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ABSTRACT Offloading the computationally intensive workloads to the edge and cloud not only improves
the quality of computation, but also creates an extra degree of diversity by collecting information from
devices in service. Nevertheless, significant concerns on privacy are raised as the aggregated information
could be misused without the permission by the third party. Sparse coding, which has been successful
in computer vision, is finding application in this new domain. In this paper, we develop a secured face
recognition framework to orchestrate sparse coding in edge and cloud networks. Specifically, 1). To protect
the privacy, a low-complexity encrypting algorithm is developed based on random unitary transform, where
its influence on dictionary learning and sparse representation is analysed. Furthermore, it is proved that such
influence will not affect the accuracy of face recognition. 2). To fully utilize the multi-device diversity and
avoid big data transmission between edge and cloud, a distributed learning framework is established, which
extracts deeper features in an intermediate space, expanded according to the dictionaries from each device.
Classification is performed in this new feature space to combat the noise and modeling error. Finally, the
efficiency and effectiveness of the proposed framework is demonstrated through simulation results.

INDEX TERMS Information security, edge and cloud networks, face recognition, sparse representation.

I. INTRODUCTION
Face Recognition (FR) has been a prominent biometric tech-
nique for identity authentication in a wide range of areas
and applications, e.g., public security and virtual reality [2].
Due to both the scientific challenge and its practical imple-
mentation value, FR has been a long-standing research topic,
where significant theoretical and experimental research has
been done to promote the accuracy of FR. With the inspi-
ration from the sparsity mechanism of human vision sys-
tem and the success of sparse coding in image processing,
the sparse representation based FR algorithms have received
large attention and achieved excellent performance [3]. In
[4], K-Singular Value Decomposition (K-SVD) algorithm
is adopted to learn a discriminative dictionary, then applies
Orthogonal Matching Pursuit (OMP) to find the sparse rep-
resentation for FR. In [5], Fisher discrimination criterion is
adopted to further enhance the discrimination capability of
the learned dictionary. With the advances in machine learn-
ing and Artificial Intelligence (AI) techniques, deep learning
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based classification algorithms have established themselves
as strong competitors to sparse representation based algo-
rithms [6], while suffering from lack of insight. In [7],
[8], deep convolutional neural network is adopted to extract
high-level visual features, which boosts the performance of
face recognition. In [9], Deep Convolutional Neural Net-
work (DCNN) is adopted to exploit the intraspectrum dis-
crimination and interspectrum correlation to promote the FR
accuracy. To better cope with the image variations in practi-
cal, such as change of pose, illumination, etc., an innovative
FR algorithm is proposed in [10]. Moreover, algorithm for
color face recognition is proposed in [11]. However, these
complex and well-engineered approaches require substantial
effort in parameter training, e.g., huge amount of training data
is required for the well training, and retraining is preferred
when users are added or removed. Thus, they pose exigent
requirements on computational capability, which cannot be
easily satisfied by solely relying on devices due to their
limited resources, e.g., constrained computation capability
and memory size.

A cloud built on top of the data center, which seamlessly
integrates storage and computation, seems to be an ideal
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platform for implementing the FR algorithms. It however
faces significant challenges from data collection and service
distribution over the network, given the devices in service
are globally and remotely distributed [12]. One promis-
ing solution to address these limitations is to make use of
the hierarchically distributed computing structure consist-
ing of the edge, cloud and devices. In this stand, not only
the tension between computation-intensive applications and
resource-limitedmobile devices can be significantly released,
but also the long latency incurred due to the information
exchange between devices and the cloud in wide area net-
works can be totally avoided [13], [14]. In the literature, [15],
[16] improve the computational efficiency of FR by distribut-
ing the computation tasks to the edge and cloud, respectively.
However, such strategies suffer from one major drawback,
i.e., they use the edge and cloud simply to accelerate the
computation, while neglecting the extra degree of diversity
generated by aggregating information from multiple devices
in service at the cloud.

To exploit more dimensions of the edge and cloud
resources for not only fulfilling the computation demands,
we allow the cloud to produce a joint FR result based on
the dictionaries from each device, and try to study What
is the fundamental benefit of exploiting the multi-device
diversity? Our objective is to construct a learning frame-
work to reduce the computation demands at each mobile
device, while taking advantage of this benefit to produce a
more accurate FR result. However, this may lead to serious
privacy concerns, especially when the sharing of such bio-
metric information at the cloud is allowed, as it could be
collected and misused without the permission by the third
party.

In this paper, we develop a privacy preserving framework
for FR in edge and cloud networks based on sparse represen-
tation. The motivation and main contributions of this paper
are summarized as follows,

1) Preserve the privacy by random unitary transform:
Commonly adopted encrypting algorithms, such as
Advanced Encryption Standard (AES) and Secure
Hash Algorithm (SHA), make it computationally dif-
ficult to directly extract the original images from the
encrypted ones. However, they cannot render the FR
algorithms valid, i.e., dictionaries/recognition results
cannot be trained/drawn from the encrypted images.
Even though algorithms as Homomorphic Encryp-
tion (HE) and secure Multi-Party Computation (MPC)
allow computation on cipher-texts [17], they are faced
with the curse of dimensionality regarding the size
of images, and thus incur significant computational
complexity. To address this challenge, we develop a
low-complexity encrypting algorithm based on ran-
dom unitary transform, which enables that dictionar-
ies/FR results can be trained/drawn from the encrypted
images. Moreover, it is proved both theoretically and
through simulation that such encryption will not affect
the accuracy of FR.

2) Exploitmulti-device diversity by ensemble learning:
The performance of the sparse representation-based FR
algorithms relies on the number of training samples.
However, the excessive cost of bandwidth, computation
and storage makes it difficult to gather all the train-
ing samples from devices at the cloud for dictionary
training. When the development of a powerful single
classifier requires considerable efforts, alternatively, it
is possible to train several different classifiers with
adequate performance at the edge servers, and then
combine the computing results to produce a final output
at the cloud. The main premise of this paradigm is
to create several classifiers with similar bias and then
combining their outputs to reduce the variance. In this
stand, not only the communication between the edge
servers and the cloud can be substantially reduced, but
also a classifier with better scalability and flexibility
can be constructed. To this end, we first obtain the
decision templates for each class, which extracts deeper
features in the intermediate space expanded according
to each of the dictionaries. Then, upon receiving a
testing sample, the FR decision is carried out according
to the pairwise similarity between its decision profile
and each of the decision templates, which proves to be
effective in combating the noise and modeling error.

The rest of this paper is organized as follows. Section II
discusses the related works. Section III presents the system
model. In Section IV, we propose the secured FR framework
based on sparse representation. Following this, the perfor-
mance of the proposed algorithm is evaluated in Sections V.
Finally, this paper concludes with Section VI.

II. RELATED WORKS
This paper develops an analytical framework for face recog-
nition in cloud and edge networks from a privacy preserving
perspective. In this section, we briefly review the existing
works on FR in cloud and edge networks, and dictionary
learning for FR.

A. FR IN CLOUD AND EDGE NETWORKS
Machine learning based FR algorithms are widely applied
due to its superior performance compared with traditional
methods. However, it is still a consensus that the mem-
ory space and computational capability requirements for the
training/testing process are quite high. To reduce the cost and
satisfy such high demand, may application operators prefer
to outsource their intensive computation and extreme volume
of data to the edge and cloud servers [18]. Especially, bulk
amount of data are generatedwith the development of Internet
of Things, which far exceed the processing capability of local
devices.

The face data for machine learning, such as in [19], are
usually transmitted to the edge and cloud servers without
encryption, and thus, at the risk of being eavesdropped
and abused. Many publications address the privacy preserv-
ing aspect of FR in edge and cloud computing scenario.
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In [20], Convolution Neural Network (CNN) is adopted for
FR, and a privacy-preserving protocol is designed based on
secure nearest neighbor algorithm. In [21], a lightweight FR
algorithm is proposed based on depthwise separable convo-
lutions and weight evaluation module, and Bayesian Gen-
erative Adversarial Networks (GAN) is adopted to address
the privacy-preserving issue. However, such strategies use
the edge and cloud simply to accelerate the computation,
while neglecting the extra degree of diversity generated by
aggregating information from multiple devices in service at
the cloud. Different from the above works, we try to exploit
more dimensions of the edge and cloud resources for not only
fulfilling the computation demands, but also produce a more
accurate FR result by exploiting the multi-device diversity.

B. DICTIONARY LEARNING FOR FR
Dictionary learning has long been an active research area
for pattern recognition. In [4], the dictionary and classifier
are learned in a joint manner to enhance the discriminability,
and thus results in an improved recognition accuracy. Follow-
ing this, the idea of sparse embedded dictionary learning is
proposed to reduce the computational cost. Also, the perfor-
mance can be further improved due to the joint optimization
of the data structure and the dictionary [22]. Recently, to bet-
ter apply FR in practical, structured sparse representation is
utilized to deal with occlusion and illumination variation [23].
To address the scarcity of training samples, an algorithm
based on sparse discriminative multi-manifold embedding is
proposed for one training sample per person face recognition
problem [24].

To apply dictionary learning in edge and cloud networks,
the privacy of the face data for machine learning should be
strictly preserved. However, the complicated key manage-
ment/distribution and the associated encryption/decryption
process could be time consuming. For most of the FR appli-
cations, it is required that thousands of users can get the
feedback in seconds [18]. To bypass this problem, we encrypt
the data only once at each user device by adopting ran-
dom unitary transform, and consider how to orchestrate
sparse representation-based FR algorithm with the encrypted
domain.

III. SYSTEM MODEL
In this section, we first introduce the architecture of the edge
and cloud network. After discussing the method for training
discriminative dictionary and obtaining the sparse represen-
tation, the FR problem under privacy preserving constraints
is formulated.

A. EDGE AND CLOUD NETWORK
We first introduce the communication model for the edge and
cloud network as shown in Fig. 1, where N single core user
devices, denoted as set N , are assisted by M edge servers,
denoted as setM, and one remote cloud. The mobile devices

FIGURE 1. System model.

are running applications featuring FR,1 such as interactive
gaming and virtual reality applications [13], [25]. Among the
user devices in N , L classes of individuals are to recognize,
denoted as L, and the training set for class i ∈ L and
device j ∈ N is denoted as Bji [26]. Each edge server in
M is a light-weight computing center deployed at a wireless
access point, i.e., only with limited computation and storage
resources, while the remote cloud is equipped with a much
stronger processor and connects with each edge server using
the backbone network [27].

In the edge and cloud network, a device will offload its
computation tasks to the edge server in close proximity via
wireless channels,2 the edge server together with the cloud
will execute the computation tasks on behalf of the device. It
is widely expected that most of data generated by the devices
must be processed locally, either at the devices or at the edge
servers, for otherwise the total amount of data for a central-
ized cloud would overwhelm the network bandwidth [14]. In
addition, such distributed computing hierarchy provides extra
degree of freedom for system flexibility, and could respond
with a much smaller delay.

B. SPARSE REPRESENTATION BASED FACE RECOGNITION
The FR problem is defined as, using labeled training samples
from L distinct classes to determine the class to which a new
testing sample belongs. For this purpose, we adopt sparse
representation for FR, which has two benefits for solving the
problem in our work,

1) It is flexible enough to capture much of the variation
in real datasets, and provides insights into the features
extracted from the training dataset.

1All the captured images are pre-processed by the mobile devices, i.e.,
images are segmented into fine-grained head pictures [26].

2Some physical layer access scheme, e.g., Code Division Multiple Access
(CDMA), is adopted to allow multiple devices to share the same edge server
simultaneously and efficiently. There are also existing algorithms for the
matching between mobile devices and edge servers based on their channel
quality [27]. In this paper, we assume such matching is accomplished during
network setup period.
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2) The algorithm is with low computational complexity,
and does not rely on domain-specific knowledge, which
make it possible to apply to very general and large-scale
scenarios.

To classify according to the sparse representation of face
images, we proceed by two steps:

1) DICTIONARY TRAINING
Given an m-dimensional training set Bj ∈ Rm×|Bj| of device
j ∈ N , learning a reconstructive dictionary with K j atoms for
obtaining the sparsest representation can be accomplished by
solving the following optimization problem,

min
Dj
||Bj − DjX j

||
2
2

s.t. ||xji||0 ≤ ε, ∀i ∈ {1, 2, · · · , |B
j
|}, (1)

where Dj ∈ Rm×K j
is the learned dictionary, X j

∈ RK j
×|Bj| is

the sparse representation ofBj, and ε is the sparsity constraint
factor.

To jointly learn dictionary and classifier for FR, a label
consistent regularization term and a classification error term
are included to both embrace the reconstructive and discrim-
inative capability as in [28]. The optimization problem in
Eq. (1) can be modified into

P(Bj) = min
Dj,W j,Aj

||Bj − DjX j
||
2
2 + α||C

j
− AjX j

||
2

+β||H j
−W jX j

||
2
2

s.t. ||xji||0 ≤ ε, ∀i ∈ {1, 2, · · · , |B
j
|}, (2)

where α and β are the weights for the label consistent term
and reconstruction error term, C j is the discriminative sparse
code of the input training samples in Bj, in which the nonzero
entries occur at those indices where the input and the dictio-
nary share the same label,Aj is a linear transformationmatrix,
which transforms the original sparse codes to be the most
discriminative in sparse feature space RK j

, W j denotes the
classifier parameters, and H j is the class labels of training
samples in Bj. To make the problem trackable, Eq. (2) is
rewritten as

P(Bj) = min
Dj,W j,Aj

||Zj − T jX j
||
2
2

s.t. ||xji||0 ≤ ε, ∀i ∈ {1, 2, · · · , |B
j
|}, (3)

where

Zj =

 Bj
√
αC j
√
βH j

 , T j =

 Dj
√
αAj
√
βW j

 . (4)

This optimization problem can be solved efficiently using
K-SVD [4].

2) FACE RECOGNITION
Given a testing sample yk , the sparse representation based on
the trained dictionary Dj can be calculated according to

S(yk ,Dj) = min
xkj
||yk − Djxkj ||

2
2

s.t. ||xkj ||0 ≤ ε. (5)

The above optimization problem can be efficiently solved
using Orthogonal Matching Pursuit (OMP) [4].

Then, the class label for this testing sample yk can be
estimated using the linear predictive classifierW j as

lkj = argmax{W jxkj }. (6)

Under the conventional single device setting [28], Eq. (6)
is reduced into l = argmax{Wx}. Because of the joint
optimization of the dictionary and classifier, such a scheme
has been demonstrated to be effective in FR. However, there
are still two major drawbacks,
• The classify decision is made based on local dictionary
only, which makes this method vulnerable to noise and
modeling error.

• The inherent structure of the class label vectorWx is not
fully exploited due to the argmax operation.

C. PROBLEM FORMULATION
In the edge and cloud network, observing that the cloud could
obtain the full-knowledge of the dictionaries and classifiers
of each device by collecting the information from the edge
servers, it is possible to produce a joint FR result to exploit
more dimensions of such hierarchically distributed comput-
ing structure and further enhance the performance. However,
the sharing of dictionaries and classifiers brings significant
security concerns regarding the information passing during
the process. To this end, our objective is to construct a privacy
preserving framework and improve the recognition accuracy
by exploiting the multi-device diversity, which can be for-
mally formulated as

min
g(·)

∣∣∣∣∣∣∣∣Gk − g(X̃k
1,W

1
, · · · , X̃

k
N ,W

N )∣∣∣∣∣∣∣∣
0

s.t. B
j
= f (p,Bj)

Y
k
= f (p,Y k )

< D
j
,W

j
>= P(B

j
)

X̃
k
j = S(Y

k
,D

j
)

||g(X̃
k
1,W

1
, · · · , X̃

k
N ,W

N
)

− g(Xk
1,W

1, · · · ,Xk
N ,W

N )||0 = 0, (7)

where Gk contains the class labels of the testing images, g(·)
is the classify function producing the estimated class label
matrix, f (·) is the encrypting function, p is the private key,
and X̃

k
j represents the sparse representation of Y

k
under D

j
.

The first two constraints in Eq. (7) guarantee that the original
training and testing images are difficult to be recognized from
the encrypted ones without the knowledge of p, and the last
constraint makes sure the recognition results can be drawn
from the encrypted images without performance loss.

IV. SECURED FACE RECOGNITION FRAMEWORK IN EDGE
AND CLOUD NETWORKS
In this section, a secured framework for FR is proposed based
on sparse representation. To satisfy the privacy preserving

VOLUME 8, 2020 136059



Y. Wang, T. Nakachi: Privacy-Preserving Learning Framework for FR in Edge and Cloud Networks

constraints in Eq. (7), we briefly introduce random unitary
transform and outline three important properties, based on
which its influence on dictionary learning and sparse repre-
sentation is analyzed. It is proved that the results of FR will
not be affected. To fully exploit the multi-device diversity, an
ensemble learning framework is proposed by two steps,

1) By deploying a small ensemble training set, we extract
the decision templates for each class in the space
expanded by the estimated class label vectors according
to the dictionaries of each device, so as to fully exploit
the structure of the class label vectors in a holistic
manner.

2) We estimate the degree of similarity between the deci-
sion profile of the testing sample and each of the deci-
sion templates in a pairwise manner, in order to combat
the noise and modeling error for a refined FR result.

A. RANDOM UNITARY TRANSFORM
In order to not only preserve the privacy of the system,
but also enable computing on cipher-texts, the random uni-
tary transform is one promising method, which proves to
be effective for biometric template protection [29]. More-
over, random unitary transform provides us with a desired
low computational complexity, which makes it possible to
apply the proposed algorithm to the scenarios with a large
cipher-text size. Therefore, the encrypted training and testing
samples are generated using random unitary transform.

Any vector v ∈ Rm×1 encrypted by random unitary matrix
Qp ∈ Cm×m with private key p can be expressed as follows,

v = f (p, v) = Qpv, (8)

where v is the encrypted vector, and the unitary matrix Qp
satisfies

Q∗pQp = I, (9)

where [·]∗ and I represents the Hermitian transpose and
identity matrix, respectively. Gram-Schmidt orthogonaliza-
tion can be adopted for generating Qp.

3 The encrypted vector
has three properties [30] as follows,
• Conservation of the Euclidean distances

||vi − vj||22 = ||vi − vj||
2
2, (10)

• Norm isometry

||v||22 = ||v||
2
2, (11)

• Conservation of inner products

vi × vTj = vi × vTj , (12)

where vi and vj are two distinct vectors with the same
dimension.

3Such encrypting technique has been proved to be robust in terms of
brute-face attack, diversity and irreversibility [29].

B. SECURED FACE RECOGNITION
According to random unitary transform, the encrypted train-
ing samplesB

j
∈ Rm×|Bj|, j ∈ N and testing samples Y

k
, k ∈

N are generated as follows,

B
j
= f (p,Bj) = QpB

j

Y
k
= f (p,Y k ) = QpY

k . (13)

To obtain the dictionary and classifier parameter based
on encrypted training samples, the following optimization
problem should be solved,

< D
j
,W

j
> = min

Dj,W j
||Z

j
− T

j
X j
||
2
2

s.t. ||xji||0≤ε, ∀i∈{1, 2, · · · , |B
j
|}, (14)

where

Z
j
=

 B
j

√
αC j
√
βH j

 , T
j
=

 D
j

√
αA

j

√
βW

j

 . (15)

In the following theorem, the influence of random unitary
transform on the trained dictionary and classifier parameter
is demonstrated.
Theorem 1: The trained dictionary D

j
and classifier

parameter W
j
based on the encrypted training samples B

j

should satisfy

D
j
= QpD

j

W
j
= W j (16)

whereDj,W j are the trained dictionary and classifier param-
eter using the original training samples as in Eq. (3).

Proof: Please refer to Appendix.
To obtain the sparse representation of encrypted testing

samples Y
k
based on D

j
, the following optimization problem

should be solved,

< X̃
j
k >= min

X j
k

||Y
k
− D

j
X j
k ||

2
2 s.t. ||xjk ||0 ≤ ε, (17)

In the following theorem, it is demonstrated that the sparse
representation is not affected by random unitary transform.
Theorem 2: Given the encrypted dictionaryD

j
and testing

samples Y
k
, its sparse representation X̃

j
k satisfies,

X̃
j
k = X j

k , (18)

where X j is the sparse representation of Y k under Dj.
Proof: Please refer to Sparse coding step in Appendix.

Remark 1: According to the above two theorems, the clas-
sifier parameterW

j
and sparse representation X̃

j
k under the

encrypted training/testing images are identical to those under
the original unencrypted training/testing images. To this end,
we have

g(X̃
k
1,W

1
, · · · , X̃

k
N ,W

N
) = g(Xk

1,W
1, · · · ,Xk

N ,W
N ),

(19)
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FIGURE 2. Decision profile.

which indicates that by adopting unitary random transform,
the privacy can be preserved without any performance degra-
dation.

C. ENSEMBLE LEARNING FRAMEWORK
We propose an ensemble learning framework to fully exploit
the multi-device diversity by exploring the structure of the
estimated label vectors, and design the function g(·) in two
steps:

1) Ensemble Training: The class label vectors for ensem-
ble training samples are estimated according to each
Dj and W j, based on which the structurized decision
profile in the intermediate space can be obtained. Then,
the decision template for each class is extracted, which
records the most typical decision profile for that class.

2) Recognizing: Upon a testing sample, its decision pro-
file is calculated according to each Dj and W j, then
the classification is identified according to the pairwise
similarity between its decision profile and each of the
decision templates.

Before going into the details of the proposed framework,
we first introduce the concept of decision profile and decision
template.

• Decision Profile (DP): An example of decision profile
with the size RL×N is shown in Fig. 2. The j-th column
represents the normalized class label vector according
to the dictionary of device j, which can be interpreted

as the degree of support given by device j to each class.
The i-th row represents the degree of support from all
devices to class i. An intuitive idea is that, the larger
the support, the more likely to identify the classification
to that class. However, such intuition does not consider
the inter-dependency among those class label vectors,
leading to the failure of fully exploiting the multi-device
diversity. To better exploit the structure of the class label
vectors in a holistic manner, we ignore the context of
the DP, and treat the values as features in a new feature
space, i.e., the intermediate feature space. The final
decision is made by an ensemble classifier that takes the
intermediate feature space as input, and produces a class
label.

• Decision Template (DT): A DT is to remember the
most typical DP for each class. Then, given a pairwise
similarity measurement, it is possible to compare the
current DP of a testing sample with each of the DTs for
each class, and the closest match will produce the clas-
sification result. The decision is dependent on neither
the absolute value of reconstruction error nor the exact
support in the original feature space, but the relative
value based on the comparison between the current DP
andDT. Therefore, such amethod can efficiently combat
the noise andmodeling error, which are already included
in DT.

The proposed framework mainly consists of two stages,

1) TRAINING
The ensembler and classifiers are trained in three steps,
as shown in Fig. 3.

• Training Set Division: Upon receiving the training sam-
ples Bj for device j at the edge server, which can be
partitioned into two parts, namely, one for dictionary
training Bj,D and the other for ensemble training.4

• Dictionary and Classifiers Training: A discriminative
dictionary Dj and classifier parameter W j are jointly

4The partition method is discussed and evaluated in Section V through
simulation.

FIGURE 3. Ensembler and classifiers training.
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FIGURE 4. Recognizing.

trained based on the dictionary training set Bj,D as in
Eq. (14), which are then transmitted to the cloud.

• Ensembler Training: After the edge servers transmit all
the ensemble training samples to the cloud, the ensemble
training set can be formulated accordingly as BE . The
class label vectors for each sample can be estimated
using the linear predictive classifiersW j,∀j ∈ N as

Lj = {W jy, ∀j ∈ N , ∀y ∈ BE }. (20)

Next, the DPs are formulated as

DP(y) = [L1,L2, · · · ,LN ], ∀y ∈ BEi . (21)

Finally, the DT for class i ∈ L can be calculated as

DT i =
1

|BEi |

∑
y∈BEi

DP(y). (22)

Remark 2: Since most of the training samples are not
directly transmitted to the cloud, the amount of required
network bandwidth between the edge servers and the cloud
can be notably reduced.

2) RECOGNIZING
The recognizing stage is illustrated in Fig. 4. First, upon
receiving a testing image yk , the edge server only transmits
the feature descriptor extracted by random faces [4] to the
cloud. Then, we estimate the class label vectors Ljk based on
eachW j according to Eq. (20), and further obtain its DP(yk )
according to Eq. (21). Finally, the pairwise similarity between
DP(yk ) and each of the DTs can be calculated as

µ(DP(yk ),DT i)

= 1−
1

L × N

∑
l∈L

∑
j∈N

(
DT i(l, j)− Sl,j(yk )

)2
, (23)

which is the squared Euclidean distance. The classification
is identified as the class label i∗, where µ(DP(yk ),DT i∗ ) >
µ(DP(yk ),DT i),∀i 6= i∗.
We provide the details of the proposed framework using

pseudo codes in Algorithm 1. In the pseudo-codes, Lines 1–3
provide the initialization for training sets, Lines 4–5 provide
the training process for encrypted dictionary, classifiers and
ensembler, Lines 6–9 calculate the sparse representation for
the testing sample, and Line 10 obtains the joint recognition
result by embracing ensemble learning.

Algorithm 1 Secure Face Recognition in Edge and Cloud
Network Based on Ensemble Learning
1: [Training Stage]
2: Training sample sets Bj,∀j ∈ N are encrypted according

to Eq. (13), and transmitted to the designated edge
server.

3: The edge server divides Bj into a dictionary training set
Bj,D and a part of the ensemble training set Bj,E .

4: The edge server trains the dictionaryDj and the classifier
parameterW j based onBj,D using K-SVD algorithm, and
uploads both Bj,D and Bj,E to the cloud.

5: The cloud formulates the ensemble training set BD, and
obtains the DTs according to Eq. (22).

6: [Testing Stage]
7: Testing image yk is encrypted according to Eq. (13), and

transmitted to the designated edge server.
8: The edge server uploads the formulated encrypted testing

vector yk to the cloud.
9: The cloud calculates its sparse representation using OMP

algorithm, and formulates its DP according to Eq. (21).
10: The cloud further obtain the similarity values according

to Eq. (23), based on which the classification result is
identified.

On the computational complexity of Algorithm 1, the most
time-consuming parts are the K-SVD and OMP algorithms
in Line 4 and Line 9, in which the running time is O(mKε)
and O(Nm2K ) [31], respectively. The complexity brought by
the enseble learning is O(L(m + N )) and O(L2N ) for the
training and testing phases, respectively. L is the number of
classes, N denotes the number of training samples,m denotes
the dimension of the dictionary, K represents the number of
rows in the dictionary, and ε is the sparsity of the sparse
representation.
Remark 3: Note that the training samples are differently

and independently chosen according to different devices, and
such relative uniqueness of the information available in each
training sets prompts the dictionaries to capture different pat-
terns along the system dynamics. Since the class label vectors
are adaptive to the underlying structure of the dictionaries,
it renders the multi-device diversity valid in the designed
ensemble learning based framework, which accounts for the
performance improvements.
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D. DISCUSSIONS ON FURTHER IMPROVING THE
PERFORMANCE
In this subsection, we discuss two possible approaches
to further improve the performance, i.e., incorporating
pre-processing and making use of local correlation inside
multi-dimensional data.

To apply the proposed algorithm in practical, it is necessary
to handle images collected in unconstrained environment,
where misalignment, scale variations, in-plane as well as
out-of-plane rotations are included. To avoid performance
degradation, we may pre-process the data before recognition,
such as performing face alignment beforehand to decrease
the intra-class difference of each subject, further making the
classifier more discriminative [41].

Currently, the data is presented in the form of vectors (one
dimension), and then perform pattern recognition. However,
such modeling ignores the inherent structure and breaks the
local correlation inside multi-dimensional data. To address
this issue, it is possible to adopt tensor sparse representation
to process multi-dimensional data directly [32]. However, the
influence of the encryption algorithm, i.e., random unitary
transform, on tensor sparse representation is not straight-
forward, because complicated operators are involved, e.g.,
Kronecker product. It is an interesting problem to derive a
secured pattern recognition algorithm for high-dimensional
data, which we are willing to investigate in our future work.

V. SIMULATION RESULTS
In this section, the performance of the proposed framework
is investigated by simulation. First, the characteristics of the
proposed framework is analyzed, including the influence of
key parameters, the influence of different ensemble tech-
niques, and several properties. Second, the accuracy of the
proposed framework is compared with those of the existing
algorithms on several publicly available datasets. Finally, the
computational complexities are compared both analytically
and through simulation.

A. CHARACTERISTICS OF THE PROPOSED FRAMEWORK
In the proposed ensemble learning framework, it is nontrivial
to design the combiner, because an inadequate combiner
could result in an even larger variance (lower recognition
accuracy). An improvement over the single best classifier or
even on the average of the individual accuracies is not gen-
erally guaranteed. To address this issue, we carefully design
four possible combiners,

• Similarity-based: The pairwise similarity between the
DTs andDP of the testing sample is calculated according
to Eq. (23), and the class label is determined according
to the largest similarity.

• Difference-based: The difference, based on the fuzzy set
theory, between the DTs and DP of the testing sample is
calculated as in [33], and the class label is determined
according to the smallest difference.

• Max-based: The class label receiving the largest amount
of support from all the devices is selected as the result.

• SVM-based: The SVM model is trained according to
DPs of the ensemble training samples using a linear
core. The class label is determined according to the
relationship between the position of the DP of the testing
sample and the formulated hyperplanes.

In this simulation, the Extended YaleB database is adopted,
which is one of the commonly used database for FR. The
cropped and normalized face images are captured according
to different angles and lighting conditions [37], [38]. There
are in total 38 individuals and approximately 64 images
for each individual in the database. We randomly select
32 images for each individual as the dictionary training set,
5 images for each individual as a part of the ensemble training
set, while the rest for testing. For each device, the training
samples are randomly selected from the dictionary train-
ing set. Such randomness makes sure each member classi-
fier show different classification properties, and ensures our
results and conclusions do not rely on special choice of the
training data.

Fig. 5 demonstrates the influence of several key parameters
on recognition accuracy, including the number of devices,
the number of dictionary training samples, the number of
ensemble training samples and its way of constitution.

Fig. 5 (a) and Fig. 5 (b) verify the performance improve-
ment brought by exploiting themulti-device diversity through
ensemble learning. We have the following observations,

1). The performance improvement is significant when the
number of devices is large due to the extra degree of freedom.

2). When the number of devices is small, e.g., smaller
than 5, the SVM-based ensemble learning algorithm domi-
nates due to the joint consideration of mean value and vari-
ance. When the number of devices is large, e.g., larger than 6,
the Similarity-based ensemble learning algorithm dominates
due to the bias-variance trade-off, i.e., the SVM-based algo-
rithm enforces a low bias in parameter estimation while
having a higher variance of the parameter estimates across
samples.

3). The performance improvement is significant, even if
there is only few dictionary training sample, which signifies
the potential for practical implementation of the proposed
framework.

Fig. 5 (c) and Fig. 5 (d) illustrate the influence of the choice
of ensemble training set, we have

1).When the number of ensemble training samples for each
class is too small, e.g., smaller than 8, the bias is so high that
the algorithm misses the relevant relations between features
and target outputs. When the number of ensemble training
samples for each class is too large, e.g., larger than 15, the
variance is so high that the algorithm models the random
noise in the training data, rather than the intended outputs.
Therefore, it is important to optimize the size of ensemble
training set to find a balance between bias and variance to
produce the best performance.

2). As for the constitution of the ensemble training set, the
performance is enhanced when partly overlapping with the
dictionary training set. We find that better results are obtained
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FIGURE 5. Influence of key parameters.

FIGURE 6. Robustness of the proposed framework.

when half of the ensemble training samples are selected from
the dictionary training set.

Fig. 6 demonstrates the robustness of the proposed frame-
work towards the selection of system parameters. α is the

weight for label consistent term, β is the weight for recon-
struction error term, the optimal dictionary size should be
selected as around half of the number of training samples
for LC-KSVD [28] according to numerical experiment. All
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FIGURE 7. Sensitivity to noises.

FIGURE 8. Data reducing and secure properties.

these three parameters should be given in prior to obtain the
dictionaries. However, the optimality of these parameters is
not only coupled, but also varies according to the selection
of training samples, the size of the training set, as well as the
deployed ensemble algorithms. Therefore, it is necessary to
analyze the robustness of the proposed framework towards
the variation of these parameters.

1). The ensemble learning algorithms tend to produce the
optimal result with a carefully selected large α, e.g., 128
or 512 in the simulated settings. However, observing that the
deviation from the optimality could be large when α = 256,
it would be safe to select a small α, e.g., 1, 2 or 4, to produce
a reasonable result at the cost of slightly deviating from the
optimality.

2). When the choice of the size of dictionary deviates
from the optimality, the performance of the ensemble learning
based frameworks only slightly deviates from the optimal-
ity, which indicates the strong compatibility with different
settings.

In order to verify the scalability, as well as the robust-
ness towards practical random noises, we conduct sensitiv-
ity analysis based on a larger dataset, i.e., the CMU PIE
face dataset [35], consisting of 41,368 front-face images
of 68 persons, and the face images of each person are captured

under 13 different poses, 43 different illumination condi-
tions, and 4 different facial expressions. We choose the five
near-frontal poses (C05, C07, C09, C27, C29) of each subject
and use all the images under different illumination conditions
and facial expressions. Thus we get 170 images for each
individual. Every image is normalized to the size of 32× 32.
We randomly select 20 images of each person as training sam-
ples. Besides high recognition accuracy, Fig. 7 illustrates the
insensitivity of the proposed framework to practical noises.
By adopting ensemble learning, the proposed framework
becomes much more robust than the base algorithm. Espe-
cially, when the noises are small (i.e., Gaussian noise with
a variance smaller than 0.2, Rayleigh noise with a parameter
smaller than 0.3, Salt&Pepper noise with a parameter smaller
than 0.2), the performance of the proposed framework is
only slightly influenced. When the noises become larger, the
performance of the proposed framework is much better than
that of the base algorithm.

Fig. 8 verifies the communicational efficiency and the
privacy-preserving property of the proposed framework. The
data reduction ratio represents the ratio between the size of
training samples and the size of the trained dictionary.

1). We find that better results are obtained when the
size of dictionary is chosen as around 50% of the training
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FIGURE 9. Performance comparison.

samples, which is consistent with the result for the base
algorithm.

2). The trade-off between recognition accuracy and the
size of dictionary demonstrates the flexibility of the proposed
framework, e.g., 40% more storage can be saved at the cost
of only near 2% performance loss.

3). By adopting random unitary transform, the training and
testing images are encrypted using a private key. It is shown
that the original images are difficult to be recognized from the
encrypted ones, and it would be computationally expensive to
obtain the original images from the encrypted ones without
the knowledge of the private key.

B. PERFORMANCE COMPARISON
For performance comparison, we adopt four baseline algo-
rithms,
• Baseline 1 (SPCANET) [34]: Deep learning is adopted
for FR, in which a 5-layer Convolutional Neural Net-
work (CNN) is adopted, and Principal Component Anal-
ysis (PCA) is deployed to learn filter kernels in order to
extract more discriminative features.

• Baseline 2 (SRC) [26]: Face subspace model is adopted
for sparse representation-based classification, in which
the l1-minimization problem is solved to obtain the
sparsest solution to exploit the discriminative property.

• Baseline 3 (LC-KSVD) [28]: The label consistent term
and the reconstruction error term are added to the
l1-minimization problem to both enforce the represen-
tational power as well as improve the discrimination
capability.

• Baseline 4 (SRC + ensemble) [36]: SRC is combined
with ensemble learning to exploit the multi-device diver-
sity in order to produce an enhanced FR result.

Fig. 9 provides the performance comparison among
the proposed and baseline algorithms. First, it is demon-
strated that the proposed framework outperforms all the
sparse-representation based baseline algorithms, because we
take the full advantage of the multi-device diversity. Since

TABLE 1. Performance comparison on AR and LFWcrop.

the result produced by SRC is not structurized, the com-
bination of SRC and ensemble learning framework cannot
fully exploit themulti-device diversity, which leads to inferior
performance. Second, it is verified that by adopting ran-
dom unitary transform, the result of FR is not influenced,
which proves that the proposed framework could operate on
secured plane without any performance degradation. Finally,
even though the deep learning based algorithm SPCANET
outperforms the proposed framework by 0.7% in terms of
recognition accuracy, it requires 67% more dictionary train-
ing samples for each class, which is over 80% of the entire
available samples for both training and recognizing. Espe-
cially, when there are 30 dictionary training samples for
each class, which is the most common setting when evalu-
ating the performance on YaleB dataset, the proposed frame-
work outperforms SPCANET by over 4%. When there are
only 10 training samples per class, which is reasonable in
real-world settings due to the scarcity of fine-grained and
manually labeled data, the proposed framework outperforms
SPCANET by over 12%. By combining sparse coding with
ensemble learning, the performance of such hybrid algo-
rithm becomes much closer to that of deep learning based
algorithms.

Moreover, we compare the performance based on AR
dataset [39] and LFW dataset [40]. Regarding the AR dataset,
we choose a subset consisting of 50 classes of male and
female, respectively, each of which includes 14 images cap-
tured according to different facial expressions, illumination
conditions and disguises. In the experiment, the images are
cropped with dimension 645 and converted to gray scale. For
each class, we randomly select 9 images as the entire train-
ing set, where each device randomly select 6 images as the
dictionary training set, and 4 images as the ensemble training
set, while the rest for testing. The LFW dataset contains more
than 13,000 images of faces collected in an unconstrained
environment, and they are labeled with the names of different
individuals. LFW is more challenging than AR and YaleB
datasets since it includes various uncontrolled variations.
LFWcrop dataset is a cropped version of the LFW, keeping
only the center portion of each image (i.e. the face), which
exhibits real-life conditions, including misalignment, scale
variations, in-plane as well as out-of-plane rotations. In the
experiment, following the settings in [40], we choose person
who has more than 20 photos but less than 100 photos as the
sub-dataset, which contains 57 classes and 1883 images. For
each person, we randomly choose ninety percent of images
for training, and the remaining images for testing.

The results are given in Table. 1. Regarding the AR
dataset, since the number of training samples is rather limited,
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TABLE 2. Computational complexity comparison.

TABLE 3. Executing time (s).

it is demonstrated that the proposed framework outper-
forms SPCANET, which is consistent with the result in the
Extended YaleB dataset. Regarding the LFW dataset, it is
observed that 1). the performance gain of adopting ensemble
learning is valid. 2). Deep learning based algorithm could
extract non-linear features, and thus performs better when
handling unconstrained face images. To fill in the gap, it is
possible to pre-process the data before recognition, such as
performing face alignment beforehand [41].

C. COMPUTATIONAL COMPLEXITY COMPARISON
We analytically compare their computational complexities in
Table. 2, where N denotes the number of training samples,
m denotes the dimension of the dictionary, K represents the
number of rows in the dictionary, L is the number of classes,
and ε is the sparsity of the sparse representation. Note that it is
satisfied that N > K . As illustrated in Fig. 8, we may choose
K = N/2 to achieve the best performance, and K = N/10
to achieve an adequate performance with reduced computa-
tional complexity. Therefore, the testing complexity of the
proposed algorithm is smaller than that of SRC. Regarding
SPCANET, it is difficult to express the computational com-
plexity mathematically. Therefore, we evaluate/compare the
computational complexities through simulation.

Table. 3 provides the simulation results on computational
complexity. As for the dictionary training time, SRC based
algorithms are the fastest, because they simply down-sample
the training samples, stack their columns, and align those
vectors to formulate a dictionary, which does not demonstrate
neither enough discrimination capability nor any represen-
tational power. LC-KSVD and the proposed algorithm need
more time due to adopting K-SVD for dictionary compu-
tation. Even though SPCANET adopts 1). PCA instead of
stochastic gradient descent to learn filter kernels, 2). Hashing
method to simplify the nonlinear processing layer, in order to
reduce the computation complexity, it still requires very long
training time under such a small database. As for the testing
time, LC-KSVD and the proposed algorithm are extremely
fast, which makes it possible to support real-time FR related
applications. SRC based algorithms are slow due to the large

size of the dictionary, and SPCANET is the slowest among
these algorithms due to the deep learning framework. Espe-
cially, when various FR featured applications from a variety
of devices produce large amount testing samples, a large
recognizing time will significantly jeopardize the Quality of
Experience (QoE) of users in service. Therefore, the proposed
framework demonstrates strong potential to support real-time
applications.

VI. CONCLUSIONS
In this paper, we develop a secured framework for FR
in edge and cloud networks based on sparse representa-
tion. To guarantee the privacy, random unitary transform is
adopted, where it is proved that the accuracy of recogni-
tion will not be affected. To reduce both the computation
demands at each device and the communication requirements
between the edge and cloud, the dictionary and classifier
learning is conducted at each edge server, and the recognition
is accomplished at the cloud. To exploit the multi-device
diversity, we proceed by three steps. 1). The training samples
are divided into two parts, one for dictionary and classifier
training, and the other for ensemble training. 2). The DT is
extracted for each class in the intermediate space, expanded
by the estimated the label vectors based on the ensemble
training set. 3). The recognition is identified according to
the pairwise similarity between the DP of the testing sample
and each of the DTs. Finally, the simulation results verify the
privacy preserving property as well as the superiority of the
proposed framework.
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APPENDIX
PROOF OF THEOREM 1
In the following, we analyze the relationship between the
dictionary and classifier parameter learned from the origi-
nal training samples and those learned from the encrypted
training samples by adopting K-SVD. Specifically, K-SVD
consists of two steps,

A. SPARSE CODING STEP
The objective is to estimate the sparse coefficient X j given
T j, according to the following optimization problem

< X j >= min
X j
||Zj − T jX j

||
2
2 s.t. ||xj||0 ≤ ε. (24)

It is possible to apply OMP to find the solution to Eq. (24),
where the detail can be found in [42].

When the encrypted training samples are utilized, Eq. (24)
is modified into

< X̃
j
>= min

X j
||Z

j
− T

j
X j
||
2
2 s.t. ||xj||0 ≤ ε. (25)

In the following, it is proved that the solution to Eq. (25) is
identical to the solution to Eq. (24).
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First, in the Sweep step, we compute the error εj(i), where
i denotes the label of atom, as

εj(i) = min
xji

||t jix
j
i − Z

j
||
2
2 = ||Z

j
||
2
2 −

((t ji)
TZ

j
)2

||t ji||
2
2

= ||QpB
j
||
2
2 + ||

√
αC j
||
2
2 + ||

√
βH j
||
2
2

−
(QpB

jQpD
j
i + αC

jAji + βH
jW j

i)
2

||QpD
j
||
2
2 + ||

√
αA||22 + ||

√
βW j
||
2
2

. (26)

According to the norm isometry property, we have
||QpB

j
||
2
2 = ||B

j
||
2
2 and ||QpD

j
||
2
2 = ||D

j
||
2
2. Based on

the property of conservation of inner product, we have
QpB

jQpD
j
i = BjDji. Therefore,

εj(i) = ||Bj||22 + ||
√
αC j
||
2
2 + ||

√
βH j
||
2
2

−
(BjDji + αC

jAji + βH
jW j

i)
2

||Dj||22 + ||
√
αA||22 + ||

√
βW j
||
2
2

= εj(i). (27)

Hence, the minimizer of Eq. (25) is the same as that of
Eq. (24), which accounts for the same support Si.
Second, in theUpdate Provisional Solution step, the sparse

representation ia updated according to the atom i with the
minimum error, as

E
j
i = ||Z

j
− T

j
SiX

j
Si ||

2
2

= ||QpB
j
− QpD

j
SiX

j
Si ||

2
2 + ||

√
αC j
−
√
αAjSiX

j
Si ||

2
2

+ ||
√
βH j
−
√
βW j

SiX
j
Si ||

2
2. (28)

According to the property of norm isometry,

E
j
i = ||B

j
− DjSiX

j
Si ||

2
2 + ||

√
αC j
−
√
αAjSiX

j
Si ||

2
2

+ ||
√
βH j
−
√
βW j

SiX
j
Si ||

2
2

= E ji . (29)

Therefore, the provisional solution X̃
j
Si to Eq. (25) is the same

as X j
Si to Eq. (24).

Finally, in the Stopping Rule step, similarly,

||r ji||
2
2 = ||Z

j
− T

j
SiX

j
Si ||

2
2 = ||r

j
i ||

2
2 ≤ ε. (30)

Therefore, the above analysis proves that random unitary
transform does not affect the sparse coding step, i.e., the
solution X̃

j
to Eq. (25) is exact the same as the solution X j

to Eq. (24) under the condition D
j
= QpD

j.

B. DICTIONARY UPDATE STEP
The objective is to find the dictionary that best describes the
training samples according to the optimization problem in
Eq. (3), where K-SVD can be applied to find the solution.
The detail of the algorithm can be found in [42]. When the
encrypted training samples are utilized, Eq. (3) should be
modified into Eq. (14). In the following, it is proved that the
solution to Eq. (3) has deterministic relationship with that to
Eq. (14).

In the Compute the residual matrix step, the representation
error matrix Ejd for the d-th column in Eq. (3) is given by

Ejd = Zj −
K j∑
i6=d

t ji(x
j
i)
T , (31)

where t ji represents the i-th column in T j, (xji)
T represents the

i-th row in X j. To minimize the l2-norm of Ejd while keeping
the cardinalities of all the representations fixed, we restrict
Ejd , by choosing only the columns where the entries in the
row are non-zero, into (Ejd )

R. Then apply SVD to find an
approximate solution,

(Ejd )
R
=


(Bj −

∑K j

i6=d
Dji(x

j
i)
T )R

(
√
αC j
−

∑K j

i6=d

√
αAji(x

j
i)
T )R

(
√
βH j
−

∑K j

i6=d

√
βW j

i(x
j
i)
T )R


=

[
U j
A 0
0 U j

B

][
S jA 0
0 S jB

][
V j
A
V j
B

]

= U j1jV j
=

m∑
i=1

uji · σ
j
i(v

j
i)
T , (32)

where it is satisfied that (Bj −
∑K j

i6=d D
j
i(x

j
i)
T )R =

U j
AS

j
A(V

j
A)
T , and [(

√
αC j
−
∑K j

i6=d
√
αAji(x

j
i)
T )R; (

√
βH j
−∑K j

i6=d
√
βW j

i(x
j
i)
T )R] = U j

BS
j
B(V

j
B)
T .

The representation error matrix E
j
d of Eq. (14) is given by

E
j
d = Z

j
−

K j∑
i6=d

t ji(x
j
i)
T , (33)

where t ji represents the i-th column in T
j
.

To apply SVD to minimize the l2-norm of E
j
d ,

(E
j
d )
R
=


(QpBj −

∑K j

i6=d
D
j
i(x

j
i)
T )R

(
√
αC j
−

∑K j

i6=d

√
αA

j
i(x

j
i)
T )R

(
√
βH j
−

∑K j

i6=d

√
βW

j
i(x

j
i)
T )R


=

[
QpU

j
A 0

0 U j
B

][
S jA 0
0 S jB

][
V j
A
V j
B

]

= U
j
1
j
V
j
=

m∑
i=1

uji · σ
j
i(v

j
i)
T . (34)

In this case,(
QpB

j
−

K j∑
i6=d

D
j
i(x

j
i)
T
)R
= QpU

j
AS

j
A(V

j
A)
T , (35)

BecauseDji is the optimal minimizer for (Bj−
∑K j

i6=d D
j
i(x

j
i)
T )R

given Bj and xji, which is a linear problem. When Bj is
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multiplied by Qp, according to the scaling property, we have

D
j
i = QpD

j
i. Moreover, it is satisfied that (

√
αC j
−

∑K j

i6=d

√
αA

j
i(x

j
i)
T )R

(
√
βH j
−

∑K j

i6=d

√
βW

j
i(x

j
i)
T )R

 = U j
BS

j
B(V

j
B)
T . (36)

Because observing that 1). xji is the optimal minimizer for

both (QpB
j
−
∑K j

i6=d QpD
j
i(x

j
i)
T )R and (Bj −

∑K j

i6=d D
j
i(x

j
i)
T )R.

2). Aji and W j
i are the optimal minimizer for [(

√
αC j
−∑K j

i6=d
√
αAji(x

j
i)
T )R; (

√
βH j
−
∑K j

i6=d
√
βW j

i(x
j
i)
T )R] given xji.

It is satisfied that A
j
i = Aji and W

j
i = W j

i when minimizing

the l2-norm of E
j
d given x̃ji = xji.

Therefore,

uj1 = Qpu
j
1

ujK j+1 = ujK j+1

1
j
= 1j

V
j
= V j, (37)

and update the dictionary, classifier and coefficient vector as

D
j
d = uj1 = Qpu

j
1 = QpD

j
d

< A
j
d ,W

j
d > = ujK j+1 = ujK j+1 =< Ajd ,W

j
d >

x̃jd = σ
j
1(v

j
1)
T
= σ

j
1(v

j
1)
T
= xjd , (38)

which finishes the proof.
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