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ABSTRACT Post-mortem biometrics entails utilizing the biometric data of a deceased individual for deter-
mining or verifying human identity. Due to fundamental biological changes that occur in a person’s biometric
traits after death, post-mortem data can be significantly different from ante-mortem data, introducing new
challenges for biometric sensors, feature extractors and matchers. This paper surveys research to date on the
problem of using iris images acquired after death for automated human recognition. A comprehensive review
of existing literature is complemented by a summary of the most recent results and observations offered in
these publications. This survey is unique in several elements. Firstly, it is the first publication to consider
iris recognition where gallery images are acquired before death (peri-mortem images) and the probe images
are acquired after death from the same subjects. Secondly, results are presented from the largest database
of peri-mortem and post-mortem iris images, collected from 213 subjects by two independent institutions
located in the U.S. and Poland. Thirdly, post-mortem recognition viability is assessed using more than
20 iris recognition algorithms, ranging from the classic (e.g., Gabor filtering-based) to the modern (e.g.,
deep learning-based). Finally, we provide a medically informed commentary on post-mortem iris, analyze
the reasons for recognition failures, and identify key directions for future research.

INDEX TERMS Forensics, iris recognition, post-mortem biometrics.

I. INTRODUCTION
Biometrics is the science of recognizing individuals based
on their biological and behavioral characteristics such as
fingerprints, face, iris, voice, and gait [1]. A typical biometric
system employs a sensor to capture a sample of the biometric
attribute of an individual, extracts features from the acquired
biometric sample, and compares the features extracted from
two biometric samples to generate a match score. Based on
the match score, a decision is rendered as to whether the two
biometric samples originate from the same source or from
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two different sources.While a number of biometric traits have
been proposed in the literature, the face, fingerprint, voice and
iris modalities have been extensively studied and deployed in
a number of applications [2]. In this work we focus on the iris
modality.

Iris recognition entails comparing the texture of the iris
present in ocular images. The human iris is an internal organ
of the eye that controls the pupil size in response to the
amount of light reaching the retina. It is a colored ring-shaped
region with the pupillary boundary as the inner border and the
ciliary boundary as the outer border, as shown in Figure 2.
The texture of the iris region is the important source of
features used for recognition. The detailed texture pattern
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FIGURE 1. Four different iris types considered in this survey: the live sample (acquired before death), peri-mortem sample (acquired around the time of
death) and post-mortem samples (acquired after death). The two post-mortem samples are from the same subject, while the live and peri-mortem
samples are from different subjects. These samples illustrate changes in iris appearance over time. They were acquired in near-infrared light (centered
around 810 nm) by an iris sensor that produces iris images compliant with the ISO/IEC 19794-6 standard.

is highly specific to the particular individual iris. From the
perspective of traditional iris recognition algorithms, the two
irides of the same person, or two irides of monozygotic twins,
are as different as irides of unrelated persons. The iris is
well protected by the cornea, yet easily imaged through it.
These properties combine to make the iris very attractive as
a biometric identifier. As is the case with every biometric
mode, there is ongoing research related to various challenges,
including such things as presentation attack detection, dealing
with eye diseases, application to identification of newborns,
understanding aging processes and developing algorithms
that are agnostic to age-related changes, and assessing reli-
ability of post-mortem iris recognition [3].

The belief that the iris decays ‘soon’ after death in a
way that makes iris recognition impossible has pervaded
iris recognition research since its beginning. This belief was
often used to neutralize gruesome, yet mythical, scenar-
ios of presenting eyeballs plucked from the eye socket to
iris scanners. However, recent studies demonstrate that the
dynamics of eye and iris decomposition, from the biometric
point of view, are more complex and less rapid than initially
believed. These processes heavily depend on the ambient
conditions, but today we know that iris patterns can still
be useful for recognition a few days after death in a warm
environment [4], [5], or up to even a few weeks in a mortuary
environment [6]–[8].

Examples of different types of iris images considered
in this work are shown in Figure 1. From this it can be
deduced that for the live and peri-mortem irides, the dis-
tinctive features and textural patterns of the iris are appar-
ent. However, in the time between the early post-mortem
stage and the late post-mortem stage, we see deformations
of the cornea and, possibly, the iris texture that make extrac-
tion of iris features less reliable. This paper investigates
the effect of this degradation in relation to the task of iris
recognition.

Although this survey is focused on iris, the face and fin-
gerprint modalities also offer potential postmortem biomet-
ric recognition utility. Some preliminary studies [4], [5] on
automated recognition for postmortem face and fingerprint
explored the length-of-viability of the trait when left exposed

to the natural elements. This of course varies with tempera-
ture, humidity and season.

There would be no contemporary medicine without the
study and understanding of the human body. Most of our
basic anatomical knowledge, contributing later to develop-
ment of advanced surgery, has been gained from cadav-
ers. Such research activities require an ethical and moral
respect for the human body and the acknowledgment of
the generosity of relatives of the deceased. It is in this
spirit that a unique post-mortem iris recognition study is
being conducted by five institutions (Medical University of
Warsaw, NASK National Research Institute, University of
Notre Dame, Dutchess County Medical Examiner’s Office
and Michigan State University). We hope that this survey
can serve as a source of accurate technical knowledge for
those who wish to understand the advances and challenges
in post-mortem iris recognition. The specific contributions of
this survey include:

• a unique study in which iris images acquired before
death (peri-mortem) and after death (post-mortem) from
the same subjects are compared;

• an assessment of post-mortem iris recognition accu-
racy based on over 20 iris recognition methods, includ-
ing classic (Gabor filtering-based) and modern (deep
learning-based) approaches, on a database of 213 sub-
jects, which is the largest such database to date;

• a medical commentary related to post-mortem iris
recognition;

• an explanation of reasons for recognition failures, along
with suggestions for future research directions that could
address these issues.

II. APPLICATION SCENARIOS
Post-mortem iris recognition is useful in typical forensic
scenarios, where ante-mortem data has to be matched with
information gathered from deceased subjects in order to
obtain a list of potential matching identities. For short time
horizons (not exceeding three weeks [8]) and favorable con-
ditions (e.g., cadavers kept in low temperatures), iris recog-
nition is already known to offer superior speed over other
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FIGURE 2. The iris pattern is a very rich structure composed of various elements, such as ciliary processes, Fuchs’ crypts (anterior surface
openings, usually located near the collarette and surrounded by collagen trabeculae), Krückmann-Wolfflin bodies (stromal condensations,
especially in blue or hazel eyes), freckles (local concentrations of melanin pigment), and contraction folds as a consequence of iris dilation
and constriction (owing to the dilator and sphincter muscles).

well-established forensic identification tools, such as DNA
or dental records. Under the same temporal and environmen-
tal assumptions, iris recognition should offer substantially
higher accuracy than ‘‘soft biometrics’’ methods, such as sex,
age, ethnicity, or eye/skin/hair color.

In addition to the short-term time horizon and appro-
priate conditions of cadaver storage, the forensic sce-
nario requires iris samples collected before death to match
against. Although iris recognition is slowly becoming
ubiquitous, mainly due to various governmental programs
(e.g., NEXUS/CANPASS at theUS/Canada border [9], AAD-
HAAR in India [10], voter registration in Ghana, Tanzania
and Somaliland [11], and biometric passports), it is not as
common as face imaging, which is widely used for many
identity documents. Thus, ante-mortem vs post-mortem iris
matching is likely to remain as a niche forensic technique
for the foreseeable future. However, specific deployments
of iris recognition, such as ‘iris at a distance’ [12] or
cross-wavelength (near-infrared vs visible light) iris match-
ing [13]–[15], may increase its importance and result in iris
templates being used more frequently in various identifica-
tion efforts.

There is, however, another important scenario, which does
not incorporate ante-mortem data: rapid registration of bod-
ies found at mass fatality incidents to be later tracked and
dispatched appropriately to correct destinations. If cadavers

need to be tracked for short time periods (as mentioned above,
up to a few weeks), and the iris pattern of at least one eye is
visible, then iris recognition seems to offer a useful alternative
in such situations.

III. APPLICATION SCENARIOS
Post-mortem iris recognition is useful in typical forensic
scenarios, where ante-mortem data has to be matched with
information gathered from deceased subjects in order to
obtain a list of potential matching identities. For short time
horizons (not exceeding three weeks [8]) and favorable con-
ditions (e.g., cadavers kept in low temperatures), iris recog-
nition is already known to offer superior speed over other
well-established forensic identification tools, such as DNA
or dental records. Under the same temporal and environmen-
tal assumptions, iris recognition should offer substantially
higher accuracy than ‘‘soft biometrics’’ methods, such as sex,
age, ethnicity, or eye/skin/hair color.

In addition to the short-term time horizon and appro-
priate conditions of cadaver storage, the forensic sce-
nario requires iris samples collected before death to match
against. Although iris recognition is slowly becoming
ubiquitous, mainly due to various governmental programs
(e.g., NEXUS/CANPASS at the US/Canada border [9],
AADHAAR in India [10], voter registration in Ghana, Tan-
zania and Somaliland [11], and biometric passports), it is
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not as common as face imaging, which is widely used for
many identity documents. Thus, ante-mortem vs post-mortem
iris matching is likely to remain as a niche forensic tech-
nique for the foreseeable future. However, specific deploy-
ments of iris recognition, such as ‘iris at a distance’ [12] or
cross-wavelength (near-infrared vs visible light) iris match-
ing [13]–[15], may increase its importance and result in iris
templates being used more frequently in various identifica-
tion efforts.

There is, however, another important scenario, which does
not incorporate ante-mortem data: rapid registration of bod-
ies found at mass fatality incidents to be later tracked and
dispatched appropriately to correct destinations. If cadavers
need to be tracked for short time periods (as mentioned above,
up to a few weeks), and the iris pattern of at least one eye is
visible, then iris recognition seems to offer a useful alternative
in such situations.

IV. POST-MORTEM DECOMPOSITION OF AN EYE FROM
THE MEDICAL SCIENCE STANDPOINT
Postmortem study of the eye globes has been of interest to
forensic sciences for several years as a means to assist with
the estimation of the postmortem interval [16]–[20]. Various
chemical and physical postmortem changes of the eyes have
been investigated in human and animal studies [21]. These
include vitreous chemistry, such as electrolytes (sodium,
potassium, etc.), as well as postmortem assays for alcohol
and drugs (drugs of abuse and prescription medications) [22].
Postmortem examination of different components of the eye
are studied, such as corneal thickness, corneal clouding,
changes in pupillary diameter, changes in tonicity of the
globes, and changes to the retinal vessels and neurologic
tissue [23]–[29]. In particular, pupils are usually mid-dilated
after death, in the so-called cadaveric position, which de facto
makes the automatic post-mortem iris recognition easier: with
pupils being neither heavily dilated nor heavily constricted,
the iris textural features are well visible and not deformed,
and the post-mortem dilation is constant.

Little is written about postmortem iris musculature per se,
although studies have been done on pupil diameter changes
by applying mydriatic and miotic agents. Research into the
persistent ability of skeletal muscle to contract postmortem
has also been done, but not on the iris directly. However,
it seems reasonable to expect that these postmortem features
may apply to iris muscles as well [30]–[32], and thus to
assume that within the first couple of hours after death,
the iris may react to pupillomotoric drugs; e.g., pilocarpine
and atropine. Because the iris does not react to light after
death, pupil dynamics-based liveness detection is straightfor-
ward, and post-mortem eyes are easily detected by systems
implementing this approach to presentation attack detection.

Another factor to consider is whether irides change
color postmortem as suggested by some forensic text-
books [33], [34]. A recent porcine study indicated that
irides do darken in color within 48-72 hours after
death, although comparable human studies have not been

published [35]. In the study by Abraham et al., porcine globes
were placed in different controlled temperature environments
and observed for color changes to irides. All globes placed in
a 30-36◦C temperature oven desiccated, hardened and turned
dark by 36 hours. Globes placed in a 25◦C isothermal envi-
ronment were desiccated and darkened by 48 hours. Those
globes placed in a 6◦C environment showed persistence of
iris color up to 60 hours. The porcine globes, like human
globes, also demonstrated a well-known postmortem artifact
called tache noire. In humans this is recognized as a band-like
darkening of the sclera subsequent to desiccation. Tache noire
may develop when the eyelids are left separated postmortem;
on occasion it may affect the sclera more diffusely, so-called,
global tache noire [36]. Also, due to reduced intraocular
pressure, the globe depresses usually in the central part and
loses its firmness [27].

V. REVIEW OF POST-MORTEM IRIS RECOGNITION
EFFORTS TO DATE
A. PAPERS STUDYING THE FEASIBILITY OF
POST-MORTEM IRIS BIOMETRICS
Probably the first researcher to approach the problem of
iris recognition after death was Sansola, who focused on
authenticating human subjects after death using iris recogni-
tion [37]. With an IriShield M2120U iris sensor and IriCore
software, she enrolled 43 subjects who had their irides pho-
tographed at different post-mortem time horizons. Depending
on the post-mortem interval, themethod yielded 19-30% false
non-matches and no false matches. Sansola also reported a
relationship between the eye color and post-mortem compar-
ison scores, with blue/gray eyes yielding lower correct match
rates (59%) than brown (82%) or green/hazel eyes (88%).

Because of the obvious difficulty of organizing a human
post-mortem data collection protocol, some researchers
turned to experiments involving animals. A study involving
domestic pigs was conducted by Saripalle et al., who con-
cluded that irides degrade slowly after being taken out of the
body, and lose their biometric capabilities 6 to 8 hours after
death [38].

Trokielewicz et al. showed that the iris can still suc-
cessfully serve as a biometric identifier for 27 hours after
death [6]. Images were collected in three acquisition sessions:
session 1, 5-7 hours post-mortem; session 2, 16.5-21 hours
post-mortem; and session 3: 27 hours post-mortem. They
were able to show that irides can be encoded and recognized
in more than 90% of the session 1 cases. Effects of iris degra-
dation where observed in session 2, with FNMR increasing
significantly to 48.88% for the OSIRIS method. However,
two commercial matchers – IriTech and MIRLIN – still
present fairly good ability to recognize the samples; approx.
94.96% and 82.76% correct verifications, respectively. In ses-
sion 3, 73.33% of irides were still correctly recognized
27 hours after death using the IriCore method, whereas the
performance of the remaining methods was uneven, as they
were able to recognize from 13.33% (OSIRIS) to 60%
(VeriEye).
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Trokielewicz et al. extended their experiments, introduc-
ing a larger database with samples collected up to 17 days
post-mortem [7]. A short-term analysis, concentrating on
samples acquired up to 60 hours after death, revealed that
the best performing IriCore method can still offer EER as
low as 13%, which indicates that iris recognition can still
be a reasonable identification tool after such a period of
time. Long-term analysis taking into account all samples
collected over a period of 17 days, however, shows that the iris
deterioration progresses substantially over this longer time
horizon, and although correct matches can still occur even
after 17 days, they are sparse and cannot be considered as a
reliable proof of one’s identity.

Bolme et al. [4] tracked biometric capabilities of face,
fingerprint and iris during human decomposition in outdoor
conditions. Twelve subjects were placed in a body farm to
assess how the environment and time affect performance
of biometric methods. Although fingerprints and face were
shown to be moderately resilient to decomposition, the irides
degraded quickly regardless of the temperature. Irides typ-
ically became useless from the recognition viewpoint only
a few days after exposition to outdoor conditions, and if
the bodies were kept outside for 14 days the correct ver-
ification rate was near zero. A follow-up paper by Sauer-
wein et al. [5] showed that irides stay readable for up to
34 days after death, when cadavers were kept in outdoor
conditions during winter. The readability was assessed by
human experts acquiring the samples and no iris recognition
algorithms were used in this study, however these obser-
vations suggest that low temperatures increase the chances
to see an iris even in a cadaver left outside for a longer
time.

Trokielewicz et al. [8] recently further extended the
database of cadaver iris samples collected at the Medi-
cal University of Warsaw, Warsaw University of Technol-
ogy, and NASK – National Research Institute. The study
showed that correct matches are possible for even as long
as 21 days after death, pinpointed segmentation errors as
the most prominent source of recognition failures, and
assessed the chances of false matches when post-mortem
iris samples are compared against databases of live iris
samples.

Branching out from the field of biometrics and into the
field of forensic and legal medicine, a recent paper by Trok-
ielewicz et al. gives insight into the decomposition processes
taking place in the human eye after death from the per-
spective of automatic identity recognition [39]. The authors
argue that such applications may prove useful ‘‘for fast and
accurate matching of ante-mortem with post-mortem data
acquired at crime scenes or mass casualties, as well as
for ensuring correct dispatching of bodies from the incident
scene to a mortuary or funeral homes’’. The paper provides
an analysis of global and local changes during the eyeball
decay of one subject, and itemizes possible guidelines for
forensic examiners employing iris biometrics during their
proceedings.

B. PAPERS PROPOSING POST-MORTEM-SPECIFIC IRIS
RECOGNITION METHODOLOGIES
Trokielewicz and Czajka [40] proposed a method for seg-
menting iris images from deceased subjects. By train-
ing a deep convolutional encoder-decoder with more than
1,300 manually-annotated occlusion masks, they obtained
consistent and accurate predictions for iris regions in
post-mortem iris samples. They open-sourced both the binary
iris masks used for training, as well as the weights of the
trained model.

Trokielewicz et al. showed that a reliable presentation
attack detection method can be constructed to detect cadaver
iris presentations [41], reaching 99% accuracy. This allowed
to build a system with APCER=0 %@BPCER=1% (Attack
Presentation and Bona Fide Presentation Classification Error
Rates, respectively) for samples collected at least 16 hours
post-mortem. Countermeasures to minimize the bias caused
by image properties that are not related to PAD are imple-
mented, and analysis of class activation maps to ensure that
discriminant iris regions utilized by the classifier were related
to properties of the eye, and not of the specific acquisition
protocol.

Cadaver-focused iris image segmentation proposed in [40]
was extended by Trokielewicz et al., using two differ-
ent, convolutional neural network-based segmentation mod-
els trained on a variety of iris image datasets, including
post-mortem data [42], [43]. Onemodel is suited for detecting
the rough iris and sclera boundaries, whereas the second
yields predictions of iris regions unaffected by post-mortem
tissue decomposition. This work also shows how to normalize
irregular segmentation masks provided by neural networks
for use in a Gabor-based iris recognition pipeline, which gave
an improvement in recognition accuracy over the methods
designed only for ante-mortem irises.

Trokielewicz proposed the first post-mortem-specific iris
feature representation, which employed Siamese networks
to learn filter kernels that would accurately describe iris
features altered by post-mortem decay processes [44], [45].
A hybrid filter bank is proposed, comprising a mixture of
Gabor and Siamese-learnt kernels. Such an approach allowed
for reduced error rates for all post-mortem intervals explored
– from 12 hours to 369 hours post-mortem – compared
to a state-of-the-art commercial iris matching technology
(IriCore).

Exploring the concept of post-mortem iris recognition as
a useful tool for forensic proceedings, Trokielewicz et al.
studied the differences in perceiving iris features by both
human examiners tasked with iris verification, as well as
by a convolutional neural network-based classifier. This was
done by recording the gaze of humans during iris exami-
nation and comparing their fixation points against saliency
maps obtained from the machine solution. Conclusions
include that the machine classifier can provide complemen-
tary cues regarding matching or non-matching regions, since
the saliency maps provided by humans and by machines
rarely overlap. Another observation is that both humans and
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TABLE 1. Summary of the research literature on post-mortem iris recognition. Acronyms used in the table: FNMR: False Non-Match Rate; FMR: False
Match Rate; EER: Equal Error Rate; CNN: Convolutional Neural Network; NIR: Near Infrared; PAD: Presentation Attack Detection.

machine classifier prefer a ‘sparse’ attention or ‘keypoint-
based’ approach, which is in contrast to a dense coding
typically used, such as in Daugman’s algorithm [46]. This
may suggest that such sparse representations can be used in
combination with more traditional approaches.

C. SUMMARY OF THE RELATED LITERATURE
Table 1 summarizes the scientific literature reviewed in this
section. Every study that reports FNMR for post-mortem
matching finds that it greatly exceeds the FNMR expected
for live irides, namely less than 2% according to the
IREX IX report [47]. Post-mortem matching evaluations suf-
fer from very limited data available to researchers. Until
2016, there were no publicly available databases compris-
ing iris images collected from deceased subjects. Making
iris biometrics more robust against post-mortem changes
only started in 2018 with proposals for convolutional neu-
ral network-based image segmentation [40], [43] and later
iris-specific feature representation [44], [48].

VI. DATABASES OF PERI-MORTEM AND POST-MORTEM
IRIS SAMPLES
Results presented in this paper are based on peri-mortem and
post-mortem iris images collected in the near-infrared (NIR)
and visible-light spectra from 213 subjects independently
at two institutions: Dutchess County Medical Examiner’s
Office in the US (data from 134 deceased subjects, referred
further asDCMEO1 dataset), andMedical University ofWar-
saw in Poland (referred further as Warsaw dataset). To our

knowledge, this is the largest number of cases used in assess-
ment of automatic post-mortem iris recognition in research
publications.

A. DATA COLLECTION SITES AND PROTOCOLS
1) DUTCHESS COUNTY MEDICAL EXAMINER’s OFFICE
a: EQUIPMENT
Two different sensors were used to collect DCMEO1 data: a
commercial IriShield M2120U iris sensor, and the Microsoft
Surface Go 8 megapixel rear-facing autofocus camera. The
IriShield sensor is equipped with a NIR illuminant, whose
irradiance falls in the 710-870 nm band, with a peak at 810 nm
and 3dB bandwidth of 20nm (from 800 nm to 820 nm) [50].

b: ENVIRONMENTAL CONDITIONS
The bodies at the Dutchess County Medical Examiner’s
Office are stored at 47.8◦ Fahrenheit (8.8◦ Celsius), and were
taken out of storage for a short time to take pictures in a room
temperature at 72◦ Fahrenheit (22◦ Celsius).

c: WITHIN-SESSION ACQUISITION PROTOCOL
The Dutchess County operating procedure was to do one
image acquisition session initially before the vitreous fluid is
withdrawn and replaced with 10% buffered formalin. Thus,
the subsequent sessions would already have formalin in the
globes. The first RGB images are captured via camera prior
to scanning the irides in NIR light. An eyelid speculum is
used to facilitate the acquisition of the images. An eyedrop
solution (VISINE R© Advanced Relief Eyedrops) is applied
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onto the surface of the cornea prior to image capture in order
to moisten the cornea and improve clarity. A set of four
images per eye is taken for each session. Images are labeled
by a session number, a designation for the right or left eye,
the postmortem time interval and whether formalin had been
injected into the globe prior prior to image acquisition.

This is followed by scanning sessions using the IriTech
iris sensor. An eyelid speculum is again used to facilitate
the acquisition of the images and eyedrop solution applied.
The iris of each globe is then scanned and the resulting
ISO-complaint iris image is stored, along with the auxiliary
data as for color images.

d: ACQUISITION TIMEFRAME
Once the iris is enrolled, a set of four additional images are
scanned for the first session and every subsequent session
on successive days. Depending on the subject, from 1 to
9 acquisition sessions could be organized on different days.
The longest PMI was 284 hours in the DCMEO1 dataset.

2) MEDICAL UNIVERSITY OF WARSAW
At the Warsaw collection site, the iris scans were obtained
from hospital mortuary subjects. The collection of this
database was carried out in close collaboration with the
Department of Ophthalmology at the Medical University of
Warsaw, it had an institutional review board clearance and the
ethical principles of the Helsinki Declaration were carefully
followed by the researchers.

We aimed at acquiring iris images as soon after death as
possible, and then repeated the acquisition multiple times
(until approximately 1 month after demise) from the same
subjects. First acquisition was always made right after bring-
ing the cadaver to the mortuary, hence the bodies had often
artifacts visualizing the last moments of their life: e.g., elec-
trodes and tubes left after unsuccessful resuscitation, or other
artifacts.

a: EQUIPMENT
As in case of theDCMEO1 dataset, two different sensorswere
used: a commercial IriShield M2120U iris scanner, and the
Olympus TG-3 color camera. Color images were collected
simultaneously with NIR images, and each subject and each
acquisition session is represented by at least one image of
each type.

b: ENVIRONMENTAL CONDITIONS
All acquisition sessions were conducted in the hospital mor-
tuary. The temperature in the mortuary room was approxi-
mately 42.8◦ Fahrenheit (6◦ Celsius). Other conditions, such
as air pressure and humidity were unknown, yet stable. The
environmental conditions in which the cadavers were kept
prior to entering the cold storage are unknown.

c: WITHIN-SESSION ACQUISITION PROTOCOL
When collecting images within a single acquisition ses-
sion, all samples can be considered separate presentations as

recommended by the ISO/IEC 19795-2, i.e., after taking a
photograph, the camera was moved away from the subject
and then positioned for the next acquisition.

d: ACQUISITION TIMEFRAME
Depending on the subject, 1 to 13 acquisition sessions could
be organized. In each session at least one NIR and one
visible-light image were acquired. Subjects were not avail-
able prior to passing, therefore no ante-mortem samples could
be collected. The first session for each subject was thus
always organized as soon after death as possible, typically 5 to
7 hours. The largest post-mortem interval (PMI) in Warsaw
dataset is 814 hours. The following sessions were organized
based on the availability of deceased persons, who were
subject to medical or police investigations, and were retained
in the mortuary during varying time slots. The overview of
acquisition sessions for all subjects is shown in Figure 3. For
12 subjects, only a single acquisition session was possible.

B. DATA CURATION
For theWarsaw dataset, the curation involved removing failed
NIR acquisitions from the dataset, such as those that did not
represent the iris region, and images with significant motion
blur or poor focus. The same was done for the VIS images,
which were additionally cropped to only show the eye region.
No curation was performed on the scans taken at the Dutchess
County Medical Examiner’s Office.

C. STATISTICS
The following Section summarizes the data collection proto-
cols at both institutions and details the resulting databases of
post-mortem iris representations.

1) MEDICAL UNIVERSITY OF WARSAW
The Warsaw dataset comprises a total of 2,294 NIR
images, accompanied by 2,572 color images acquired from
79 deceased subjects (157 different irises, since only one eye
was imaged for one cadaver). Age of the deceased ranged
from 19 to 77 years old. 11 subjects were female and 68 were
male. Causes of death included heart failure (42 subjects),
car or train crash (12), suicide by hanging (11), suicide by
jumping (2), unspecified type of murder (2), shooting (1),
poisoning (4), and head trauma (5). The eye colors were
blue/gray/light green (61 cadavers), light brown/hazel (11)
and dark brown (7). This database is publicly available in
version 1, an expanded version 2, and a further expanded
version 3 [7], [8], [42].

2) DUTCHESS COUNTY MEDICAL EXAMINER’s OFFICE
The DCMEO1 dataset comprises a total of 621 NIR images
acquired from 134 deceased subjects.

VII. IRIS RECOGNITION
This section provides a brief overview of iris recognition, as a
technical context for this survey. For a more comprehensive
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FIGURE 3. Post-mortem intervals (PMI) for all acquisition sessions plotted independently for each deceased subject from the Warsaw and DCMEO1
datasets used in this study. Blue solid dots correspond to a data collection session (possibly with multiple acquisitions) for a given subject and a given
PMI. Diamond shapes for some subjects denote an unknown PMI for these cases. Example NIR and visible-light samples for the subject who stayed the
longest time (814 hours) in the mortuary are also shown. A clearly better penetration of the NIR light (when compared to visible light) makes the iris
texture more visible in NIR. More irregular PMIs in case of DCMEO1 data is a consequence of operational nature of acquisitions, while more regular PMIs
in case of Warsaw data is due to more opportunities to plan an acquisition time.

treatment of iris recognition, the reader is referred to one of
the recent surveys, e.g., by Nguyen et al. [12].

The iris has a rich textural pattern that can be used as
a biometric cue when appropriately captured by a sensor.
Iris images are typically acquired in the near-infrared (NIR)
spectrum due to the ability of NIR illumination to reliably
capture the texture in dark-colored as well as light-colored
irides. In 1993, Daugman published his seminal work on iris
recognition which measures the statistical independence of
‘‘iris codes’’ calculated from iris images [46]. Many current
commercial and academic algorithms have been inspired by
early Daugman’s work. The iris recognition algorithm usually
comprises of four major steps:

1) Iris Segmentation: The first step towards iris recog-
nition is localizing an iris from a given image.

Daugman achieved this using an integrodifferential
operator (circular edge detectors) to locate the outer and
inner boundary of the iris [46]. Occlusion by eyelashes,
eyelids, etc. are minimized using edge detection and
curve fitting methods to estimate positions of the upper
and lower eyelids.

2) Normalization: After localization, segmented irides are
‘‘unwrapped’’ to a fixed resolution. Unwrapping con-
verts circular irides from Cartesian coordinate system
(x, y) to polar coordinate system (r, θ). The normaliza-
tion procedure reduces variations caused by pupil size
and simplifies the translation needed to align two irides.

3) Feature Encoding: A variety of feature extraction rou-
tines exist for capturing useful textural information
from an unwrapped iris. The most common techniques
use various image filtering kernels, such as Gabor
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filters [46], ‘sticks’ operators [51], or Binarized Statis-
tical Image Features (BSIF) [48], [52], and the filtering
result is then binarized to produce an ‘‘iris code.’’

4) Matching: In Daugman’s original pipeline for
iris-based recognition systems, the matching relies on
the ‘‘failure of a test of statistical independence.’’ A sta-
tistical test of independence of two iris codes fails if the
two iris codes belong to the same subject [46]. This is
implemented using simple Boolean XOR operator that
encodes disagreement between bits of given two iris
codes. This information is then utilized by fractional
Hamming Distance (HD) to calculate a dissimilarity
score between iris samples being compared.

With recent advancements, multiple algorithms have been
suggested at each of the above stages to improve the perfor-
mance of iris recognition algorithms. Some of them are based
on deep learning techniques, while others are combinations of
both classical and deep learning-based approaches. Based on
this, methods for iris recognition can be currently classified
into four categories:

• Classical: Iris recognition algorithms in this category are
mostly based on Daugman’s original pipeline and some
improvements that has been suggested over the years,
usually proposing other than Gabor filtering kernels..
For instance, in [48] domain-specific (iris-driven) BSIF
features were used instead of generic Gabor wavelets to
extract textural information from iris images.

• Fully Deep Learning-Based: Research work has been
done in this field used deep learning-based
approaches [53]. Here, researchers have used convolu-
tional neural networks to offer end-to-end iris recog-
nition without explicit image normalization. Cosine or
Euclidean distance metrics can be then used to obtain
the comparison scores.

• Hybrid with Deep Learning-Based Segmentation:
In [54], [55], authors showed that deep learning-based
methods are better for iris segmentation than traditional
methods, even for cases with blurred or partial iris
images. This promoted the third type of algorithms for
iris recognition, hybrid approaches, where iris local-
ization and segmentation are accomplished by deep
learning-based approaches, and classical approaches
such as Gabor and BSIF are used for feature extraction
in order to generate templates that can be matched for
recognition.

• Hybrid with Deep Learning-Based Features: The fourth
group of methods include those which employ classical
iris image segmentation (and often image normaliza-
tion, as in early Daugman’s work), followed by deep
learning-based feature encoding [56]. The motivation
for using such approaches is mainly simplicity, due to
the ease of feeding modern, pre-trained convolutional
neural networks with normalized iris images. These
methods may offer lower reliability, however, when

more demanding iris image segmentation is needed, as is
the case with post-mortem or diseased eyes.

In this survey, we offer an evaluation of different
approaches discussed above on the post-mortem iris image
datasets. Details about the iris recognition methods used in
this study have been listed in Appendix and in Table 4.

VIII. EXPERIMENTAL RESULTS: WHERE ARE WE NOW?
To assess the capability of current iris recognition
methodology in a context involving post-mortem samples,
we evaluated it in two settings: post-mortem vs post-mortem
(Post-Post) and peri-mortem vs post-mortem (Peri-Post).
In the first setting, all-versus-all matching is performed only
using post-mortem samples, whereas in the second setting
matching is performed using peri-mortem images as the
enrollment samples, and comparing them against all the
post-mortem images from the same subjects (to generate
genuine comparison scores) and against all post-mortem sam-
ples of non-mated subjects (to generate impostor comparison
scores).

In trying to be as comprehensive as possible, a total
of 14 different iris recognition techniques were used for
matching. In some cases, variations of the same technique
were also employed. Appendix contains a complete listing of
the methods, along with a brief description of their workings.
Thesemethodologies can be grouped into four distinct groups
as mentioned in Sec. VII and summarized in Table 4. These
groups include the use of deep learning based solutions,
hand-crafted techniques and commercial implementations.

The effect of iris decomposition on matching performance
is studied and explained in this section. Figure 4 shows
the matching scores using the best-performing method as a
function of time after death for one individual subject where
the segmentation of iris regions is good. Here, the reference
image is matched to four other images independently. The
effect of iris decomposition is apparent. Also investigated in
this section is the effect of image segmentation on matching
results through the examination of the failure cases of the
utilized segmentation tools.

A. POST-MORTEM VS POST-MORTEM IRIS MATCHING
The Receiver Operating Characteristic (ROC) curves for
the most accurate matching technique in each of the four
categories of methods (as listed in Table 4) are displayed
in Figure 5. The genuine/impostor lists used to generate these
ROC curves contain all possible genuine and impostor com-
parisons where both images are post-mortem samples from
the combined database of DCMEO1 and Warsaw samples
(these two datasets certainly contain samples from different
subjects, so the merging of these two sets into a combined
dataset is straightforward). This totals to 24, 653 genuine
comparisons and 4, 222, 502 impostor comparisons.

As seen in Figure 5, the best-performing matcher is the
combination of a deep learning-based segmentation [40], fea-
ture extraction using a traditional hand-crafted method [48]
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FIGURE 4. Post-mortem interval progression for one individual subject where the matching score to the reference image is shown. For the matching
scores, the best-performing iris recognition method was used, (SegNet-BSIF-HD) and since the distance metric was Hamming Distance, lower numbers
mean a better match. The acceptance threshold set on live iris images from the CASIA-Iris-Thousand database for a False Match Rate of 5% is used to
determine whether there is a match or not. A green matching score represents a match and red represents a non-match. The matching score trend shows
that as time elapses after death, matching becomes increasingly difficult.

FIGURE 5. Receiver Operating Characteristic (ROC) curves for the
best-performing methods in each of the four groups of iris recognition
methods in the post-mortem vs post-mortem setting. Area under the
curve (AUC) is also shown.

and the matching using the fractional Hamming distance
as in conventional iris recognition systems. The second
best-performing matcher employs the same segmentation
technique, and employs a mixture of data-driven and Gabor
kernels to generate an iris code. The VeriEye commercial iris
recognition system was the third best-performing method.
The open-source reference implementation OSIRIS offered
the lowest accuracy in this experiment. However, the deep
learning based-segmentation model used in the two best

performing methods was trained partially on post-mortem
data, which was not the case for OSIRIS or VeriEye methods.
It is, therefore, evident that due to the unpredictable nature of
the appearance of post-mortem irides in comparison to live
irides, segmentation methods developed for live iris images
tend to struggle in this domain. Since accurate segmentation
plays a large role in the performance of the system, an investi-
gation of the segmentation performance of various algorithms
is presented in detail in Section VIII-F.

An interesting finding to note regarding the results shown
in Figure 5 is the performance of VeriEye, the only commer-
cial system evaluated. As can be seen in Table 2, VeriEye
performs considerably better than the other techniques on live
irides in theCASIA-Iris-Thousand database [57]. This system
was clearly and understandably designed to perform recogni-
tion on live irides, and these results highlight the challenging
nature of the domain of post-mortem iris recognition for such
matchers.

Included in Appendix is the full set of ROC curves for
all the iris matching techniques evaluated in this survey.
Although this plot is dense, it can be seen that many of
the methods investigated have very poor performance on the
post-mortem iris recognition task. In Figure 7 it is possible
to observe how the difference between genuine and impostor
pairs diminishes as the PMI increases for all the techniques,
reflecting degradation in the iris. A similar trend appearing in
all matching techniques supports the conclusion that decay
is a main factor hindering recognition in high PMI images.
Specifically, we believe this to be the reason for multiple
methods to perform so poorly in these conditions.

B. PERI-MORTEM VS POST-MORTEM IRIS MATCHING
The matching configuration for this experiment is that each
pair contains one peri-mortem sample and the second sample
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TABLE 2. Comparison of verification performance for Post-Post and Peri-Post scenarios. The acceptance thresholds (AT) were obtained at predefined
False Match Rates (1% and 5%) using the CASIA-Iris-Thousand live iris dataset.

FIGURE 6. Impostor score distributions, and genuine scores shown as
solid dots, for the four best-performing iris recognition methodologies in
the peri-mortem vs post-mortem matching setting. Larger dots represent
a higher density of genuine scores in that region.

is post-mortem. There are eight peri-mortem images in our
database, thus the resulting matching lists contained only 8
genuine comparisons. The number of impostor comparisons
is certainly larger, as these peri-mortem images can be com-
pared to post-mortem samples of different subjects, and we
generated 23, 360 of such scores in total. To avoid visual
distortions caused by the limited number of genuine pairs
available, we chose not to represent them as a histogram, but
instead use dots to indicate their score relative to the larger
impostor distribution, as shown in Figure 6.

In general, the matching scores attained in the peri-mortem
to post-mortem setting are better than in the post-mortem
to post-mortem setting. It is clear that the inclusion of
live irides lends information that may be missing from
post-mortem samples. In the context of post-mortem recog-
nition, these experiments are important as they show that
if a peri-mortem or standard live sample is available of a
deceased subject, the matching with the post-mortem iris
will produce valuable identity information. However, there is
much room for improvement in this area. Firstly, as stated
above, there are only 8 genuine comparisons. Increasing
the size of this dataset would result in more representative
results. Finally, as shown in Figure 5, currently available
matching strategies do not performwell in the post-mortem to
post-mortem scenario. These methods make the assumption
that the whole captured iris has usable texture. However,
as can be seen in Figure 10, as the iris degrades, the amount of
available usable texture decreases. More minute and precise
feature matching could boost the performance of both the
peri-mortem to post-mortem matching and the post-mortem
to post-mortem matching.

C. SETTING THRESHOLD ON LIVE IRIS IMAGES
To establish a baseline by considering the performance
in a more traditional setting, we performed matching
on the CASIA-Iris-Thousand subset of the CASIA Iris
Image Database version 4.0 [57]. The CASIA-Iris-Thousand
database contains 2,000 classes consisting of 1,000 each
of both left and right eyes. Each of these classes contains
10 images, totalling to 20,000 images. For genuine compar-
isons, this means there are

(10
2

)
= 45 genuine comparisons

per class, resulting in 90,000 total genuine comparisons. For
impostor comparisons, we used a stratified sampling method,
where there is at least one random comparison between each
pair of impostor classes of the same side of the face, with 999
comparisons for each class (one class to all other classes of
eyes on the same side of the face). This results in 2, 000 ×
999= 1,998,000 impostor comparisons. Based on the results
of this matching we then selected acceptance thresholds for
two different False Match Rate values (1% and 5%), and
calculated the True Match Rate (TMR) for each of them in
both settings previously described (Post-Post and Peri-Post).
These results are presented in Table 2.
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The purpose of this experiment is to determine if we can
develop a matching methodology, based on live images, that
is robust to the two aforementioned settings (post-mortem
vs post-mortem, and peri-mortem vs post-mortemmatching).
Post-mortem data is much more difficult and more expensive
to collect than live data. So if it can be determined that
there is a method, where a lot of post-mortem data is not
required to design a robust iris recognition system, that would
be preferable. When the threshold is determined on a live
database and tested on that same live database, as can be seen
in the CASIA column of Table 2, the commercial iris recog-
nition system VeriEye performs the best by a noticeable
margin. This is to be expected as this system is engineered
for highly accurate iris recognition. After VeriEye, the next
best method is the use of deep learning based segmenta-
tion and the mixture of data-driven kernels and Gabor ker-
nels (Segnet-Gabor-Siamese-HD). At both an FMR
of 1% and an FMR of 5%, these two matchers are the
best when testing on live data. When these same thresholds
are employed for post-mortem vs post-mortem comparisons,
the best system is VeriEye, which attains a TMR of 58.54%
and 63.54% at an FMR of 1% and 5%, respectively. Closely
following this accuracy are the results when using the deep
learning-based segmentation and human-driven BSIF fea-
tures, attaining a TMR of 52.14% and 62.48% at an FMR
of 1% and 5%, respectively. Beyond these two techniques,
the dropoff of accuracy is very large, with the third best
method only attaining a TMR of 34.76% and 41.63% at these
FMRs.

In the peri-mortem vs post-mortem setting, the same
matchers are the best as in the post-mortem vs post-mortem
matching scenario. Since there are only eight genuine com-
parisons, there aremany similarly performingmethodologies.
VeriEye and Segnet-HumanDrivenBSIF-HD, how-
ever, clearly perform better than the rest. Interestingly, when
using live iris data to set matching thresholds, VeriEye is
the best. However, when there is post-mortem data involved
in the setting of thresholds, it is not the best performing
method in either setting, as illustrated in the ROC curves plot
in Figure 5. Given these very poor results of post-mortem iris
recognition, in comparison to matching live irides, it can be
concluded that using live images alone to determinematching
thresholds for post-mortem recognition does not result in
robust systems.

D. POST-MORTEM INTERVAL ANALYSIS
One of the main aspects in which post-mortem iris
recognition differs from live iris recognition has to do with
the significant and relatively fast image degradation due
to the decomposition processes, which degrades the ocular
globe and its internal structures. To assess the degree to
which decomposition affects the recognition performance,
we looked into the matching scores grouped by the num-
ber of hours passed since the time of death, also known
as post-mortem interval (PMI). Figure 7 summarizes our
findings in this regard: the violin plots show comparison

FIGURE 7. Score distributions grouped by postmortem interval (PMI). The
two halves of each violin plot represent the distribution of scores for
genuine and impostor pairs. Dotted lines represent the mean score for
PMI up to 24 hours. d ′ is also shown in round brackets for each PMI
range.

score distributions obtained for samples with different PMI
intervals, ranging from 24 to 840 hours. The circles represent
the mean value for each PMI range, and

d ′ =
|x̄genuine − x̄impostor|√
1
2 (s

2
genuine + s

2
impostor)

is the so-called decidability factor, where x̄genuine and
x̄impostor are means, and sgenuine and simpostor are stan-
dard deviations of the comparison scores.
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The distinctive trend to be noticed here is the increasing
similarity between the genuine (blue) and impostor (orange)
distributions: in all methods examined, there is a clear trend
in overlapping the genuine and impostor distributions, as the
PMI increases, and consequently making recognition harder.
In top performing methods like those shown in Figures 7b
and 7d, we can observe impostor distributions concentrated
around a value that remains reasonably stable across the PMI
axis. On the other hand, we find genuine distributions to be
well separated from the impostor whenmatching images with
lower PMIs, but they tend to move towards and concentrate
around the impostor score range as the eye starts to decay.
Although this trend is not so accentuated, it is still noticeable
in Figures 7a and 7c, and helps to provide a frame of reference
for how the decomposition process affects iris recognition
efficacy in postmortem scenarios.

E. SCORE-LEVEL FUSION IN POST-MORTEM IRIS
RECOGNITION
Biometric fusion involves mixing multiple sources of infor-
mation to render a single, combined decision or match
score [58]. The sources of information can be multiple
biometric modes, multiple matchers, feature extractors,
or sensors. There are many schemes to combine the dis-
parate information, including methods at the feature-level,
at the score-level, or at the decision-level. Score-level fusion
is often chosen because of its trade-off between amount
of information available and ease of fusion. In score-level
fusion, multiple match scores are combined to generate a
new match score that may offer improved recognition per-
formance. Singh et al. provide a comprehensive survey of
biometric fusion [59].

Our fusion scheme combines the 14 methods described
in Appendix using score-level fusion. We consider each
matcher pair, resulting in

(26
2

)
= 365 possible choices (some

of the 14 methods have multiple distance metrics resulting
in 26 matchers). To combine the scores, the score values must
exist in the same range (for the sum-rule), so we use min-max
normalization so that all comparison score exist in the range
[0, 1]. Some matchers produce similarity scores and some
matchers produce distance scores; we transform the distance
scores into similarity scores by subtracting the distance scores
from 1. This ensures that higher scores indicate similar-
ity for all matchers (and thus may be easily combined by
addition).

For somematchers, min-max normalization creates a prob-
lem whereby a large majority of scores exist in a very small
range within [0, 1]. To help alleviate this problem, we per-
form z-score normalization whereby the mean comparison
score is subtracted from each score and then divided by the
standard deviation of the scores, i.e.,

z =
x − µ
σ

where, x is a comparison score, µ is the mean of the com-
parison scores, σ is the standard deviation of the scores, and

z is the resulting normalized comparison score. The last step
is the fusion of the scores from multiple matchers where
corresponding scores are simply summed to produce a single
combined score.

Table 3 lists the best-performing fused matchers. We fol-
low the protocol as described in Section VIII-C, where a
threshold is determined using the CASIA-Iris-Thousand live
iris dataset.

F. SEGMENTATION ANALYSIS OF FAILURE CASES
Segmentation is an important part of the iris recognition pro-
cess, and low-quality segmentation is often associated with
sub-par recognition accuracy. In postmortem iris recognition,
new aspects that may directly impact segmentation are intro-
duced, mainly due to the decomposition process. To better
understand how iris recognition can be applied in such sce-
narios, as well as the factors that impact its accuracy, we per-
formed an analysis of segmentation results for selected failure
cases. Specifically, we inspect the segmentation results for
False Match (FM) and False Non-Match (FNM) errors that
occurred for multiple matchers. A False Match error occurs
when an impostor probe image is incorrectly matched to a
gallery image, due to a low distance score (or a high simi-
larity score, depending on the metric used by the matcher).
Conversely, a False Non-Match error occurs when a genuine
probe image fails to bematchedwith its correspondent gallery
image.

The main reasons for inaccurate segmentation results in
case of OSIRIS and CAHT, and possibly also VeriEye,
are strong assumptions about geometrical and reflective
properties of iris. One of the most important assumptions,
significantly simplifying iris image processing, is the cir-
cularity of the iris inner and outer boundaries, which is a
good approximation in case of live or peri-mortem irises.
Indeed, for low PMI images, segmentation methods mak-
ing this assumption work well, as shown for instance in
the lower row in Figure 8bb. Similar assumptions related
to shape of eyelids, or density / darkness of eyelashes,
may further facilitate live iris segmentation, but impacts
the accuracy of post-mortem iris image processing, as nei-
ther the shape of eyelids (deformed by metal retractors),
nor properties of eyelashes covering the iris texture (due to
post-mortem changes to the eyelid tissues) can be precisely
predicted. The next important reason why segmentation of
post-mortem iris images may be limited, when ‘‘classical’’
iris segmentation methods are used, is the decomposition
processes that introduce deformations never before seen by
those methods: wrinkles due to tissue drying and autolysis
(e.g., Figure 8ba, upper row), multiple specular reflections
within the iris annulus (e.g., Figure 8bc, upper row), or cornea
cloudiness (e.g., Figure 8ba). These examples simply call for
image processingmethods that have these strong assumptions
relaxed, as the proposed deep learning-based method (Seg-
Net; cf. last columns in Figures 8b and 8d).

Consequently, we inspect the results for each of these
four segmentation tools trying to determine whether bad

136582 VOLUME 8, 2020



A. Boyd et al.: Post-Mortem Iris Recognition—A Survey and Assessment of the State of the Art

TABLE 3. Some results of fusion using a threshold obtained on the CASIA-Iris-Thousand live iris dataset. The acceptance threshold (AT) is obtained at a
False Match Rate (FMR) of 1% and 5% on the CASIA iris dataset.

segmentation or eye decomposition may have caused the
incorrect result. Figure 8 shows some of these cases.
In Figure 8a, it is clear how the advanced decay of the
eyeball obscures most of the iris features, and makes segmen-
tation harder by deforming the eye structure. On the other
hand, even when the eye deformation is not so severe to
the point of disturbing segmentation, clouding of the cornea
may be enough to cause recognition to fail in a genuine pair
(Figure 8b).

The pair shown in Figure 8c is interesting because it
had different outcomes for different methodologies: both
images present visible deterioration of the eye. OSIRIS and
SegNet segmentation segmented the top image reasonably
well, but had problems with the bottom image. CAHT located
the iris incorrectly in both images, while VeriEye failed to
segment them (important to notice, has different implications
in performance). While OSIRIS and CAHT had segmenta-
tion problems, they did not cause a matching error for any of
the matchers that used those results: they correctly classified
the pair as a Non-Match. On the other hand, several matchers
that used SegNet generated a False Match output. This can
be explained by the particularly small region obtained from
the bottom image – not enough to allow a thorough compar-
ison between both irides. Similarly, Figure 8d had varying
segmentation results, especially for the bottom image, which
is severely degraded. Again, SegNet-based matchers pro-
duced a False Match due to the insufficient region segmented
in the bottom image.

Visual inspection of failure cases was helpful to confirm
the effect of post-mortem interval on iris segmentation and
recognition. At the same time, it gives us insight on how to
deal with these failures and, consequently, improve recog-
nition quality. Unlike VeriEye, which refuses to gener-
ate bad segmentation outputs, the SegNet method always

generates a binary mask as the output of this process.
False Match errors are a type of error that can be particu-
larly harmful in some applications, and cases like the ones
shown in Figures 8c and 8d suggest the need to assess
segmentation quality and/or the amount of iris texture left
for feature extraction before matching, to mitigate these
problems.

Another important factor, somewhat neglected in presented
research efforts to date, is related to post-mortem iris image
acquisition. Note that imaging technique designed for live
irides was used in this study. The question is what prop-
erties of the acquisition process can be tuned to make the
segmentation and iris texture coding processes more accu-
rate? One factor is illumination wavelength and possible
fusion of multi-spectral captures. While diffused illumina-
tion will not help in avoiding specularities from still-moist
yet deformed cornea, applying polarized light could poten-
tially attenuate such reflections. Although medical reasons
of decomposition-driven changes to the eye are known, they
have not yet been studied from a biometrics perspective.
Analysis of factors such us gender, age or even reason of
death brought inconclusive results regarding their potential
influence on iris decomposition processes, which in turn have
an impact on iris recognition [8].

Similarly, images that caused the highest number of FM
and FNM errors in matching using the fusion of scores also
seem to have suffered from incorrect segmentations, as can
be seen in Figures 9a and 9b. In both cases, we can see that
the gallery image (top row) is heavily degraded, and this
causes segmentation to either a) fail completely, b) localize
a wrong area (evident in ORISIS and CAHT segmentation),
or c) localize an area that is too small (Figure 9a, SegNet,
top row) or insufficient for a reliable comparison (Figure 9b,
SegNet, top row).
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FIGURE 8. Visual analysis of failure cases: pairs that resulted in False Match (FM) or False Non-Match (FNM) errors in multiple matching methods
frequently had incorrect segmentation results.
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FIGURE 9. Same as in Figure 8, except that matching by fusion of scores is considered..

IX. LIMITATIONS OF THE STUDY
The main limitation of this study is related to the size
of the database. The current dataset consists of data from
213 subjects. We concede this limitation, and conducted our
experiments and analysis with this limitation in mind. The
obvious problem is the extreme difficulty of data acquisition
in, what we consider to be, a very unusual setup. As these are
post-mortem samples, access to the subjects is restricted to
trained professionals. However, to our knowledge, this survey
employs all post-mortem iris images available to researchers
at the time of writing this paper. However, data collection
efforts are ongoing, and, depending on the number of avail-
able cadaver subjects (which are very unpredictable), future
work will extend the genuine and impostor comparison lists
in both the peri-mortem versue post-mortem and post-mortem
versus post-mortem settings to verify the findings presented
in this paper.

Another limitation of this study has to do with themortuary
conditions. Different institutions have different practices on
where the cadavers are examined. Some institutions examine
the cadavers in the temperature-regulated mortuary whereas
others will bring the cadavers to an office and examine the
subjects there before returning them to the mortuary. This
is a variable that we cannot account for and it is not clear

whether the effect of the room temperature would influence
iris degradation.

This study also does not investigate whether the cause
of death are a factor in the performance of iris recognition.
For privacy reasons, we are not given the cause of death
information for some of our samples. It is possible that events
such as head trauma or asphyxiation could put more pressure
on the eyes and iris than in cases where the subject died of
natural causes, which may lead to irregular texture degrada-
tion. However, this was not examined in this work and is an
area for future research.

Finally, the sensor used to capture the images was designed
to capture live irides. This device has a mirror on the surface
facing the subject in order for them to align themselves with
this camera. However, in the case of our work, the individual
capturing the image must do this alignment. There is an LED
to notify the user when the image is aligned; however, it is
possible that the irregular texture and shape of post-mortem
irides may affect the operation of this process. Thus, it is
possible that acquired images are not of the same quality as
live iris samples which are well-aligned. Last but not the least,
we do not yet know if the near-infrared illumination (with
a power peak in 810 nm), which is optimal for acquisition
of live irides, is still the effective choice to acquire the best
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representation for cadaver irides. This has been also identified
by the authors as an important future research area.

X. CONCLUSIONS
The subject of post-mortem biometric recognition has gained
traction in several applications. In particular, the ability to
recognize deceased individuals in mass disasters or in urban
warfare has expedited the need to develop biometric recog-
nition algorithms that can successfully match post-mortem
biometric data with their ante-mortem and peri-mortem coun-
terparts. In this paper, we focused on the efficacy of state-of-
the-art iris recognition algorithms – primarily developed for
‘‘live’’ irides – on the processing and matching of PM data,
and evaluated a few of the most recent algorithms adapted
to PM iris recognition. This survey paper and the assessment
presented are unique in several ways:

• In addition to a comprehensive literature review related
to post-mortem iris recognition, this survey presents a
new study with more than 20 iris recognition methods.

• Our study presented in this paper uses a large database
of more than 3,000 post-mortem iris images acquired
in near-infrared light from 213 deceased subjects; the
acquisitions were organized by two different facilities
located in the US and in Europe. It is the largest known to
us database of peri-mortem and post-mortem iris images
used in published research to date.

• We present matching results between iris images
acquired before and after death of the same subjects.

Several important observations can be formulated after
completing this study:

• State-of-the-art iris recognition methods, designed to
process live iris images, are not yet prepared to
address adequately post-mortem eye deformations. This
is especially evident after analysing image segmentation
results, which is the main reason for matching failures.
Solutions with relaxed assumptions related to the iris
shape (e.g., models incorporating convolutional neural
networks or geodesic active contours [60]) seem to offer
a promising direction of adapting current method to
forensic applications.

• Comparing peri-mortem with corresponding post-
mortem iris images results in correct matching in some
cases. This gives a hope that post-mortem samples can
be used in a forensic setup in which live iris samples
need to be matched to their post-mortem counterparts.

• The existing iris recognition matchers offer very differ-
ent accuracy values when applied to post-mortem iris
data. We have shown in this study that fusion of the best
methods can serve as an immediate solution to increase
the reliability of subjects’ identification after demise
with the use of their iris patterns.

XI. FUTURE DIRECTIONS
As concluding remarks, we itemize a number of research
opportunities in the area of post-mortem iris recognition.

1) Developing specialized methods for segmenting the
iris from post-mortem ocular data: As discussed in an
earlier section, post-mortem changes in the iris can
impact the limbus and the pupillary boundaries, besides
modifying the perceived texture and shape of the iris.
This necessitates the development of new iris segmen-
tation algorithm, especially because iris segmentation
is one of themost critical components in the recognition
pipeline.

2) Developing methods for encoding and matching
post-mortem irides: In many post-mortem scenarios,
the quality of the iris texture can be substantially dif-
ferent from that of live images. Further, only a por-
tion of the iris may be available due to the nature of
decomposition. This requires the development of new
iris encoding and matching algorithms.

3) Modeling post-mortem iris texture decomposition: As
discussed earlier, the process of iris decomposition
depends upon a number of factors including the patho-
logical state of the individual prior to death, cause
of death, post-mortem interval, environmental condi-
tions, etc. Predicting the changes in iris morphology
and texture can benefit post-mortem iris recognition
algorithms.

4) Assembling large post-mortem iris datasets: The num-
ber of datasets available for post-mortem iris recogni-
tion research is fairly limited. Further, each of these
datasets have only a limited number of subjects. Curat-
ing larger datasets will not only facilitate a more sys-
tematic study on this topic, but will also provide data
needed for training post-mortem iris recognition algo-
rithms.

5) Use of post-mortem iris data as presentation attack vec-
tors: It is not inconceivable for an adversary to utilize
post-mortem iris data to launch a presentation attack
against iris recognition systems.Methods to detect such
attacks are necessary to enhance the security of iris
systems.

APPENDIX. ILLUSTRATION OF IRIS POST-MORTEM
DECOMPOSITION PROCESS
Figures 10 and 11 present a series of post-mortem iris images
acquired in near infrared and visible light from the same eye
until 814 hours after demise (the longest case in the combined
DCMEO1 + Warsaw database). All images were acquired
from the same eye and show the upside of near-infrared
acquisition, as this light penetrates the cloudy cornea better
than visible light.

APPENDIX. IRIS RECOGNITION METHODS USED IN THIS
STUDY
This Appendix lists and shortly characterizes all iris recog-
nition methods (with their variants) used in the experiments
presented in this survey paper.

1) Neurotechnology VeriEye SDK v4.11 [61].
Name on plots: VeriEye.
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FIGURE 10. Illustration of the decomposition processes visible in near-infrared light (3dB bandwidth 790 nm – 830 nm, with a peak in 810 nm) in the
right eye of subject 0017 included into the Warsaw data.

FIGURE 11. Same as in Fig. 10, except that visible-light samples are shown.

This is a commercial tool for iris recognition produced
by Neurotechnology. It works by using Taylor expan-
sion to extract image features. Features extracted from
the images are compared using a metric called ‘‘elastic

similarity’’ in which impostor images will usually pro-
duce results near zero. This SDK has been evaluated
several times by NIST in their IREX reports (I, III,
IV and IX), and currently is one of themost popular and
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accurate commercial iris recognition methods. In par-
ticular, in 2018 the VeriEye SDK has been judged by
the NIST as the second most accurate among all IREX
participants.

2) OSIRIS (Open Source IRIS) v4.1 [62].
Name on plots: OSIRIS-IrisCode-HD.
A very popular open-source implementation of Daug-
man’s approach for iris recognition. It uses Gabor
wavelet filtering to extract features from the iris
images, and then generates the IrisCode that is used
to measure the distance between two irises through
fractional Hamming distance.

3) USIT (University of Salzburg Iris Toolkit) v2 [63].
Name on plots: CAHT-LG-TripleA.
An open-source academic tool that implements a
Daugman-style iris recognition, using iris codes to cal-
culate the Hamming distance between images. Optimal
configuration, as suggested by the authors, was used:
segmentation using CAHT, feature extraction using LG
and matching using TripleA algorithms.

VeriEye-based
4) segmentation
+ OTS ResNet-18 [56]. Names on plots:
VeriEye-ResNet18-Cosine,
VeriEye-ResNet18-MSE, and
VeriEye-ResNet18-Pairwise.
Deep learning-based features extracted from off-the-
shelf ResNet-18 for iris images segmented and normal-
ized by OSIRIS.

VeriEye-based
5) segmentation
+ OTS ResNet-152 [56]. Names on plots:
VeriEye-ResNet152-Cosine,
VeriEye-ResNet152-MSE, and
VeriEye-ResNet152-Pairwise. As above,
except for ResNet-152 used for feature extraction.

OSIRIS-based
6) segmentation
+ OTS DenseNet [56]. Names on plots:
VeriEye-DenseNet-Cosine,
VeriEye-DenseNet-MSE, and
VeriEye-DenseNet-Pairwise.
As above, except for DenseNet used for feature extrac-
tion.

VeriEye-based
7) segmentation
+ OTS VGG-16 [56]. Names on plots:
VeriEye-VGG16-Cosine,
VeriEye-VGG16-MSE, and
VeriEye-VGG16-Pairwise.
As above, except for VGG-16 used for feature extrac-
tion.

VeriEye-based
8) segmentation
+ OTS AlexNet [56]. Names on plots:
VeriEye-AlexNet-Cosine,

VeriEye-AlexNet-MSE, and
VeriEye-AlexNet-Pairwise.
As above, except for AlexNet used for feature extrac-
tion.

OSIRIS-based
9) segmentation
+ fine-tuned ResNet50 [64]. Names on plots:
OSIRIS-ResNet50ft-Cosine, and
OSIRIS-ResNet50ft-Euclidean.
The approach is to fine-tune the popular ResNet-
50 architecture trained originally on ImageNet database
for the task of iris recognition using a large live
iris database. Using this trained network, features are
extracted from each of the convolutional layers and
tested using a multiclass SVM to select which layer
is the best feature extractor. For this project, the best
performing layer and network configuration proposed
in [64] was used to extract the features from the
post-mortem images. All images are normalized using
OSIRIS and these normalized images provided the
input to the network. Because the original methodology
was for the task of iris classification, and this project is
dealingwith iris verification, an SVMcould not be used
on the features. Instead, the features extracted for each
image were matched using the Euclidean distance and
in a second experiment the cosine distance between the
feature vectors was used.

SegNet-based
10) segmentation
+ Gabor kernels [40], [45]. Name on plots:
SegNet-Gabor-HD.
A deep learning-based (SegNet) iris image segmenta-
tion designed in the past specifically for post-mortem
iris image processing and Gabor kernels (as defined in
OSIRIS). Standard iriscode-based matching (fractional
Hamming distance, occlusions excluded, but without
‘fragile bits’ analysis).

SegNet-based
11) segmentation
+ mixture of Gabor + Siamese kernels [40], [44].
Name on plots:
SegNet-Gabor+Siamese-HD.
As above, except for a mixture of Gabor and
data-driven (learned by Siamese networks) kernels
used for feature extraction.

SegNet-based
12) segmentation
+ standard BSIF [40]. Name on plots:
SegNet-BSIF-HD.
As above, except for using standard Binary Statistical
Image Features (BSIF) as proposed by Kannala and
Rathu [65] to extract features.

SegNet-based
13) segmentation
+ human-driven BSIF [40], [48]. Name on plots:
SegNet-HumanDrivenBSIF-HD.
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TABLE 4. Proposed categorization of the recognition methods employed.

A deep learning-based (SegNet) iris image segmen-
tation and human-driven BSIF, which were obtained
after applying Independent Component Analysis on iris
image patches extracted from eye gaze recorded for
people comparing iris samples

Human-interpretable
14) iris crypts [66].

Names on plots:
SegNet-Crypts-Dissimilarity and
SegNet-Crypts-Number.
This matcher implements detection and automatic
matching of the so-called iris crypts – features that
can be easily interpreted by humans. The designed
matching scheme is able to handle potential topological
changes in the detection of the same crypt in different
images.

For better organization, we split these methods into four
categories, according to the approach that is used in the seg-
mentation and encoding phases. This categorization is shown
in Table 4.

APPENDIX. DETAILED IRIS COMPARISON RESULTS
This Appendix presents the ROC curves for all iris recogni-
tion methods used in this study. The methods were put into
four categories due to several reasons:

• While the test set was identical for all matchers (as
described in Section VI, the training datasets differed
across the methods. Methods included into Fig. 12
are off-the-shelf algorithms, which were designed on
unknown data, probably not including post-mortem iris
samples. Methods presented in Fig. 13 used partially
post-mortem data to train the CNN-based segmentation
(SegNet), but no post-mortem samples were used to

FIGURE 12. Classic segmentation, classic encoding. The three SDKs were
used without any modifications. Here, the test data consisted of
post-mortem iris images. OSIRIS could not process 2.3% of images; USIT
could not process 0.03% of images; and VeriEye could not process 6.8%
of images.

FIGURE 13. CNN segmentation and classic encoding. The training data
used for the segmentation routine consisted of 2,987 post-mortem and
7,193 ante-mortem images. The test data consisted only of post-mortem
images. The unusual shape of the ROC curves for the SegNet-Crypts
methods is due to the nature of the results: these methods present
histogram spikes on either the low or the high distribution tails. When the
threshold reaches that spike, the result is a straight line in the ROC curve.

train feature encoding part. Methods used to generate
Fig. 14 did not use (again: to our best knowledge)
any post-mortem data to train either image segmenta-
tion or feature extraction models. Finally, the results
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FIGURE 14. Classic segmentation and CNN encoding. Segmentation was
accomplished using two SDKs without any modifications. Encoding and
matching was accomplished using various CNNs that were trained only
on ante-mortem images. OSIRIS could not process 2.3% of images; and
VeriEye could not process 5.8% of images. The poor performance of the
CNNs is due to the fact that they were never trained on post-mortem
images. This conveys the importance of assembling a large post-mortem
dataset for training CNN-based iris encoders for post-mortem iris
recognition.

FIGURE 15. CNN segmentation and CNN encoding. Here, segmentation
was accomplished using a CNN that was trained on 2,987 post-mortem
and 7,193 ante-mortem images. Encoding and matching was
accomplished using another CNN that was trained on 2,475 post-mortem
images. Testing was done on subject-disjoint post-mortem iris images.
This ROC curve demonstrates the importance of using post-mortem
images for training purposes. Contrast this with Figure 14.

illustrated in Fig. 14 correspond to a method, which
incorporated post-mortem iris images to train both

image
segmentation and kernels responsible for feature extrac-
tion. This is why ROCs should not be directly compared
among these four Figures.

• Two core elements of the iris recognition pipeline, image
segmentation and feature encoding, can employ deep
learning-based models. We thus categorized all methods
by the fact of using the CNN or applying classical (or
‘‘hard-crafted’’) models, what ends up with four groups.

It is also important to note that the SegNet (used in var-
ious methods in this study) was trained on data including
post-mortem samples from the first 17 subjects in theWarsaw
corpus. It means that for methods using SegNet the training
and testing sets were not subject-disjoint (17 subjects, out
of 213, are common between these sets). That is a conse-
quence of how the CNNmodels for post-mortem iris recogni-
tion have been built in the past, with incrementally increasing
size of the hard-to-collect database.
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