstate
hashing with a default hash size of 28 and the weak-fairness
option when running the Spin verification in order to speed

6It is the largest publicly available program we could find in the automo-
tive domain.
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TABLE 4. Reachability checking on Winlift with 5-10 alarm occurrences.

up the verification at the cost of increased initial memory
consumption.

The right part of Table 4 (labeledwithOiL-CEGAR) shows
the time required to check the same reachability problem
using OS-in-the-loop CounterExample-Guided Abstraction
Refinement [29], which is the most efficient approach to
date that considers the underlying operating system(s) for the
verification of multitasking embedded software. Excluding
the interaction model, only the OiL-CEGAR approach was
able to identify all reachable states of Winlift without gener-
ating false alarms. On the other hand, CBMC [11], Yogar-
CBMC [46], and CPA-Checker [2] could not identify any
reachable states when code-level verification was performed
on the composition of the OS model in C and the Winlift
program.

OiL-CEGAR was applied to the composition of the
OSEK OS modeled in the input language of the model
checker NuSMV [37] and the predicate-abstracted Winlift
program [29]. From left to right, this part shows the time for
the initial checking, the number of refinement steps neces-
sary to find a trace to the given state, the time needed for
false alarm analysis, and the total time spent on reachabil-
ity checking. We note that 17 refinement steps consuming
over 107,122 seconds were required to come up with a true
reachable trace for the REVERSE state, while the interaction
model used only 3,930 seconds to check the same problem.

Though these two results cannot be compared directly,
as they were performed using different modeling languages,
they give us a rough idea of the effectiveness of the interaction
model.

VII. RELATED WORK
Approaches for verifying multitasking embedded software
can be divided into three categories: (1) verification of
application programs with a highly abstracted schedul-
ing policy [20], [27], [32], [38], [44], (2) verification
approaches for OS [5], [6], [14], [26] that focus on the
correctness of either OS models or implementations; and
(3) verification of embedded programs with verified OS
models [28], [42], [50], [52].

Verification with a highly abstracted scheduling pol-
icy has been a main stream in research and practice of
model-checking multitasking programs [20], [27], [32], [38],

[44], [47]. Works in this category assume arbitrary inter-
leavings among tasks, but reduce verification complexity by
either using partial-order reduction, limiting the number of
context switches among tasks, or applying CEGAR [10],
[47]. These approaches suffer from a high false-alarm rate
and/or additional cost for refinements caused by allowing
arbitrary sequences of task executions.

The second category includes the Haskell model of
seL4 [31], verification methods for OSEK-conformant com-
pilers [14], model checking of the Trampoline OS [6], com-
positional verification of OS kernels and device drivers [5],
the formal OSEK/VDX OS model in the K-framework [52],
and modeling and verification of an OS kernel in CSP [26].

A number of approaches realize the importance of address-
ing OS-related issues and try to compose formal OS models
with control software written in C by (explicitly or implicitly)
converting C programs into the modeling language used to
model the OS [14], [43], [51], [52]. Reference [14] developed
verification methods for an OSEK/VDX-conformant code
generator that interweaves system calls and application code
using a static configuration file. Zhang et al. [51] modeled
an OSEK/VDX OS in Promela and built a tool for translat-
ing application programs written in C into Promela. Other
approaches suggest similar ideas using different modeling
languages to model the OS kernel, such as Uppaal, Spin, CSP
and NuSMV, or translating the application source code into
themodeling language [26], [28], [41], [43]. Reference [52] is
unique in that the application program is implicitly converted
into rewrite logic within the K-framework, which is equipped
with language interpreters for C, Java, and JavaScript. How-
ever, it suffers from high verification cost due to the use of
faithful interpretation of the program code as well as the
formal OS model.

Some other approaches have translated concurrent
programs into sequential programs considering OS schedul-
ing behavior [44], [50], which can be efficient when the
OS has deterministic behavior. This is not realistic as
embedded software frequently utilizes alarms and ISRs and
it is not clear how these non-deterministic behaviors can
be sequentialized without causing any state or transition
explosion.

None of the above-mentioned approaches deals with peri-
odic alarms and ISRs.
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VIII. DISCUSSION AND CONCLUSION
We have presented an interaction model for the generic com-
position of OS models with multitasking control programs.
The proposed approach provides an OS-aware verification
framework for embedded software by utilizing existing ver-
ified OS models. Through systematic construction of the
interaction model, the error-prone manual conversion can be
avoided, the verification of embedded software can become
more approachable and effective, and the number of false
alarms can be reduced.

A. GENERAL APPLICABILITY
The suggested interaction model can be applied to other mod-
eling languages as long as they provide means for (1) embed-
ding user-defined functions into the model and (2) referring
to the OS system state. For example, the modeling language
of UPPAAL [21], [23], a well-known model checker suit-
able for real-time embedded systems, supports specification
of user-defined functions, which can be utilized to embed
statement blocks. We manually tried to apply the interac-
tion model to the UPPAAL model of the OSEK OS. An
inconvenience we found was that UPPAAL’s user-defined
function does not allow including library functions, which
requires more work in automation than using the Spin model.
The K-framework [51] may be another candidate. As it is
equipped with a C interpreter, building an interaction model
within the K-framework would not require more work than
using Spin as a modeling language.

The interaction model is generic in a sense that it can also
be applied to language-to-language translation without using
the C code embedding. As any OS-application composition
would require the handling of context switching, a language-
to-language translation could adopt the application wrapper
by replacing each statement block with a language-specific
module.

The soundness of our interaction model is provided in the
absence of race conditions, which can be checked without
an operating system. Approaches exist that are dedicated
specifically to checking race conditions [3], [16], [38].

B. MODEL-BASED VS. CODE-BASED
Onemight think that code-based verification is more practical
and efficient, as we can apply C code model checking directly
to the C source code. This is not true if we have to take the
OS behavior into account. It is not trivial to apply C code
model checking directly to the control program together with
the OS source code because the OS implementation typically
involves platform-dependent libraries and direct access to
the hardware memory space. Abstraction and modeling are
necessary.

We can perform abstractions at the code level or translate
the OS model into the C language to perform code-level
model checking. In this case, however, we lose all the power-
ful supports of modeling languages, such as implicit support
for concurrency, atomicity, non-deterministic choices, and
blocking and restarting a process, which must be explicitly

implemented in C causing more complexity in verification.
Our experiment applying CBMC on the set of Erika bench-
mark programs shows evidence of this increased complexity
and verification cost.

C. SPECIFICS FOR MODEL CHECKING EMBEDDED
SOFTWARE
Embedded software depends not only on its underlying oper-
ating system, but also on hardware platforms such as memory
layout, types of interrupts to handle, and platform-dependent
library functions. We manually abstracted them in our exper-
iments and automated only the construction of the interaction
model.

Embedded software often includes an infinite loop;
e.g., for specifying an idle background task. To avoid waiting
for the idle task indefinitely, we had to insert a context switch
point within all potentially infinite loops to allow checking
the runnability of the task in cases where a higher-priority
task preempts the idle task.

D. SCALABILITY
As shown in our experiments, our approach improved scal-
ability compared to that of code-level verification, but could
not scale up in the presence of non-deterministic events and
periodic alarms. More aggressive but systematic abstractions
could be applied to the interaction model to further improve
its scalability, such as property-based abstraction and code
slicing [8], [9], and compositional verification [4], [5], [22],
[36], [49]. We are also working on identifying the minimum
occurrences of alarms and ISRs through static dependency
analysis among variables, tasks, alarms, and ISRs, to enable
sound abstractions of alarms and ISRs.
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