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ABSTRACT Nonalcoholic Fatty Liver Disease (NAFLD) is the most common cause of chronic liver disease
around the world. Remaining silent in the early stages makes its evaluation a challenge. Liver biopsy
is still the gold standard method used to classify NAFLD stages but has important sample error issues
and subjectivity in the interpretation. This research is an effort to overcome liver biopsy to a possible
extent by forming a non-invasive clinical spectrum. This paper proposed an intelligent scheme using the
forward algorithm, Viterbi algorithm, and Baum-welch algorithm for examining the disease, and a new
clinical spectrum is introduced that incorporates most likely attributes associated with NAFLD stages. The
experimental results verify that our method is efficient in distinguishing the credibility of an attribute being
associated with a specific stage in case it is linked with more than one stage. Moreover, the proposed
scheme can successfully estimate the likelihood of stage progression and supports medical knowledge more
proficiently and realistically.

INDEX TERMS Nonalcoholic fatty liver disease, computational methods, forward-backward learning,
intelligent systems, healthcare informatics.

I. INTRODUCTION
Intelligent method based frameworks have played a vital
role in medicine. From statistical techniques to data mining
algorithms to neural networks, all these have been widely
deployed on medical datasets for evaluating the sickness.
Due to increasing vagueness and complexities in the datasets,
deriving intelligible information becomes a significant
challenge for clinicians. This challenge could lead to an
imprecise assessment of the disease, which would further
guide inaccurate treatments to patients. So to avoid these
uncertainties up to a feasible extent, medical professionals
refer to the intelligent decision-making systems for a second
thought on the interpretation of multifaceted datasets. Like
for other health complications, intelligent methods have also
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been widely applied to diagnose and classify liver diseases
(Singh and Pandey [1]).

The liver is the largest internal solid organ in a human body
weighing about 3 pounds (Adams [52]). It performs several
metabolic functions like metabolizing drugs, bile production,
filtering blood, storing glucose, assisting in fat digestion,
detoxifying harmful chemicals, and making proteins for
blood plasma (Chuang [3]). Liver disease is defined as the
improper functioning of the liver causes illness which further
leads to serious health ramifications. General causes of the
disease are genetic disorders, infected eatables, immoderate
consumption of ethanol, a severe reaction to certain drugs,
infections from bacteria, and excessive fat buildup in the body
(Asrani et al. [53], Lonardo et al. [54], and Chuang [3]). Liver
disorders are categorized into numerous types, out of which
a few common ones include viral hepatitis, autoimmune
hepatitis, neonatal hepatitis, fibrosis, cirrhosis, liver tumor,
liver abscess, Wilson disease, alcoholic liver disease, and
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non-alcoholic fatty liver disease (Adams [52]). Its presence
around the world in diverse forms is increasing the mortality
rate and making it a serious area of concern in the medical
domain. The ability of the liver to function ordinarily even
when partly damaged resists it from a timely diagnosis and
also makes it more alarming because by then, the liver
has suffered significant damage. This indicates that in time
diagnosis is inevitable so that treatment can begin at the right
stage and in a well-organized mode. During the assessment
of sickness, selecting the features, evaluating the values,
differentiating the dependent and independent predictors, and
finding the co-relations between various attributes stretches
the decision time of physicians. To solve these impediments
mentioned and to reduce the cost, time, and effort needed,
intelligent methods based on decision-making frameworks
have been used.

A. STATUS OF NON-INVASIVE ASSESSMENT OF NAFLD
In literature, there are various studies on liver disease
assessment using intelligent computing techniques. It was
found that both individual and integrated intelligent
techniques were widely used to develop the adaptable
diagnostic frameworks for achieving better accuracies
and decreasing the likelihood of occurrence of prediction
errors (Singh [1]). Individually, artificial neural networks
(ANNs) (Ansari et al. [5], Arsene and Lisboa [4], Babu
and Suresh [7], Elizondo et al. [6], Hayashi et al. [8]),
fuzzy logic (FL) (Ming et al. [9], and Obot and Udoh [10]),
decision trees (Eastwood and Gabrys [11], Floares [12],
and Yan et al. [13]), and in combination, artificial neural
network-case-based reasoning (ANN-CBR) (Chuang [3],
and Lin and Chuang [14]), data mining-fuzzy logic
(DM-FL) (Luukka [15], and Torun and Tohumoğlu [16]),
case-based reasoning-data mining (CBR-DM) (Lin [17]),
artificial immune system-fuzzy logic (AIS-FL) (Mezyk
and Unold [18], and Polat et al. [19]), artificial immune
system-data mining-fuzzy logic (AIS-DM-FL) (Polat and
Gunes [20], [21]), artificial neural network-data mining-
genetic algorithm (ANN-DM-GA) (Cruz-Ramirez et al. [22]),
were extensively applied to different types of liver disorders
includes viral hepatitis, liver cancer, liver cirrhosis, liver
fibrosis, hepatitis dataset, liver disorders dataset and
hepatobiliary disorders dataset.

It is confirmed from the survey that the popularity
and applicability of individual and integrated intelligent
techniques to liver disorders are immense. Though, at the
same time, it is important to note that researchers had
shown negligible interest in applying these techniques
for the non-invasive assessment of NAFLD, which is a
majorly popular hepatic condition people are suffering from
nowadays. NAFLD clinical syndrome is one of the most
common causes of chronic liver disease around the world
(Kalra et al. [23]). Its presence is estimated to be 9-32%
in Indian population (Kalra et al. [23]), one-third of adults
in the United States (Dunn et al. [24]), 20-30% in western
countries (Paschos and Paletas [25]) and 10-24% worldwide

(Obika and Noguchi [26]) with vast majority undiagnosed
and are still increasing year-on-year. Patients with NAFLD
are at a higher risk of death as compares to individuals
from the general population (Lonardo et al. [55]). The
pathogenesis of NAFLD excludes significant ethanol usage
(>21 drinks per week for men and >14 drinks per week
for women) and all other causes of the chronic liver disease
because fatty infiltration can be caused through numerous
conditions such as viral hepatitis B, C, infection and
drug toxicity. However, the term NAFLD is predominantly
associated with obesity, insulin resistance, type-2 diabetes,
and metabolic risk factors (Nugent and Younossi [27]).

B. TYPES OF NAFLD
The clinicopathologic spectrum of NAFLD encompasses
hepatic steatosis, NASH, liver fibrosis, liver cirrhosis, and
rarely liver cancer (Lonardo et al. [56], Dunn et al. [24],
and Kanda et al. [57]). Unlike simple steatosis is generally
non-progressive and has a relatively benign clinical course,
NASH is progressive and can develop fibrosis, cirrhosis, and
liver cancer. Steatosis is an accumulation of approximately
5% of fat in the hepatic parenchyma without inflammation,
whereas NASH is distinguished by the presence of fat as
well inflammation or ballooning degeneration of hepatocytes
in addition to steatosis (Than and Newsome [29], and
Yu et al. [28]). Liver fibrosis is also a histological trans-
formation caused by inflammation in the liver that causes
a disproportion between the collagen fiber synthesis and
decomposition (Fitzpatrick and Dhawan [30]). It is a scarring
process in which more than usual amounts of collagen
fiber deposits in the liver cells but without the destruction
of the lobular structure which specifically distinguishes it
from cirrhosis. In cirrhosis, the architectural organization of
the functional units of liver collapse and its fundamental
structure is deformed. Liver cancer is a malignancy that
usually originates from hepatocytes (European Association
for the Study of the Liver, 2016; Azzam & Malnick, 2015;
Byrne & Targher, 2015; Than & Newsome, 2015). The
risk of developing primary liver cancer is increased in the
background of advanced fibrosis and cirrhosis (Rinella [59]
and Sanyal et al. [33]). In the end, all these nonalcoholic fatty
liver disease complications lead to liver failure.

C. APPROACHES BASED ON THE HIDDEN MARKOV
MODELS
Approaches based on the Hidden Markov models (HMMs)
are especially known for describing unpredictable events
or applications such as handwriting, part-of-speech tag-
ging, musical score following, speech recognition, ges-
ture recognition, partial discharges (Chen et al. [37],
Gao et al. [38], Rabiner and Juang [34], Rabiner [35], and
Tsakalidis et al. [36]). It also has extensive applicability
in bioinformatics like genome sequence analysis, gene
identifications, gene annotation, cancer detection through
images, proteins, and DNA sequences (Krogh et al. [40]
and Yoon [39]). Rastghalam and Pourghassem [41]
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proposed a breast cancer detection framework in which
HMM-based methodology was used as a fusion algorithm for
decision-level fusion-based classification on thermography
images. In multiple sequence alignment and phylogenetic
analysis of protein and gene data, HMM approaches had
provided compelling performance. For example, to alignmul-
tiple genomic or proteomic sequences, a fuzzy-HMM-based
framework was presented by Collyda et al. [42]. Besides,
to perform a phylogenetic analysis of protein and gene data
with the help of multiple sequence alignment generated,
a fuzzy-HMM model was developed by Collyda et al. [43].
The identification of regions of the genome is a key
element in genome sequence analysis. A computation-based
discovery to recognize transcription factor binding sites
using HMM techniques was proposed by Wu and Xie [44].
Takano et al. [45] presented an HMM-based framework for
predicting human motions based on motion patterns. These
motion patterns were used as parameters for HMM, and
validation of the method was taken place on the motion
dataset provided by CMU. Peng and Dong [46] used the
HMM and grey model for modeling the time of states and
developed a hybrid prognosis approach for age-dependent
health prediction in terms of remaining valuable life of
the assets. Complicated intersection designs and congested
travel conditions lead to road accidents. For solving this
problem, a traffic incident prediction system based on HMM
was built by Zhou et al. [47] and Ling et al. [48] applied
HMM techniques to predict the movement of a speaker’s
mouth from text inputs. Apart from the estimations, HMMs
log-likelihood score was also used to rank the data and this
ranking was useful in creating rules for making decisions
(Rafiul Hassan et al. [49]).
Based on the comprehensive literature study, it was found

that the scope of implementing HMM-based approaches in
liver disorders and the evaluation of NAFLD using intelligent
techniques have not been explored yet. Indeed, NAFLD
stages are more commonly associated with obesity, insulin
resistance, type-2 diabetes, metabolic syndrome, and a few
elevated liver enzyme tests, but in actual situations, there
are more insights into the pathogenesis of these hepatic
conditions. Liver biopsy is still the gold standard method
used to categorize NAFLD stages but has important sample
error issues and subjectivity in the interpretation (Machado
and Cortez-Pinto [50]). Moreover, it is an invasive method
that can also raise the risk of complications if the mode of
sampling is not appropriate. This study is an effort in that
direction to overcome liver biopsy to a possible extent. The
article accordingly applied HMM-based methods to evaluate
health examination data of NAFLD patients. A new clinical
spectrum is then formed, which incorporates a combination
of non-invasive attributes including risk factors, symptoms,
and biomarkers most likely associated with NAFLD stages.
This proposed spectrum is expected to assist medical experts
in performing a more proficient and inclusive assessment of
NAFLD phases.

The rest of this paper is organized as follows: Section 2
presents material and methods containing a detailed descrip-
tion of the algorithms used. Section 3 covers the experimental
results and discussion. Finally, conclusion and future work
are drawn in Section 4.

II. MATERIAL AND METHODS
Based on the advice and assistance of clinicians and
hepatology specialists, the data was collected and prepared
to employ data collection tools and techniques, which include
questionnaires, direct interviews, and assessment of existing
medical records. Fig. 1 depicts the block diagram for
the stepwise approach for the assessment of nonalcoholic
fatty liver disease. The NAFLD spectrum was categorically
divided into five stages including steatosis, NASH, fibrosis,
cirrhosis, and liver cancer. Essential health examination data
of 86 patients with nonalcoholic fatty liver disease and 22
healthy people were collected. Among 108 instances of data,
10 patients had steatosis, 24 patients had NASH, 22 patients
had fibrosis, 24 patients had cirrhosis, 6 patients had liver
cancer, and the remaining 22 were healthy individuals.
The dataset incorporated the results of the medical expert’s
laboratory examination and health and lifestyle survey that
include 62 relevant attributes, which are a combination of
risk factors, symptoms, and biomarkers. These attributeswere
covering information about metabolic syndrome (MetS),
hypertension (HTN), dyslipidemia (DLM), visceral obe-
sity (VO), type-2 diabetes (T2DM), body mass index
(BMI), gamma-glutamyl transferase (GGT), alkaline phos-
phatase (ALP), alanine aminotransaminase (ALT), aspar-
tate aminotransferase/alanine aminotransaminase (AST/ALT
ratio), fatigue (FT), malaise (ML), pain in upper quadrant
(RUQ), adiponectin level (AL), tumor necrosis factor alpha
(TNFα), triglycerides level (TG), hepatomegaly (HM),
acanthosis nigricans (AN), total bilirubin (TBIL), alpha-
2-macroglobulin (α2M), apolipoprotein A1 (Apo A-I),
haptoglobin (HP), ferritin (FER), hyaluronic acid (HA),
insulin resistance (IR), high-density lipoprotein cholesterol
(HDL), hyperglycaemia (HG), platelets count (PC), albu-
min (ALB), TIMP metallopeptidase inhibitor 1 and TIMP
metallopeptidase inhibitor 2 (TIMP-1 and TIMP-2), amino
terminal type III procollagen peptide (P3NP), mitochon-
drial dysfunction (MD), increased free fatty acids (FFA),
hepatocyte lipotoxicity (HL), fibrogenic response (FR),
oxidative stress (OS), cytokeratin-18 (CK-18), C-reactive
protein (CRP), hyperlipidemia (HLD), interleukin 6 and
interleukin 8 (IL6 and IL8), lipid peroxidation (LOP), sleep
apnea (AP-ne-ah), ammonia (H3N), variceal hemorrhage
(VH), jaundice (JAUND), oedema (OD), asterixis (ASX),
spider naevi (SN), hepatic encephalopathy (HE), esophageal
varices (EV), gastrointestinal bleeding (GI bleed), throm-
bocytopenia (TTP), alpha-fetoprotein (AFP), des-carboxy
prothrombin (DCP), glypican-3 (GPC3), osteopontin (OPN),
lectin-bound AFP (AFP-L3), tyrosine kinase with Ig and
EGF homology domains 2 (TIE-2), squamous cell carcinoma
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FIGURE 1. Block diagram for the stepwise approach for the assessment of nonalcoholic fatty liver disease.

antigen (SCCA), Golgi phosphoprotein 2 (GP73), alpha-l-
fucosidase (Alpha_L_fucos) and human carbonyl reductase 2
(HCR2). Numerous attributes belong to more than one stage,
making the assessment more challenging and ambiguous.
Apart from the staging of NAFLD, the sound part of this study
is to distinguish the credibility of an attribute being associated
with a specific stage in case it is linked with more than one
stage and to estimate the likelihood of stage progression.

The approaches based on the hidden Markov model are
especially known for describing events or applications that
are unpredictable due to the influence of random variables.
Applicability of HMMs for different purposes proves its
versatility in bioinformatics and other significant areas of
research. The idea underlying to implement HMM-based
methods is by considering three different canonical problems
that are typically called evaluation, decoding, and learning.
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In general, an HMM has numerous states, numerous distinct
emission symbols per state, state transition probability
distribution indicating the likelihood of transitioning from
one state to another, emission symbol probability distribution
that indicates how likely it is for a certain measure value to
come from a given state and the initial state distribution for
each state indicating how likely it is for a new input sequence
to start in a given state. The notation used to represents
these parameters is given below (Rabiner and Juang [34],
Rabiner [35], and Stamp [51]):
A = the number of states,
B = the number of emission symbols,
T = the length of emission sequences,
C = (c1, c2,. . . , cT), representing a current state sequence,
D = {d1,d2,. . . ,dN}, representing distinct states in the

model,
U = (U1,U2,. . . ,UT), representing an emission sequence,
V = {1,2,. . . , B}, representing a set of possible emissions;

i.e. Ui ∈ V for i = 1, 2,. . .T,
S = {sij}, being an A×Amatrix with sij = P(dj at t+ 1 |di

at t), where the state transition probability sij is independent
of the time t,
E = {ej(k)}, being A × B with ej(k) = P(k at t|dj at t),

where the emission probability ej(k) is independent of time t,
and
π = the initial state distribution.
An absolute requirement of an HMM thus includes S, E,

and π . Therefore, the simple notation for HMMbecomes λ =
(S, E, π ).
Problem 1: Given the sequence of emissions U = U1, U2,

. . . , UT, and the HMM λ = (S, E,π ), how do we efficiently
compute P(U |λ), the probability of emission sequence. This
problem is called evaluation, and it is solved by either
the forward algorithm or the backward algorithm, which
measures how well a model matches the emission sequence.
The forward-backward procedures (do not confuse them with
the forward-backward algorithm) are explained below from
which we can find the forward variable.

The given model is λ = (S,E,π ) and emission sequence is
U = (U1,U2 . . . ,UT ). To compute P(U |λ) forward algorithm
is used. In addition to the forward algorithm, we do have a
naive approach for solving the evaluation problem, but even
that we choose the former after executing both because the
latter requires more multiplications in comparison with the
former as explained below. Consider the state sequence C =
(c1, c2,. . . , cT ). Now based on equation (2) we have

P (U |C, λ) = ec1 (U1) ec2 (U2) . . . .ecT (UT ) (1)

and based on the initial state distribution and equation (1),
it follows that

P (C | λ) = πc1sc1,c2sc2,c3 . . . . . . scT−1,cT .

Since

P (U ,C | λ) =
P(U ∩ C ∩ λ)

P(λ)
,

and

P (U |C, λ)P (C | λ) =
P(U ∩ C ∩ λ)
P(C ∩ λ)

.
P(C ∩ λ)
P(λ)

=
P(U ∩ C ∩ λ)

P(λ)
,

we have:

P (U ,C | λ) = P(U |C, λ)|P (C | λ) (2)

Finally, we obtain all the possible state sequences as follows:

P (U | λ)

=

∑
C

P (U ,C | λ)

=

∑
C

P (U |C, λ)P(C|λ)

=

∑
C

πc1ec1 (U1) sc1,c2ec2 (U2) . . . .scT−1cT ecT (UT ) .

The computationmentioned above requires 2TAT multipli-
cations that decrease efficiency and makes it incompetent in
comparison with the forward algorithm, which only requires
A2T multiplications. The forward algorithm (also known as
α-pass) for finding P(U|λ) is defined below.

For t = 1, 2,. . . , T and i = 1,. . . , A, αt (i) is the probability
of a partial emission sequence up to a given time t . It is shown
as follow:

αt (i) = P (U1,U2, . . . .Ut , ct = di | λ) (3)

For computing αt (i) defined in Eq. (3) recursively, the
following steps are executed.

Step 1: Initialization

α1 (i) = πiei (U1) , for i = 1, 2, . . . .,A;

Step 2: Induction:
For i = 1, 2, . . . , A and t = 2, 3, . . . , T , compute:

αt+1 (i) =

 A∑
j=1

αt (j) sji

 ei (Ut+1) .
Step 3: Termination:

P (U | λ) =
A∑
i=1

αT (i) .

The backward algorithm (also known as β-pass) is analogous
to the forward algorithm for finding P(U|λ) expect the fact
that the later starts from the beginning and work forward
towards the end and the former is vice-versa. For t = 1, 2,
. . . , T and i = 1, 2, . . . , A, βt (i) is calculated as follows:

βt (i) = P (Ut+1,Ut+2, . . . .UT | xt = di, λ) . (4)

Similarly, for computing βt (i) defined in Eq. (4) recur-
sively, the following steps are executed.
Initialization:

βt (i) = 1, for i = 1, 2, . . . .,A.
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Induction:
For t = T − 1, . . . , 1 and i = 1, 2, . . . , A, compute:

βt (i) =
∑A

j=1
sijej (Ut+1) βt+1(j).

Termination:

P(U |λ) =
∑A

j=1

∑A

i=1
αt (j)sjiei (Ut+1) βt+1(j).

Problem 2: Given the HMM λ = (S, E, π ) and a sequence
of emissions U = U1,U2, . . . , UT , find the optimal
corresponding state sequenceD = d1,d2 . . . dT . This problem
is called decoding and is solved by the Viterbi algorithm,
sometimes also called a decoding algorithm. The structure of
this algorithm is quite similar to the forward algorithm.

For t = 1,2, . . . , T and i = 1, 2, . . . , A, the optimal state
sequence ωt (i) would be

ωt (i) = P (ct = di |U , λ) .

As we have already calculated the probability measured by
αt (i) up to the time t and by βt(i) after the time t, we get the
following:

ωt (i) =
αt (i) βt (i)
P(U |λ)

,

whereP(U |λ) is obtained by summing αt (j) over i. Nowωt (i)
defines that it is the maximum value for the most likely state
at time t is the state dt .
Problem 3: Given a sequence of emissions U = U1,

U2, . . . , UT and the dimensions A and B, re-estimate HMM
λ = (S, E, π ) that maximizes the probability of U . This
problem is called learning, and it is solved by training
through the Baum-welch algorithm, which is a special case
of the expectation-maximization algorithm. This algorithm
adjusts the probabilities of the emissions until the training
converges, and it works by assigning initial probabilities to all
the parameters. To determine updated parameters for HMM,
it uses both the forward and backward variables is also called
the forward-backward algorithm.

For t = 1, 2, . . . ,T − 1 and i, j ∈ {1, 2, . . . ,A} , ωt (i, j)
is defined as a probability of being in state di at time t and
transition to state dj at time t + 1 as follows:

ωt (i, j) = P
(
ct = di, ct+1 = dj |U , λ

)
.

In terms of α, β, SandE, ωt (i, j) represents the improved
version of the estimated value and can be written as follows:

ωt (i, j) =
αt (i) sijej (Ut+1) βt+1 (j)

P (U | λ)
.

For t = 1, 2, . . . , T − 1, the values of ωt (i) and ωt (i, j) are
related by:

ωt (i) =
A∑
j=1

ωt (i, j) .

Now, based on the above equations, the re-estimation
of the HMM, λ = (S, E, π ) can be defined as follows.
For i = 1, 2, . . . ,A,

πi = ω1 (i) .

For i = 1, 2, . . . ,A and j = 1, 2, . . . ,A, calculate sij, which
is the probability of transition from state di to state dj:

sij =
T−1∑
t=1

ωt (i, j)

/
T−1∑
t=1

ωt (i). (5)

For j = 1, 2, . . . ,A and k = 1, 2, . . . ,B, given the model
in state dj, we can calculate the probability of observing
symbol k as:

ej (k) =
∑

t∈{1.2.....,T }
Ut=k

ωt (j)

/
T∑
t=1

γt (j). (6)

In Eq. (5),
∑T−1

t=1 ωt (i, j) represents the probable number of

transitions from state d_i to state d_j and
T−1∑
t=1

ωt (i) is the

probable number of transitions from di to any state.
In Eq. (6) ,

∑
t∈{1.2.....,T }

Ut=k

ωt (j) is the number of times the

model is in state dj with emission k and
T∑
t=1

ωt (j) is the

number of times themodel is in state dj.As re-estimation is an
iterative process, the algorithm would follow the mentioned
steps.

Step 1: Initialize the HMM, λ = (S, E, π );
Step 2: Calculate αt (i) , βt (i) , ωt (i, j) , and ωt (i) ;
Step 3: Re-estimate the HMM, λ = (S, E, π );
Step 4: If the P(U |λ) value increases, then repeat steps 2

and 3 until some convergence criteria are achieved and/or it
reaches a maximum number of iterations.

III. EXPERIMENTAL RESULTS AND DISCUSSION
To demonstrate the effectiveness of the applied methods,
we used the health examination dataset with a total
of 108 instances. The NAFLD spectrum was categorically
divided into five stages, including steatosis, NASH, fibrosis,
cirrhosis, and liver cancer. Among 108 subjects, 10 patients
had steatosis, 24 patients had NASH, 22 patients had fibrosis,
24 patients had cirrhosis, 6 patients had liver cancer, and the
remaining 22 were healthy individuals. The dataset incorpo-
rated the results of medical experts’ laboratory examinations
and health and lifestyle surveys including the attributes which
are a combination of risk factors, symptoms, and biomarkers.
To validate the best performing one, we experimented with
many different models as there is no detailed method or
an obvious straightaway choice for determining the optimal
model. It was necessary to initialize appropriate values
during training as the performance of the model principally
depends on it. The training was done with both Viterbi
and Baum-welch algorithms, but the former was omitted
and the later was considered based on the obtained outputs.
Single sequences as well as multiple random sequences
were given as inputs to train the model. Here, 20 multiple
random sequences were finalized to enhance the recognition
phase. More training samples iteratively learned values for
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FIGURE 2. Likelihood of attributes association with NAFLD stages.

TABLE 1. Identification results of NAFLD stages.

the model, and even if not exact it represented a good
solution. Diverse values for tolerance levels and iteration
limits were used in the iterative estimation process for
testing convergence and checking the most advantageous
maximum iteration limit. The most favorable tolerance level
and maximum limit were set to 0.0001 and 70, respectively.
If we further increased the tolerance, then it decreased the
number of steps in the algorithm executed, which eventually
reduced the quality of learning. Consequently, this showed
that hidden Markov model-based methodology with fitting
parameter estimation and training symbolizes a suitable
approach for abstracting helpful information from the dataset.

Table 1 shows the identification results of the NAFLD
stages. Based on the given matrix in Table 1, 3 patients with
steatosis were wrongly identified as healthy, 2 patients with
NASH were wrongly identified as patients with steatosis,
and 2 patients with fibrosis were wrongly identified as
patients suffering from cirrhosis. The rest 7 subjects with
steatosis, 22 subjects with NASH, 24 subjects with cirrhosis,
6 subjects with liver cancer, and 22 healthy individuals were
correctly recognized. Table 2 presents the achieved diagnostic
rates evaluated using statistical parameters like sensitivity,
specificity, and total accuracy. For pursuing better diagnostic
performance, this study has also considered sensitivity as one
of the most useful criteria to examine the evaluation as it
measures the proportion of people rightly detected as being

FIGURE 3. Likelihood of stage progression from one to another.

sick. 100% sensitivity indicated that the model recognizes all
of the subjects who are sick to avoid delaying the treatment.
The obtained results had a total accuracy rate of 93.5%,
a sensitivity of 70% in steatosis, 91.7% in NASH, 90.9%
in fibrosis, 100% in cirrhosis, 100% in liver cancer, and
an overall specificity of 100% as all healthy people were
correctly identified as healthy. The attained sensitivity was
less in initial stages as compared to later stages indicating
that the disease shows fewer warning signs while it starts
developing and generates more comprehensible signs when
progressing towards advanced stages.

Fig. 2 and Fig. 3 instigate valuable discussion regarding
the pathology of nonalcoholic fatty liver disease. Fig. 2
distinguishes the credibility of an attribute being associated
with a specific stage in case it is linked with more than
one stage. Fig. 3 gives us the estimation of the likelihood
of stage progression from one to another. Based on Fig. 2,
it was observed that the attributes including FFA, IR, DLM,
TNFα, AL, MetS, BMI, T2DM, TBIL, HA, P3NP, Apo
A-1, HG, FT, AST/ALT ratio, ALB, PC, FER, GGT, and
RUQ were associated with more than one stage. FFA, IR,
DLM, TNFα, AL, MetS, and BMI were linked with both
steatosis and NASH; T2DM and TBIL were linked with
both NASH and fibrosis; HA, P3NP, Apo A-1, HG, BMI,
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TABLE 2. Diagnostic rates using statistical parameters.

T2DM, FT, AST/ALT ratio, ALB, PC and FER were related
with fibrosis and cirrhosis; GGT and RUQ were related with
cirrhosis and liver cancer. In comparison, FFA and IR had a
higher likelihood of association with steatosis than NASH;
DLM, TNFα, AL, MetS, and BMI had a higher likelihood of
association with NASH than steatosis; T2DM had a higher
likelihood of association with NASH than fibrosis; TBIL
had a higher likelihood of association with fibrosis than
NASH; HA, P3NP, Apo A-1, HG, BMI, T2DM, and FT had
a higher likelihood of association with fibrosis than cirrhosis;
AST/ALT ratio, ALB, PC and FER had a higher likelihood
of association with cirrhosis than fibrosis; GGT and RUQ
had a higher likelihood of association with cirrhosis than
liver cancer. MD, FFA, and IR showed the capability of
becoming independent factors for evaluating steatosis; MetS,
OS, CK-18, IL6, IL8, and HLD showed the capability of
becoming independent factors for evaluating NASH; HA,
HG, P3NP, and Apo A-1 showed the capability for fibrosis;
AST/ALT ratio, PC, FER, VH, and OD showed the capability
for cirrhosis; AFP-L3, DCP, HCR2, TIE-2, and GP73 showed
the capability for liver cancer.

Individually, steatosis is related to MD, FFA, IR, DLM,
TNFα, AL, MetS, and BMI out of which MD, FFA, IR, and
DLM had more likelihood of association. NASH is related
with FFA, IR, DLM, TNFα, AL, MetS, BMI, IL6 and IL8,
HLD, OS, CK-18, T2DM, and TBIL out of which MetS,
OS, CK-18, TNFα, T2DM, AL, IL6 and IL8, BMI and HLD
had more likelihood of association. Fibrosis is linked with
TBIL, T2DM, HA, P3NP, Apo A-1, HG, BMI, T2DM, FT,
AST/ALT ratio, ALB, PC and FER out of which HA, HG,
P3NP, Apo A-1, TBIL, AST/ALT ratio, ALB, T2DM, BMI,
and FT hadmore likelihood of association. Cirrhosis is linked
with HA, P3NP, Apo A-1, HG, BMI, T2DM, FT, AST/ALT
ratio, ALB, PC, FER, VH, OD, GGT, and RUQ out of which
AST/ALT ratio, PC, ALB, FER, VH, OD, GGT, FT, and RUQ
had more likelihood of association. Liver cancer is related
to GGT, RUQ, AFP-L3, DCP, HCR2, TIE-2, and GP73 out
of which AFP-L3, DCP, HCR2, TIE-2, and GP73 had more
likelihood of association.

Fig. 3 illustrates the estimation that 21% of patients had
progressed from steatosis to NASH, 18% from NASH to
fibrosis, 15% from fibrosis to cirrhosis, and only approx
4% had liver cancer from cirrhosis. Steatosis had the lowest
and cirrhosis had the highest likelihood of staying in the
same stage while progression which means patients rarely
suffer from cancer if they already had cirrhosis. Indeed,
the progression rate is slow but at the same time is alarming as

the disease barely shows warning signs while developing in
initial stages like steatosis and NASH which are reversible as
compared to the later stages like fibrosis and cirrhosis which
are almost irreversible. Fig. 2 helps discover the relations
up to an appreciable extent by illustrating the variation in
the likelihood of attribute association with NAFLD stages.
Fig. 3 shows that NAFLD stages are progressive but has a
very slow likelihood of transitions. It is revealed that after
cirrhosis, fibrosis stood second in the likelihood of staying in
the same stage. On relative comparison, it was estimated that
steatosis had a 79% chance of retaining the same stage, NASH
had 82%, fibrosis had 85%, and cirrhosis had 96%. It further
signified that the likelihood of progression from steatosis
to NASH and from NASH to fibrosis was higher than that
from fibrosis to cirrhosis and cirrhosis to liver cancer. It was
observed that MD, FFA, IR, DLM, TNFα, AL, MetS, BMI,
IL6 and IL8, HLD, OS, CK-18, T2DM, TBIL, HA, P3NP,
Apo A-1, HG, FT, AST/ALT ratio, ALB, PC, FER, VH, OD,
GGT, RUQ, AFP-L3, DCP, HCR2, TIE-2, and GP73 played
a vital role in the evaluation and became the part of the new
clinical spectrum for assessing the nonalcoholic fatty liver
disease.

The medical field is very dynamic, and the new finding
comes regularly. The factual occurrence of NAFLD has
been underrated even with a presence of 10-24% worldwide
(Obika and Noguchi [26]) with the vast majority undiagnosed
and is still increasing year-on-year. The search for an ideal
non-invasive method to evaluate NAFLD has not been
accomplished yet, and physicians broadly rely on ultrasound
scans and liver biopsy. Liver biopsy is still the gold standard
method used to categorize NAFLD stages but has important
sample error issues and subjectivity in the interpretation.
Furthermore, it is an invasive method that can also raise
the risk of complications if the mode of sampling is not
appropriate. The clinicopathologic spectrum of NAFLD
encompasses hepatic steatosis, NASH, liver fibrosis, liver
cirrhosis, and rarely liver cancer. It is principally associated
with a few common blood enzymes tests and metabolic
risk factors, but in actual, there are more insights into the
attributes linked with these hepatic conditions. Parameters
accountable for NAFLD development and progression keep
updating. However, this study is an effort in that direction
to overcome liver biopsy to a potential extent by forming a
non-invasive clinical spectrum that incorporates most likely
attributes linked with NAFLD. Undoubtedly, the diagnosis
of a disease is one of the most crucial steps that mainly rely
on a physician’s clinical experience and analysis of health
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examination data. This spectrum enhances the efficiency
of NAFLD assessment and solves the information-overload
problem by suggesting the most likely attributes of interest to
clinicians. Still, some imperative attributes are fundamentally
substantial in the evaluation of NAFLD stages but could not
be included in the clinical spectrum due to any unobserved
reason. The reliability and significance of an assessment test
depend on the disease, the population where it is applied,
and the change in the management induced by the test
result. We can extend this work with well designed potential
studies that scrutinize the long-term natural history of
patients with validated biomarkers. Having a large dataset of
patients who were followed for optimal periods can provide
essential evidence to support medical experts and researchers,
which may further lead to more generalized interpretations.
Optimistically this work enhances the medical knowledge
more sensibly and realistically and also assists physicians
in evaluating NAFLD patients. In summary, the study is
proved to be efficient as a medical support system for
escalating the total accuracy, sensitivity, and specificity, for
distinguishing the credibility of attributes association and
for estimating stage progression of nonalcoholic fatty liver
disease. Probably, NAFLD will soon become the general
cause of hepatic disease worldwide and will surely keep busy
the future researchers and hepatologists.

IV. CONCLUSION AND FUTURE WORK
Determining the natural history and associated features of
NAFLD are vitally important due to its high presence in the
community.

The main contribution of this study is:

• To discover the most likely attributes associated with
NAFLD stages given the health examination data.

• To efficiently triumph over the scantiness and helps in
achieving efficient evaluation.

• To decrease the likelihood of occurrence of identifica-
tion errors, to reduce the cost, time, and effort needed.

• To distinguish the credibility of attributes related to the
various hepatic conditions.

• To estimate the likelihood of stage progression and
finally to form a new clinical spectrum incorporates
symptoms, risk factors, and biomarkers that would
effectively and efficiently assist physicians in the
assessment of NAFLD using HMM-based methods.

The approaches based on the hidden Markov model are
especially known for describing the events or applications
that are unpredictable due to the influence of random
variables. The applicability of HMMs for different purposes
proves its versatility in bioinformatics and other important
areas of research.

This study has also provided a foundation for future work.
The medical field is exceptionally vibrant and dynamic as
a variety of findings are discovered regularly. Still, some
imperative attributes are fundamentally substantial in the
evaluation of the NAFLD stages but could not be included

in the clinical spectrum due to any unobserved reason. An
enhanced clinical spectrum can be formed by adding new
findings, which can lead to more generalized interpretations.
Besides, the reliability and significance of an assessment test
generally depend on the disease, the population where it is
applied, and the change in the management induced by the
test result.

We can also extend the work in the prognosis of
NAFLD. As development procedures of the disease are very
unpredictable, it makes prognosis a null hypothetical concept
formed based on past clinical experience and the patterns
observed from the collected datasets on a timely basis.
Prognosis can be done to estimate when the current patient
stage will transit to another. Yes, it will be impossible to
predict the exact moment, but still, it would be feasible to give
a reasonable estimation for the progression. The limitation
in prognosis will be the identification of the first stage
as the prognosis procedure needs some information from
the patient before any prediction would be made. The first
stage would be steatosis, NASH, fibrosis, or cirrhosis. With
the supervision of medical experts, we would recommend
a prognosis procedure based on the achieved results. For
the last decade, physicians have been excitingly involved
in understanding the pathology of NAFLD as it holds
remarkable research opportunities to refine and diversify
the results like studying unidentified biomarkers accountable
for evolution, recognizing other diseases co-existing with
these hepatic conditions, and investigating the unknown
transitional period between the phases. Probably, NAFLD
will soon become the general cause of hepatic disease
worldwide and will surely keep busy the future researchers
and hepatologists.
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