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ABSTRACT Role-based access control (RBAC) is the most popular access control model currently adopted
in several contexts to define security management. Constraints play a crucial role since they can drive the
selection of the best representation of the organization’s security policies when migrating towards an RBAC
system. In this paper, we examine different types of constraints addressing both theoretical aspects and
practical considerations. On one side, we define the constrained role mining problem for each constraint
type, showing its complexity. On the other hand, we present efficient heuristics adapted to each class of
constraints, all derived from the specialization of a general approach for role mining. We show that our
techniques improve over previous proposals, offering a complete set of experimentations obtained after the
application of the heuristics to standard real-world datasets.

INDEX TERMS Role mining, RBAC, constrained role mining.

I. INTRODUCTION
The possibility of automatizing the process of selecting
appropriate roles to define the organization of complex
information systems has been one of the reasons for the
success of role engineering. As introduced in the seminal
paper in 1995 [6], role engineering has indeed the goal to
output a Role-Based Access Control (RBAC) model where
permissions to access restricted resources are not assigned to
individuals but to groups of employees sharing the same role
in the organization. The advantage of such a model is that
security administration, in organizations with a large number
of users, resources, and associated permissions, becomes
more manageable and flexible.

On the other side, the cost of the transformation of
a traditional system to one having an RBAC architecture
can be very high. In general, two approaches can be
pursued to correctly configure a set of appropriate roles:
the top-down approach and the bottom-up approach. In the
top-down approach, experts analyze the business processes
and the relationships within the organization, decomposing
complex tasks and units in more manageable groups sharing
the same set of permissions [10], [28]. In the bottom-up
approach, data mining techniques are used to analyze the
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existing user-permissions assignments. A (semi-)automatic
role mining phase is started to identify a set of roles according
to different organization goals [17], [19].

Role mining has attracted a lot of attention from academia
and industry, with many tools and research efforts [32].
The problem has also been addressed using results from
other related research fields such as boolean matrix decom-
position [22], graph theory [9], [36], tiling problem for
databases [35], and many others [25]. User permission
relations can be easily represented using a binary matrix,
where rows represent users, columns represent permissions,
and each entry denotes the assigned permission to each user.
So, the basic RoleMining Problem (RMP) consists of finding
the least number of roles consistent with the starting situation
and a valid decomposition of the original relation in two
other relations associating permissions to roles and roles to
users’ assignments [1], [22]. A survey on the role mining
problem describing numerous variants and the corresponding
strategies for finding a valid role set has been given in [25].

In practice, some constraints must often be considered to
define a set of roles compliant with the basic organization
rules within a given company, such as limiting, for example,
the number of permissions that can be included in a
role. In general, cardinality constraints are associated with
different organizational contexts and policies and limit in
some way the number of roles, or of permissions, or of users
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that can be selected after the role mining process. For such
reasons, different kinds of constraints have been considered,
such as role-usage cardinality constraint [16], where a
restriction is posed on the maximum number of roles that can
be assigned to any user, or considering the maximum number
of permissions associated to a role [2], [18]. Other papers
examined the permission-distribution cardinality constraint,
which is the dual of the role-usage constraint and restricts
the number of roles to which a permission can belong
to [14]. Sometimes, multiple cardinality constraints have
been considered [3], [14], [21], [24].

Together with cardinality constraints, separation of duty
constraints (SoD) or statically mutually exclusive roles
(SMER) have also been considered in the definition of the
RBAC2 model [31]. In this case, one user can be assigned to
at most one role in a mutually exclusive set. These constraints
are essential for preventing situations whenever a user is
enabled to carry on multiple tasks that can lead to a conflict
of interests, such as playing the role of the one that both
authorizes a given action and controls that such an action can
be allowed. Li et al. [20] proposed a technique to express SoD
policies as SMER constraints. They showed the complexity
of checking whether a given RBAC system satisfies a given
set of SoD policies. Roy et al. [29] gave a model for the
problem of assignment of a given set of users in an RBAC
system satisfying multiple SMER constraints and described
a solution based on integer linear programming. In [23],
SoD constraints have been modeled introducing negative
permissions in roles, meaning that the user can never exercise
that permission. The approach called constraint aware role
mining, is based on a boolean matrix decomposition method,
extending [22].

In this paper, we focus on cardinality constraints. The
contribution is twofold: on one side, we examine the basic
types of cardinality constraints and give formal definitions
addressing theoretical aspects, defining the associated con-
strained role mining problems, and analyzing their complex-
ity. On the other side, we propose, for each type of constraint,
an efficient heuristic derived from the specialization of an
approach that has been presented solving the basic RMP [1]
(i.e., we propose a unified framework for solving role mining
problems with different cardinality constraints). A complete
set of experiments testing our heuristics on real-world
datasets show that our techniques improve over previous
proposals in many cases. The evaluation takes into account
different metrics and different indicators. The results are
compared to the previously available heuristics.

The paper is organized as follows. In the next section,
we introduce the terminology and the basic definitions
for RBAC and the associated RMP. In Section III,
we formally define the constrained RMP for the differ-
ent classes of constraints we consider. In particular we
examine four classes: Permission-Usage Cardinality Con-
straint (PUCC), User-Distribution Cardinality Constraint
(UDCC), Role-Usage Cardinality Constraint (RUCC), and
Permission-Distribution Cardinality Constraint (PDCC).

In Section IV, we present our family of heuristics, adapting
the general approach for the basic RMP to the different sets of
constraints considered. In Section V, we present a complete
set of experiments applying the heuristics to standard datasets
and comparing their performance to other proposals. Finally,
we draw some conclusions in Section VI.

II. ROLE MINING
In this section we briefly recall the basic definitions for the
RBAC model and discuss the computational complexity of
the Role Mining problem and of some of its variants.

A. RBAC DEFINITION
The notation we use is based on the NIST standard for
Core Role-Based Access Control (Core RBAC, or RBAC 0),
see [30] and [11]. We denote with U = {u1, . . . , un} the set
of users, P = {p1, . . . , pm} the set of permissions, and R =
{r1, . . . , rk} the set of roles. The many-to-many mapping
assignment relations we consider are: UA ⊆ U × R that is
user-to-role assignment relation; PA ⊆ R × P that is role-
to-permission assignment relation; and UPA ⊆ U × P that
is user-to-permission assignment relation.
Obviously, we can represent the assignment relations

by binary matrices. For instance, by UA we denote the
UA’s matrix representation. The binary matrix UA satisfies
UA[i][j] = 1 if and only if (ui, rj) ∈ UA. This means
that user ui is assigned role rj. In a similar way, we define
the matrices PA, and UPA. In the next sections we use the
following definitions:

AssignedRolesU(ui) = {rj : (ui, rj) ∈ UA}
= {rj : UA[i][j] = 1}

AssignedRolesP(pj) = {ri : (ri, pj) ∈ PA}
= {ri : PA[i][j] = 1}

AssignedUsers(rj) = {ui : (ui, rj) ∈ UA}
= {ui : UA[i][j] = 1}

AssignedPrmsR(ri) = {pj : (ri, pj) ∈ PA}
= {pj : PA[i][j] = 1}

AssignedPrmsU(ui) = {pj : (ui, pj) ∈ UPA}
= {pj : UPA[i][j] = 1}

Given the n × m users-to-permissions assignment matrix
UPA, the role mining problem (see [9], [34], and [12]) consists
in finding a binary decomposition of UPA, that is an n × k
binary matrix UA and a k × m binary matrix PA such that,
UPA = UA ⊗ PA, where, the operator ⊗ is such that, for
i ∈ [n] and j ∈ [m],

UPA[i][j] =
k∨

h=1

(UA[i][h] ∧ PA[h][j]). (1)

Therefore, in solving a role mining problem (see [34]
and [9]), we are looking for a factorization of the matrix
UPA. Notice that, there are several matrices UA and PA
satisfying (1). For instance, trivial solutions can be found
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considering the following cases: i) we set a role for each user,
hence UA is the n × n identity matrix and PA = UPA; ii) we
set a role for each permission, hence UA = UPA and PA is the
m×m identity matrix. In particular, the role mining problem
consists in finding a user-to-role assignment UA and a role-
to-permission assignment PA such that the matrices UA and
PA satisfy (1) and the number of columns (rows) of UA (PA)
is minimized. The smallest value k for which UPA can be
factorized as UA ⊗ PA is referred to as the binary rank of
UPA.
A candidate role consists of a set of permissions along with

a user-to-role assignment. Hence, it can be described by a row
of the matrix PA and a column of the matrix UA. The union of
the candidate roles is referred to as candidate role-set and can
be described by matrices PA and UA. A candidate role-set is
complete if the permissions described by any UPA’s row can
be exactly covered by the union of some candidate roles. In
other words, a candidate role-set is complete if and only if
it is a solution of the eqnarray UPA = UA ⊗ PA. Hence,
equivalently, the role mining problem consists in finding
a complete candidate role-set having minimum cardinality.
Following [26], we refer to the tuple ρ = 〈U ,P,UPA〉 as a
configuration of an RBAC instance. Given a configuration
ρ one wants to find an RBAC state γ = 〈R,UA,PA〉
that is consistent with ρ, i.e., every user in U has the same
permissions in the RBAC state as in UPA.

B. RBAC COMPUTATIONAL COMPLEXITY
The computational complexity of the Role Mining problem
(and of some of its variants) was considered in several papers
(see, for instance, [5], [9], [34], and [35]). In this section we
briefly recall some bounds on the computational complexity
we need to establish our results. We start by recalling the
definition of the decisional version of the general role mining
problem.
Problem 1: (Role Mining) Given a set of users U , a set

of permissions P , a user-permission assignment UPA, and
a positive integer k < min{|U |, |P|}, are there a set
of roles R, a user-to-role assignment UA, and a role-to-
permission assignment PA such that |R| ≤ k and UPA =
UA⊗ PA?
Notice that requiring k < min{|U |, |P|} is not a limitation

at all. Indeed, assumimg |U | = n and |P| = m, if k ≥ |U |,
then a solution of the above problem is given by setting UA
as the n× n identity matrix and PA = UPA (i.e., we set a role
for each user); while, if k ≥ |P|, then a solution is given by
setting UA as the n × n identity matrix and PA = UPA (i.e.,
we set a role for each permission), as previously discussed.

The optimization version of the Role Mining problem can
be defined as follows.
Problem 2 (Role Mining Optimization): Given U , P , and

UPA, what is the smallest integer k ≤ min{|U |, |P|} for
which there are R, UA, and PA such that |R| = k and
UPA = UA⊗ PA?
Next theorem, whose proof is trivial, holds.
Theorem 1: Role Mining Optimization is NP-hard.

In [34] it was proved that Role Mining is NP-complete
by showing that Set Basis (see Problem SP7 in Garey and
Johnson’s book [13]) can be reduced to Role Mining. Stock-
meyer [33] proved that Set Basis is NP-complete by showing
that Vertex Cover can be reduced to Set Basis. Therefore,
since Vertex Cover Optimization is APX-complete [7] we
have the following simple non-approximability result:
Theorem 2: The Role Mining Optimization problem can-

not be approximated within any constant factor in polynomial
time unless P=NP.

III. CONSTRAINED ROLE MINING PROBLEM
In this section, we recall the definitions of different role
mining problems where some constraints are enforced on the
number of permissions in a role, on the number of roles a user
can have, on the number of roles a permission is assigned to,
and on the number of users a role can be assigned to.We show
that all constrained role mining problems are NP-complete
(and their optimization versions are NP-hard).

In [18] the authors considered a restriction on the number
of permissions included in any role. They analyzed RBAC
states where the size of each role cannot be larger than a given
threshold (i.e., there is an upper bound t on the number of
permissions that can included in any role). Such a problem is
referred to as Permission-Usage Cardinality Constraint Role
Mining problem. One has to find a binary decomposition of
UPA = UA ⊗ PA satisfying |{j : PA[i][j] = 1}| ≤ t for any
row i of PA or, equivalently, |AssignedPrmsR(r)| ≤ t , for
any r ∈ R.
Setting an upper bound t on the number of roles a

permission can be assigned to, we get the model proposed
in [14],

referred to as the Permission-Distribution Cardinality
Constraint Role Mining problem. In such a scenario each
column of the matrix PA has to satisfy |{i : PA[i][j] = 1}| ≤ t
or, equivalently, |AssignedRolesP(p)| ≤ t , for any p ∈ P .

In [15], authors considered a restriction on the number
of users to which any role can be assigned. They justified
such a constraint stating that role administration becomes
easier and more convenient to manage. Moreover, some
organizations are naturally structured in such a way that only
a maximum number of users can be assigned to a given role
(e.g., the number of directors or managers could be fixed
a priori). Hence, in [15] it was defined the User-Distribution
Cardinality Constraint Role Mining problem. The constraint
is established by asserting that each column of the matrix
UA has to satisfy |{i : UA[i][j] = 1}| ≤ t , or, equivalently,
|AssignedUsers(r)| ≤ t , for any r ∈ R.
Finally, role-usage constraint was considered in [16]. The

authors analyzed the RBAC state where there is an upper
bound t on the number of roles that can be assigned to each
user. Such a limitation is enforced either due to security
restrictions or to balance work distribution. Such a problem
is referred to as Role-Usage Cardinality Constraint Role
Mining problem. In this case, each column i of the matrix
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UA has to satisfy |{j : UA[i][j] = 1}| ≤ t or, equivalently,
|AssignedRolesU(u)| ≤ t , for any u ∈ U .
We stress that in this paper, we consider each problem

separately. In this case, it is immediate to see that each
problem admits at least a trivial solution. For example in
the case of UDCC and RUCC, it is easy to see that sound
solutions are the ones consisting of a role defined and
assigned to each user, each role including all the permissions
guaranteed to her. In the case of PDCC, a trivial solution is
the one where each role includes a single permission, and the
so defined roles are assigned to users respecting the values
contained in the UPAmatrix. Finally, for the PUCC scenario,
the permissions associated to a users are partitioned into
sets of size at most t , such partitions determine the roles
to assign to the user. Notice that, if we assume that more
than one constraint must be satisfied simultaneously, then
the problem may not have feasible solutions. For instance,
this can happen if we consider both the PUCC and RUCC
constraints. Indeed, assume that |AssignedPrmsR(r)| ≤ 2,
|AssignedRolesU(u)| ≤ 3, and there is a user u such that
|AssignedPrmsU(u)| = 7, then it is immediate to see that
both constraints cannot be satisfied.

The decisional version of the previous problems, referred
to as PUCC, RUCC, PDCC, and UDCC, respectively, can be
defined as follows.
Problem 3: Given a set of users U , a set of permissions

P , a user-permission assignment, UPA, and two positive
integers t and k , with t > 1 and k < min{|U |, |P|}, are
there a set of roles R, a user-to-role assignment UA, and
a role-to-permission assignment PA such that |R| ≤ k ,
UPA = UA⊗ PA, and:

PUCC: |AssignedPrmsR(r)| ≤ t , for any r ∈ R?
PDCC: |AssignedRolesP(p)| ≤ t , for any p ∈ P?
UDCC: |AssignedUsers(r)| ≤ t , for any r ∈ R?
RUCC: |AssignedRolesU(u)| ≤ t , for any u ∈ U?

The optimization versions of the previous Cardinality
Constraint Role Mining problems can be defined as follows.
Problem 4: Given a set of users U , a set of permissions P ,

a user-permission assignment UPA, and a positive integer
t > 1, what is the smallest integer k for which there are
a set of roles R, a user-to-role assignment UA, and a role-
to-permission assignment PA such that |R| = k , UPA =
UA⊗ PA, and:

PUCC Opt: |AssignedPrmsR(r)| ≤ t , for any r ∈ R?
PDCC Opt: |AssignedRolesP(p)| ≤ t , for any p ∈ P?
UDCC Opt: |AssignedUsers(r)| ≤ t , for any r ∈ R?
RUCC Opt: |AssignedRolesU(u)| ≤ t , for any u ∈ U?

A. CONSTRAINED RBAC COMPUTATIONAL COMPLEXITY
In [2] it was proved that PUCC is NP-complete showing that
PUCC (i.e., Problem 1) can be reduced to it. Using similar
arguments, we can show that all the constrained role mining
problems we have defined can be proved to be NP-complete.
Moreover, using the same approach as in Theorem 1, we can
prove that all the constrained role mining problems are also

NP-hard. Finally, the non-approximability result derives from
Theorem 2 and from the reduction of Role Mining to all the
constrained role mining problems. Therefore, the following
theorems hold:
Theorem 3: PUCC, PDCC, UDCC, and RUCC are

NP-complete.
Theorem 4: PUCC Optimization, PDCC Optimization,

UDCC Optimization, and RUCC Optimization are NP-hard.
Theorem 5: PUCC Optimization, PDCC Optimization,

UDCC Optimization, and RUCC Optimization cannot be
approximated within any constant factor in polynomial time
unless P=NP.

Notice that in [14] RUCC is referred to as RUP and
the authors, using a technique very similar to the one used
in [2], also proved that RUCC (i.e., RUP) is NP-complete.
Also in [14] the authors analysed PDCC’s computational
complexity and in the same way they proved that PDCC is
NP-complete.

IV. HEURISTICS
In this section, we present the heuristics we have developed
for all the versions of the constrained role mining problems
described in Section II-B. We propose a unified framework
for solving the role mining problems with different car-
dinality constraints. We start by describing the heuristic,
referred to as RM, for the classical role mining problem (i.e.,
without considering any constraint). Then, we show how to
adapt the RM heuristic to cope with the different types of
constraints.

A. RM HEURISTIC
All the heuristics we propose derive from RM reported
below, by properly adapting some procedures RM is based
on (i.e., pickRole, selectUsers, and updateUC).
Notice that the heuristic RM is an amended version of
the SMAR heuristic in [1]. RM takes in input the n× m
user-to-permission assignment matrix UPA and outputs a
complete candidate role-set represented by the pair of
matrices (UA,PA) satisfying UPA = UA ⊗ PA. We denote
with [`] the set of positive integers up to ` included (i.e.,
[`] = {1, 2, . . . , `}).

ALGORITHM 1 RM
input : An n× m user-to-permission assignment matrix UPA
output: A decomposition (UA,PA) of UPA

1 UC← [n] // Set of uncovered users
2 k ← 0 // Size of the current role-set
3 while UC 6= ∅ do
4 (candidateRole, u)← pickRole(UPA,UC)
5 selU ← selectUsers(UPA, candidateRole,UC)
6 k ← k + 1 // Add new role to UA and PA
7 foreach i in selU do UA[i][k]← 1
8 foreach i in candidateRole do PA[k][i]← 1
9 UC← updateUC(UPA,UA,PA, selU ,UC)
10 end
11 return (UA,PA)

The set UC denotes the uncovered users, i.e. the users
having permissions not covered by the roles in the candidate
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role-set represented by the pair of matrices UA and PA.
At the beginning, UC includes the whole set U , where users
{u1, . . . , un} are represented by their respective indices. The
procedure pickRole returns a role1 candidateRole to be
added to the candidate role-set along with the user (i.e.,
the row’s index u of the UPA matrix) that determined such a
role, while the procedure selectUsers returns all uncov-
ered users that can be assigned to such a role (line 5 of RM).
Notice that, the index u returned by procedure pickRole is
not used at all in RM, but it will be useful for the heuristics in
the constrained scenario. In lines 7-8, the matrices UA and PA
are updated to reflect the fact that a new role has been added
to the candidate role-set. Finally, in line 9, the procedure
updateUC checks whether all permissions of some users
in selU have been covered. In this case, the set UC of
uncovered users is updated by removing the recently covered
users.

More in detail, the procedurepickRole selects an uncov-
ered user having the least number of assigned permissions,
that is, it chooses, from UPA, a row whose index is in UC
having the minimum amount of entries equal to one. Such
a row represents a role to be added to the candidate role-
set. In case more than one row in UPA has the minimum
number of entries, say mR, equal to one, pickRole returns
the role represented by the row having a lower index in
UPA. This choice is not a limitation at all, as during the
subsequent iterations of the while statement, all rows of
weight mR will be eventually selected. Notice that the
procedure pickRole could have returned the whole set
of mR-sized roles without affecting the final results (the
procedure selectUsers should have changed as well),
but in this way we have a framework that can be easily
adapted to handle the more general case of constrained role
mining.

The procedure selectUsers, on input the user-
to-permission association (i.e., the matrix UPA), the set
candidateRole representing the new role to be added to
the candidate role-set, and the set of uncovered users UC,
returns the set of uncovered users, the role represented by
candidateRole can be assigned to (i.e., the set of users pos-
sessing all the permissions represented by candidateRole). In
other words, the procedure selectUsers adds to the set
candidateRole all indices i ∈ UC such that candidateRole ⊆
{j : UPA[i][j] = 1}. In the following the procedure
selectUsers will be adapted to handle constraints during
the role mining process.

Finally, the procedure updateUC checks whether some
users the new role has been assigned to (i.e., the users
identified by selU ) have all permissions covered. Such a
procedure, for each i ∈ selU , checks whether UPA[i][j] is
equal to

∨k
h=1(UA[i][h]∧PA[h][j]), for all permissions pj ∈ P

and in this case it removes i from UC.

1To be more precise, the procedure pickRole returns the set of indices
representing the permissions belonging to the candidate role r . Hence, {pj |
j ∈ candidateRole} corresponds to AssignedPrmsR(r).

B. PUCC HEURISTICS
In this section, we consider the scenario presented in
Section III, where a restriction on the number of permis-
sions included in each role is imposed (i.e., we consider
the Permission-Usage Cardinality Constraint Role Mining
problem). Since we proved that finding an optimal solution
to such a problem is NP-hard, we present some heuristics to
mine, from a given initial configuration ρ = 〈U ,P,UPA〉,
an RBAC state γ = 〈R,UA,PA〉, where the size of each
role is not larger than a given threshold, say t . The first
heuristic we present is referred to as CRM−PUCCRand was
firstly proposed in [2] under the name t-SMAR. We describe
its modified version below to fit our unified framework (i.e.,
the RM heuristic). The modification affects the way UPA’s
rows with minimum weight (i.e., users possessing the least
number of permissions) are selected by pickRole.

ALGORITHM 2 pickRolePUCC
input : The n× m matrix UPA, its decomposition (UA,PA),

the set UC of uncovered users, and the threshold t
output: A new role candidateRole and a user u owning it

1 mnp←∞, u← 0, candidateRole← ∅
2 k ← number of rows in PA // Number of roles
3 foreach i in UC do
4 if |{j : UPA[i][j] = 1}| < mnp then
5 mnp← |{j : UPA[i][j] = 1}|
6 u← i
7 end
8 end
9 uncPerms← {j ∈ [m] : UPA[u][j] = 1 and∨k

h=1(UA[u][h] ∧ PA[h][j]) = 0}
10 foreach j in uncPerms do
11 candidateRole← candidateRole ∪ {j}
12 if |candidateRole| = t then break
13 end
14 return (candidateRole, u)

In [2], when more than one row in UPA has the minimum
weight, a random row is picked, while, our heuristic selects
the row having the smallest index. This strategy speeds up
a bit the heuristic running time, while the quality of the
solution is not degraded. Another way of selecting a row has
also been proposed in [2], where the designed row is the
one having the least number of permissions not covered by
the roles already selected (i.e., the ones described by PA).
In the case of unconstrained role mining, this does not affect
the returned candidate role-set. In the case of constrained
role mining (PUCC scenario), there are very few differences
between the results obtained by selecting roles from the
whole permissions associated with users or just from the
uncovered ones. Therefore, we decided not to implement this
strategy. We will exploit this strategy in Section IV-C when
analyzing the PDCC scenario. In such a case, we will show
that adding to the candidate role only uncovered permissions
will reduce the size of the final candidate role-set.

The differences between CRM−PUCCR and RM are con-
centrated on how one selects a role to be added to the
candidate role-set. In CRM−PUCCR, roles are determined by
the procedure pickRolePUCC previously described. Such
a procedure, as regards the corresponding one described
in Section IV, takes as input also the matrices UA and
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PA computed so far and the parameter t representing the
maximum number of permissions that any role can have and
returns a role containing at most t permissions.
It is easy to see that heuristics CRM−PUCCR correctly

returns a complete role set as it follows the same pattern
as RM described in Section IV. We have only to show that
pickRolePUCC produces each time a new candidate role
containining at maximum t permissions. The procedure first
finds an uncovered user, identified by the row’s index u,
having the least number of assigned permissions (lines 3-8).
Then, in line 9, it computes the set of uncovered permissions
such a user possesses. Indeed, if such a user possesses per-
mission pj (i.e.,UPA[u][j] = 1), butUA[u][h] ∧ PA[h][j] = 0,
for each role rh with h ∈ [k], then it is immediate to verify
that permission pj has not been covered yet. More in detail,
if UA[u][h] ∧ PA[h][j] = 0, then either permission pj is
assigned to role rh (i.e, PA[h][j] = 1) and role rh has not
been assigned to the selected user (i.e., UA[u][h] = 0), or role
rh does not contain permission pj (i.e, PA[h][j] = 0) and
the selected user has role rh (i.e, UA[u][h] = 1), or role rh
does not contain permission pj (i.e, PA[h][j] = 0) and role
rh has not been assigned to u (i.e., UA[u][h] = 0). In any
of the previous cases we have that pj is not covered by the
roles selected so far (i.e., PA) and the current user-to-role
assignment (i.e., UA). Finally (see lines 10-13), procedure
pickRolePUCC selects at most t uncovered permissions
possessed by u and assigns them to the candidate role
represented by candidateRole.
Notice, that in lines 10-13, we decided to select the

first up to t permissions, but any strategy could be used.
We could have chosen any random t permissions or any up
to t permissions belonging to the greatest number of users.
We experimentally observed that a random choice does not
improve the obtained solution. Indeed, the solutions we get
have quite similar characteristics (i.e., about the same role-set
size and similar Weighted Structural Complexity - to be
defined later). Moreover, using the ’’best’’ t permissions can
cover a larger part ofUPA, but determining such t permissions
could take a prohibitively large amount of time.

Another way to mine a role is to apply the method
described by pickRolePUCC to UPA’s columns by suitably
adapting it to meet the cardinality constraint. This approach
is similar to run the heuristic on the UPA’s transpose looking
for a UPA’s covering by a subset of its columns. The
idea is to select from UPA a column, say j-th column
that corresponds to permission pj, having the least number
of ones. Then, we consider all users, say {ui1 , . . . , uig},
possessing permission pj. Finally, the candidate role will
include the first up to t permissions that belong to all
users {ui1 , . . . , uig}. We will refer to such a heuristic by
CRM−PUCCC (the subscript C stands for column), and we
describe the modified pickRolePUCC procedure below.
The procedure C-pickRolePUCC first selects a column

having the minimum number of entries equal to one (see
lines 2-12). That is, it selects the permission that has been
assigned to the minimum number of users. Notice that

ALGORITHM 3 C-pickRolePUCC
input : The n× m matrix UPA, the set UC of uncovered users,

and the threshold t
output: A new role candidateRole and a user u owning it

1 mnu←∞, column← 0, candidateRole← ∅
2 for j← 1 to m do
3 // Number of ones in column j
4 nu← |{i : UPA[i][j] = 1}|
5 // Number of uncov. users possessing pj
6 uu← |{i : UPA[i][j] = 1 and i ∈ UC}|
7 if nu < mnu and uu > 0 then
8 mnu← nu
9 // Select uncovered permission pj
10 column← j
11 end
12 end
13 assignedUsers← {i : UPA[i][column] = 1}
14 u← min(assignedUSers)
15 for j← 1 to m do
16 if assignedUsers ⊆ {i : UPA[i][j] = 1} and

|candidateRole| < t then
17 candidateRole← candidateRole ∪ {j}
18 end
19 end
20 return (candidateRole, u)

the selected column, say column j, must include at least
an uncovered user. This condition is why we compute,
in line 6, the number uu of uncovered users. Such value
must be positive to consider column j; if all users possessing
permission pj have already been covered, it makes no sense
to consider pj. We could speed up the code in lines 2-12
by keeping track of uncovered columns as done for users
by means of UC. In this way, we can avoid computing uu
in line 6. We decided not to improve the running time of
C-pickRolePUCC to keep the code simpler and to avoid
keeping track in other procedures of unnecessary variables
(i.e., the ones related to the uncovered columns). Once
the minimum weight column has been selected, procedure
C-pickRolePUCC computes the set of users possessing
the permission associated to such a column (see line 13),
then it looks for other permissions assigned to the same set
of users (lines 15-19) and add them to candidateRole (see
line 18). At most t permissions are added to candidateRole
(see line 16). To keep all pickRoles procedures uniform,
we have to return a user the candidateRole is assigned to.
Hence, in line 14 we assign u the index with minimum value.

Notice that in line 13 we could select the users possessing
permission pj as assignedUsers ← {i ∈ UC :

UPA[i][column] = 1} (i.e., we do not add users that have pre-
viously been covered). However, some experiments show that
such a choice does not change much the solution. For the sake
of space, we omit theCRM−PUCCC’s proof of correctness. It is
easy to see that also procedure C-pickRolePUCC always
returns a candidate role including at most t permissions.

1) RELATED WORKS
Constraints on the number of permissions included in each
role have been one of the first classes of constraints con-
sidered in literature [18]. The algorithm thereby presented,
denoted as Constrained RoleMiner (CRM), is derived from
the ORCA approach [32] and is based on a clustering
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technique where clusters are formed based on users’ per-
missions. Users who have the same set of permissions are
placed in the same cluster. A role is created from a cluster that
satisfies the cardinality constraint and has the highest number
of associated users. The permissions associated with the
selected role are then removed from the remaining clusters,
which are also reordered according to the number of included
uncovered permissions. Then, the procedure is recursively
invoked.

C. PDCC HEURISTICS
In this section, we consider the scenario presented in
Section III, where it was assumed that there is an upper
bound t on the number of roles to which any permission
can be assigned. We propose two heuristics referred to as
CRM−PDCC1 and CRM−PDCC2, respectively. Our heuristics
derive from RM by modifying the procedure pickRole.
We consider two versions of such a procedure, the first
one selects, as for the previous heuristics, the role from the
matrix UPA (i.e., for each user ui it considers all permissions
assigned to ui); while, the second one keeps track of the
permissions assigned to ui that have not been covered yet
(referred to as uncovered permissions) and selects the role by
considering the uncovered permissions. Such procedures are
referred to as pickRole-PDCC1 and pickRole-PDCC2
and they are described below.

ALGORITHM 4 pickRole-PDCC1
input : The matrix UPA, its decomposition (UA,PA),

the uncovered users UC, the threshold t , and NR
denoting the number of roles a permission has been
assigned to

output: The new candidateRole and user u possessing it
1 mnp←∞, candidateRole← ∅
2 k ← number of rows in PA // Number of roles
3 foreach i in UC do // Select minimum weight row
4 if |{j : UPA[i][j] = 1}| < mnp then
5 mnp← |{j : UPA[i][j] = 1}|
6 u← i
7 end
8 end
9 uncPerms← {j : UPA[u][j] = 1 and∨k

h=1(UA[u][h] ∧ PA[h][j]) = 0}
10 // Form a candidate role
11 foreach j in uncPerms do
12 if NR[j] < t − 1 then
13 candidateRole← candidateRole ∪ {j}
14 uncPerms← uncPerms\{j}
15 NR[j]← NR[j]+ 1
16 end
17 end
18 // NR[j] ≥ t − 1 for all j ∈ uncPerms
19 if candidateRole = ∅ then
20 j′ ←R uncPerms // A random permission
21 candateRole← {j′}
22 NR[j]← NR[j]+ 1
23 end
24 return (candidateRole, u)

Both procedures, with respect to the corresponding ones
described in Section IV, take as inputs also the matrices UA
and PA, the parameter t representing the maximum number
of roles a permission can be assigned to, and the vector NR
denoting the number of roles a permission has been assigned

to (e.g., NR[j] = d means that permission pj has been
assigned to d roles). Initially, NR[j] = 0 for all j ∈ [m].
The procedure pickRole-PDCC2 is almost identical to

pickRole-PDCC1. Indeed, they differ in line 4, where
pickRole-PDCC1 selects the minimum weight row, while,
pickRole-PDCC2 selects the row having the minimum
number of uncovered permissions. More precisely, the pro-
cedure pickRole-PDCC2 is obtained by substituting line 4
of pickRole-PDCC1,

if |{j : UPA[i][j] = 1}| < mnp then

with
unc = {j : UPA[i][j] = 1 and∨k

h=1(UA[i][h] ∧ PA[h][j]) = 0}

if |unc| < mnp then.

It is immediate to see that our heuristics CRM−PDCC1 and
CRM−PDCC2 return a complete role-set as they both follow the
same pattern as the procedure RM. Indeed, heuristics’ correct-
ness is based on the fact that procedures pickRole-PDCC1
and pickRole-PDCC2 never assign a permission to
more than t roles. Let us analyze pickRole-PDCC1
(the same holds for pickRole-PDCC2). The procedure
pickRole-PDCC1 in lines 3-8 selects an uncovered user
having the least number of assigned permissions (such a
user is represented by the variable u pointing to a UPA’s
row). These steps are identical to the ones of algorithms
pickRole and pickRolePUCC in Sections IV and IV-B,
respectively. The variable uncPerms, see line 9, represents the
permissions possessed by user u that do not appear in any role
already assigned to u (i.e., uncPerms represents the uncovered
permissions of user u). To satisfy the PDCC constraint,
in lines 11-17, we select from uncPerms only the permissions
that have been already assigned to at most t − 2 roles (see
line 12). In line 13, we add such permissions to candidateRole
and increment by one the number of roles such permissions
have been assigned to (i.e., in line 15, for j ∈ candidateRole,
we increment NR[j] by one). In this way, we ensure that
all permissions represented by candidateRole have been
assigned to atmost t−1 roles, satisfying in this way the PDCC
constraint. If all permissions in uncPerms have been already
assigned to at least t − 1 roles (equivalently, see line 19,
candidateRole is empty), then we form a role consisting
of a unique permission randomly chosen in uncPerms and
increment by one the number of roles it has been assigned
to (see lines 19-23). Notice that any permission will never be
assigned by pickRole-PDCC1 to more than t roles; indeed
permission pj is assigned to a role either in line 13 or in
line 21. In the former case, pj is assigned to at most t−1 roles
as we assign it to a role only if NR[j] < t−1. In the latter case,
we create a role, consisting only of permission pj, that will be
assigned to all users possessing pj. This implies that pj will be
covered in UPA and it will never appear in any subsequently
discovered uncPerms. In other words, a permission can be
assigned to a t-th role only in lines 19-23. Once this is

VOLUME 8, 2020 140503



C. Blundo et al.: Managing Constraints in RBAC

done, such a permission will not influence subsequent role
formation.

1) RELATED WORKS
Harika et al. in [14] proposed a heuristic named Enforcing
Role Usage Constraint and based on a bipartite graph
representation of the user-permission matrix, extending the
approach described in [9] (we will refer to such a heuristic as
ERUC). The basic RMP is thereby mapped to the problem of
finding aminimum biclique cover of the edges of the bipartite
graph having as vertices the elements in set U , representing
users, and the elements of the set P, representing permissions.
An edge is then a pair (u, p), which represents the fact that
user u ∈ U has permission p ∈ P as reported in the original
UPA matrix. The heuristic selects only permission vertices
covering the highest number of possible uncovered incident
edges, respecting at each iteration the permission-distribution
cardinality constraint.

Li et al. [21] also proposed a heuristic considering
PDCC constraints. Their approach is based on the graph
optimization theory described by Zhang et al. in [36]. It works
by iteratively updating the role state after that the role update
algorithm has selected a role pair. Graph optimization is
used to define the role hierarchy, and weighted structural
complexity drives the selection of the roles still verifying that
the updated state satisfies the given constraints.

D. UDCC HEURISTICS
In this section, we consider the scenario presented in
Section III, where a restriction on the number of users
assigned to any given role was imposed. More precisely,
it was assumed that there is an upper bound t on the
number of users that can possess any given role. We propose
two heuristics referred to as CRM−UDCC1 and CRM−UDCC2,
respectively. The differences with RM are concentrated
on how they select a candidateRole and on how they
compute the set of uncovered users to whom to assign
candidateRole. Both heuristics select such users by invoking
the algorithm selectUsersUDCC. It takes as input the
parameters t (the maximum number of users that a role can
be assigned to) and u returned, in the case of CRM−UDCC1,
by pickRole (see Section IV) and, in the case of
CRM−UDCC2, by pickRole-UDCC2 described below.
The procedure selectUsersUDCC does not differ much

from the corresponding one for the uncostrained role mining.
The main difference is that it adds the user u, returned
by either pickRole or pickRole-UDCC2, to the set
candidateRole along with at most other t − 1 indices i ∈
UC\{u} such that candidateRole ⊆ {j : UPA[i][j] = 1}.

The procedure pickRole-UDCC2 differs from algorithm
pickRole in Section IV as it considers only uncovered
permissions (i.e., it selects roles by analyzing permissions
that have not been covered yet). Indeed, the set defined
in line 4 contains all the permissions assigned to a given
user that have not been covered yet by the candidate
role-set represented by UA and PA (for the explanation that

ALGORITHM 5 pickRole-UDCC2
input : The n× m matrix UPA, its decomposition (UA,PA),

and the set UC of uncovered users
output: The new role candidateRole and a user u possessing it

1 u← 0, candidateRole←,mnp←∞
2 k ← number of rows in PA // Number of roles
3 foreach i in UC do
4 uncPerms← {j : UPA[i][j] =

1 and
∨k
h=1(UA[i][h] ∧ PA[h][j]) = 0}

5 if |uncPerms| < mpn then
6 candidateRole← uncPerms
7 mnp← |candidateRole|
8 u← i
9 end
10 end
11 return (candidateRole, u)

such sets comprise only uncovered permissions, we refer
to the arguments following the description of algorithm
pickRolePUCC in Section IV-B).

It is immediate to see that both heuristics CRM−UDCC1
and CRM−UDCC2 return a complete role-set as they fol-
low the same pattern as heuristic RM and procedure
selectUsersUDCC satisfies the UDCC constraint. Indeed,
procedure selectUsersUDCC does not differ much from
the corresponding one for the uncostrained role mining.
The main difference is that selectUsersUDCC adds u,
returned by pickRole and by pickRole-UDCC, to the
set candidateRole along with at most other t − 1 indices
i ∈ UC\{u} such that candidateRole ⊆ {j : UPA[i][j] = 1}.
Then the candidate role is assigned to at most t users. �

1) RELATED WORKS
In [15] three heuristics for the UDCC case have been
presented, referred to as Algorithm 1, 2, and 3, respectively.
All heuristics are based on the bipartite graph representation
of the UPA matrix given in [9], where the role minimization
problem is mapped to the problem of finding minimum
biclique cover of the edges of the graph. The greedy algorithm
thereby described has been modified in three different
versions to limit the number of users assigned to each
resulting role. The strategy to identify biclique in Algorithm
1 is to start selecting the vertex representing the user with
a minimum amount of uncovered incident edges and assign
him all the included permissions. Successively all the users
with the same set of permissions are retrieved and ordered
according to the minimum number of uncovered incident
edges. A corresponding number of users is selected such
that the constraint is satisfied. In Algorithm 2, the strategy
starts selecting the vertex with the minimum number of
uncovered incident edges, that can represent either a user
or a permission. In the first case, when the selected vertex
represents a user, then the users having the same permissions
are assigned to that role until the maximum number allowed
by the constraint is reached. If the selected vertex is a
permission, similarly, the role is assigned to some users,
not exceeding the limit specified by constraint. Finally, for
Algorithm 3, the vertex representing the permission with the
minimum number of uncovered incident edges is selected,
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and all the users with that permission are chosen. If the
number of users, say n, is above the constraint limit t , then all
the combinations of t users out of n users are retrieved. For
each combination, the permissions assigned to the t users are
collected. The selected combination is the one that maximizes
the number of covered permissions. Notice that the last
strategy has an exponential running time. For this reason, for
our comparison, we implemented Algorithm 1 and Algorithm
2, which are referred to as BC1 and BC2, respectively.

E. RUCC HEURISTICS
In this section, we consider the scenario presented in
Section III, where an upper bound t on the number of roles
assigned to each user is assumed. Our heuristics, referred to as
CRM−RUCCR (roles are selected by considering UPA’s rows)
and CRM−RUCCC (roles are selected by considering UPA’s
columns), are quite similar to RM. To select a candidate role
we use pickRole in CRM−RUCCR and C-pickRoleRUCC
in CRM−RUCCC. Notice that, C-pickRoleRUCC is obtained
from C-pickRolePUCC by removing from line 16 the test
|candidateRole| < t (i.e., we set no limit on the role size).
In our heuristics, we also change the way we compute the set
of uncovered users the role returned by either pickRole
or C-pickRoleRUCC is assigned to. Such changes are
described in the following selectUsersRUCC procedure.

ALGORITHM 6 selectUsersRUCC
input : The matrix UPA, the set UC of uncovered users,

the role candidateRole, the user u to assign
candidateRole, and the threshold t

output: The set of users selectedUsers possessing the role
candidateRole

1 selectedUsers← {u}
2 foreach i in UC and i 6= u do
3 numr ← |{j : UA[i][j] = 1}|
4 r ← {j : UPA[i][j] = 1}
5 if candidateRole ⊆ r and numr < t − 1 then

selectedUsers← selectedUsers ∪ {i}
6 end
7 return selectedUsers

It is easy to see that heuristics CRM−RUCCR and
CRM−RUCCC return a complete role set as they follow
the same pattern as RM described in Section IV. We
have only to show that selectUsersRUCC assigns no
more than t roles to any user in U (i.e., any user in
U satisfies the role-usage constraint). Indeed, the proce-
dure selectUsersRUCC determines which users the role
candidateRole can be assigned to. In particular, it will be
assigned to user u (see line 1) and to any other user possessing
all permissions included in candidateRole and having less
than t − 1 other roles (see lines 2-6). Notice that a user
will be assigned the role represented by candidateRole only
if she/he (i.e., the index representig her/him) belongs to
selectedUsers. An index is added to such a set either in
line 1 or in line 5. In the latter case, the user that will
be assigned candidateRole already possesses at most t −
2 roles. This implies that, when selectUsersRUCC is
invoked, any user in UC can possess at most t − 1 roles.

Hence, in line 1, by adding u to selectedUsers it will assign
to u at most t roles, being candidateRole the last one as
all uncovered permissions possessed by u will be covered
by candidateRole. Indeed, candidateRole and u are returned
by pickRole (C-pickRoleRUCC) and, accordingly to
them, the permissions represented by candidateRole are all
the permissions possessed by the user represented by u.
Therefore, procedure selectUsersRUCC guarantees that to
any user are assigned at most t − 1 roles unless the t-th role
covers all his/her permissions.

1) RELATED WORKS
In [16], two approaches considering role usage cardinality
constraints have been proposed, one denoted as Role
Priority-based Approach (RPA) and the second called
Coverage of Permissions based Approach (CPA). In both
heuristics, a role can be assigned to a user if the permissions it
includes are a subset of the permissions required by that user,
and those permissions have not already been assigned using
another previously defined role. The starting set of candidate
roles is the one generated according to the optimal boolean
matrix decomposition strategy proposed in [22]. In RPA,
roles are prioritized according to the number of included
permissions. In CPA, roles are selected by considering the
role with the largest number of permissions that are not yet
assigned to that user by any other role. Each time, before
the selection, the satisfaction of the role-usage cardinality
constraint is checked. The reported experimental results show
that RPA behaves better than CPA.

Similarly to what done for the permission-distribution
constraint case, in [14], a heuristic named Enforcing Role
Usage Constraint (EPDC) was proposed, based on the same
construction of the bipartite graph representing the UPA
matrix. The heuristic selects user vertices covering the great-
est number of possible uncovered incident edges, respecting
at each iteration the role-usage cardinality constraint.

V. EXPERIMENTAL EVALUATION
In this section, we present the experimental evaluation of
our heuristics by comparing the obtained results with the
ones obtained using state of the art techniques. The goal is
to validate our proposals, by showing that our heuristics’
performances considering both the execution speed and the
quality of the returned role set, are almost equivalent or
improve over the state of the art heuristics. All heuristics
have been implemented in Java and tested on a MacBook Pro
running OS X 10.10 on a 2.7 GHz Intel Core i5 CPU having
8 GB 1867 MHz DDR3 RAM. In the evaluation, we use nine
real-world datasets that have beenwidely used in literature for
analyzing the performances of various role mining heuristics
(see, for instance, [9], [14], [16], [18], [27]). Such real-world
datasets, once available from HP Labs, were first used in [9];
their parameters are summarized in Table 1. The datasets
Americas small and Americas large have been obtained
from Cisco firewalls granting access to the HP network to
authenticated users (users’ access depends on their profiles).
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TABLE 1. Characteristics of the real-world datasets considered in this
paper.

Similar datasets are Apj and Emea. The Healthcare dataset
was obtained from the US Veteran’s Administration; the
Domino data was from a Lotus Domino server; Customer
is based on the access control graph obtained from the
IT department of an HP customer. Finally, the Firewall 1
and Firewall 2 datasets are results of running an analysis
algorithm on Checkpoint firewalls.

More in details, for each dataset Table 1 specifies the
number of users |U |, the number of permissions |P|,
the number of user-to-permission assignments |UPA|, the
minimum and the maximum number of permissions assigned
to a user (respectively, min#P and max#P), and the minimum
and the maximum number of users that have the same
permission (respectively, min#U and max#U).2

To compare the heuristics on the real-world datasets of
Table 1, we take into account the number of roles generated
by the heuristics, the execution time3 of the heuristics, and
the Weighted Structural Complexity (WSC). The Weighted
Structural Complexity measures the size of a Core RBAC
state γ = 〈R,UA,PA〉 that is consistent with a given
configuration ρ = 〈U ,P,UPA〉 of a Core RBAC instance.
According to [19], [26] the Weighted Structural Complexity
can be defined as follows.
Definition 1: Given W = 〈wr ,wu,wp,wh,wd 〉, where

wr ,wu,wp,wh,wd ∈ Q+ ∪ {∞}, the Weighted Structural
Complexity (WSC) of an RBAC state γ , denoted by
wsc(γ,W ), is computed as follow.

wsc(γ,W ) = wr · |R| + wu · |UA| + wp · |PA| + (2)

wh · |treduce(RH)| + wd · |DUPA| (3)

The relationRH ⊆ R×R, called inheritance relation and
denoted by�, was introduced in [31] in defining Hierarchical
RBAC (or RBAC 1). One has that r1 � r2 (i.e, role r1 inherits
role r2) if and only if all permissions assigned to r2 are also
assigned to r1 and all users assigned to r1 are also assigned to
r2. The transitive reduction treduce(RH) of the role hierarchy
relation RH is the minimum relation having the same
transitive closure as RH. For instance, {(r1, r2), (r2, r3)}
is the transitive reduction of {(r1, r2), (r2, r3), (r1, r3)}. The
relationDUPA ⊆ U×P represents a direct user-permission

2Formally, min#P is defined as min{|AssignedPrmsU(u)| : u ∈ U},
we can define max#P, min#U, and max#U analogously.

3We point out that the reported execution times do not correspond to
real-world times, but we use those data to compare CPU usage among
different heuristics as it is irrespective of background process that might slow
down the execution.

assignment relation useful when considering incomplete
role-set where there are uncovered permissions in the matrix
UPA. Notice thatDUPA is not considered in standard RBAC
models [30]. Still, this approach is more general and can
handle the exceptional situation where a role cannot explain
an assignment of a permission to a user (or, in other words,
it does not make sense to introduce for a user a role having
single permission).

Given a weight vector W = 〈wr ,wu,wp,wh,wd 〉, one
would like to find an RBAC state having the smallest
Weighted Structural Complexity. Hence, different weight
vectors encode different mining objectives and minimization
goals. For example, by setting W = 〈1, 0, 0,∞,∞〉
one wants to minimize the number of role forbidding
role hierarchy and direct user-permission assignment; while
setting W = 〈0, 1, 1,∞,∞〉 one wants to minimize the
number of assignments user-roles and role-permissions (this
problem was referred to as min-edge role mining in [22]).
In our case we set W = 〈1, 1, 1, 0,∞〉, because we want
to compare heuristics that generate RBAC states exhibiting a
complete role-set (i.e., we do not allow direct user-permission
assignment) and we stick to the Core RBAC model, where
hierarchy relations do not come into play (since our heuristics
and the ones we compare with, do not generate roles
hierarchies).

To set-up the experiments, for each scenario, we have to
fix the constraint’s values. In particular, for each dataset and
each heuristic, we run three tests changing the constraint’s
value. To choose the values used in our tests, we consider
the characteristics of the optimal solutions (Table 2) provided
by [9]. Such solutions, except the one for the Customer
dataset, are available from [9]’s authors upon request.

In Table 2, column |R| specifies the optimal number

of roles in an unconstrained setting, the columns
min
ppr and

max
ppr represent, respectively, the minimum and the maximum
number of permissions assigned to roles in the optimal
candidate role-set. The constraint’s values for the PUCC
scenario will be set to the 20%, 50%, and 100% of
max
ppr . Analogously, columns

min
rpu and

max
rpu represent the the

minimum and the maximum number of roles assigned to
users (to be used in the RUCC scenario). Similarly, in the
PDDC scenario, the constraint’s value will be limited by

the values in the columns
min
rpp and

max
rpp corresponding,

respectively, to the minimum and the maximum number
of roles assigned to permissions. Finally, for the UDCC

scenario, the columns
min
upr and

max
upr denote the range of the

number of users that are assigned to each role in the optimal
solution. Since, for the Customer dataset an optimal solution
is not available, as upper bounds we use the values max#P
and max#U given in Table 1.
In the following, using the datasets summarized in Table 1

and the upper bounds in Table 2, we compare the per-
formances of the heuristics described Section IV for the
various constrained role mining problems. We evaluated
separately the heuristics dividing them according to the
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TABLE 2. Characteristics of optimal RBAC states (in red not optimal solutions).

TABLE 3. Heuristics considered.

TABLE 4. PUCC framework.

type of constraint (e.g., PUCC, RUCC, PDCC, and UDCC).
In each table reporting heuristics’ performances, the best
results are highlighted in boldface. Table 3 summarizes the
comparisons wemade, where each heuristic takes as input the
user-to-permission assignment matrix UPA, and constraints
are satisfied during the role mining process.

Notice that, once a candidate role has been selected, all
our heuristics assign the selected role to all users (with
some limitations due the imposed constraint) possessing the
permissions associated with the selected role. This assign-
ment could be unnecessary as it could attribute to some user

more roles than needed and, at the same time, increase the
value of |UA| (thus, consequently, it increases the Weighted
Structural Complexity of the computed Core RBAC state).
Hence, to avoid such unnecessary assignment, instead of
modifying our heuristics, we devised a simple technique to
reduce the value of |UA|. We define a post-processing phase,
as done in previous works [4], where the RBAC state returned
by our heuristics is modified by deleting redundant roles.
More precisely, if the roles r and r ′ are assigned to a user
u ∈ U and AssignedPrmsR(r

′) ⊂ AssignedPrmsR(r),
then we remove r ′ from u’s role list. The number of overall
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TABLE 5. PDCC framework.

generated roles is not affected, but |UA| might be lowered.
Although not optimized, the proposed technique is speedy
and takes on average few milliseconds to complete on the
RBAC states returned by our heuristics on the datasets listed
in Table 1. On average, the time required to reduce |UA| is
much lower than the time needed to mine a candidate role-set.
Hence, we do not report this algorithm’s running time in the
following sections when commenting on the experiments.

A. PUCC SCENARIO
For each dataset and each heuristic, we run three tests setting
the constraint’s value, respectively, to the 20%, 50%, and
100% of the maximum number of permissions assigned to
roles in the optimal solution (Table 2). We compare the best
solution provided by our heuristics with the one given by
CRM. From Table 4, one can see that, concerning the size of
the candidate role-set returned by the heuristics, in 11 tests
out 27, our best heuristic returns a smaller role-set than CRM.
For the Emea, Domino, and Firewall 1 datasets, the returned
role-set has an equal size, while in the remaining 13 tests CRM
returns a smaller role-set (notice that in 9 of such tests the
role-set sizes are less than 5% apart).

If we consider heuristics’ running time, we see that our
heuristics are much faster than CRM. In particular, for the
Customer and Apj datasets, CRM is about, respectively,
300 times and 70 times slower than our fastest heuristic.
Considering the WSC measure, it results that in 11 tests out
of 27, our best heuristic has a smaller Weighted Structural

Complexity than CRM, while in one experiment, the WSC is
the same. Overall, our heuristics perform better than CRM.

B. PDCC SCENARIO
In the following we compare, on the real-world datasets
summarized in Table 1, heuristic Enforce Permission Distri-
bution Constraint (for short, EPDC in this paper) described
in Section 4.2 of [14] and heuristics CRM−PDCC1 and
CRM−PDCC2 described in Section IV-C. According to Table 5,
it results that the three heuristics often returns a role-set
having the same cardinality. Still, our heuristics are faster and,
in general, produce a state having lower Weighted Structural
Complexity. More in detail, considering our best heuristic,
we have that in 18 tests out of 27 our heuristic and EPDC
return a role-set of identical size, in 8 tests our role-set is
smaller, while just in one test (second test for the Americas
large dataset) EPDC returns a negligible smaller role-set (i.e.,
1451 vs 1455 computed roles).

Our best heuristic is faster than EPDC in 23 tests out
27; for the remaining four tests, our best heuristic and
EPDC exhibit the same running time. Such a comparison
does not change much, even considering the slower heuristic
between CRM−PDCC1 and CRM−PDCC2. For the Apj dataset,
our best heuristic is about 20 times faster than EPDC. For the
Americas large dataset, EPDC is from 34 to 54 times slower
than both CRM−PDCC1 and CRM−PDCC2. Concerning the
WSC measure, EPDC generates states with lower Weighted
Structural Complexity than the best of our heuristics in two
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TABLE 6. UDCC framework.

tests only and, in one of them (i.e., the second test on the
Healthcare dataset), our WSC is just 2.5% bigger than the
one obtained running EPDC. Hence, we can conclude that,
in general, our proposed heuristics compute an RBAC state
with better parameters than the one attained executing state
of the art heuristics.

C. UDCC SCENARIO
In the following, we compare the performance of four
heuristics for the UDCC scenario, namely heuristics BC1
and BC2 described in Section 4 of [15] and our heuristics
CRM−UDCC1 and CRM−UDCC2 described in Section IV-D.
According to Table 4, considering the size of the computed
role-set, in 9 tests out of 27, the best solution provided by
heuristics BC1 and BC2 is smaller than the best solution
returned by CRM−UDCC1 and CRM−UDCC2. Our heuristics
are, in general, faster; indeed, they are in 11 tests quicker and
just in one a bit slower. In the remaining cases, the fastest of
both pairs of heuristics have the same running time.

Concerning the WSC, our best heuristic returns in 11 tests
a lower WSC value. In 8 tests out of 15, where either BC1
or BC2 returns smaller WSC values, the solution obtained
by running our best heuristic is less than 5% apart of these
WSC values (in five of such tests the differences are less
than 2%). For the Emea and Americas small datasets, our best

heuristic always performs better, or at least the same, than the
best between BC1 and BC2. Notice that, for the Emea dataset,
the maximum number of users assigned to each role in the
optimal solution is equal to 2. Hence, in the first two tests,
we considered the constraint value t equal to one, while in
the last test, we assumed t = 2.

D. RUCC SCENARIO
In the following we compare, on the real-world datasets
(see Table 1), heuristic Enforce Role Usage Constraint (for
short, ERUC in this paper) proposed in [14] (it corresponds
to Algorithm 3 in [14]) and heuristics CRM−RUCCR and
CRM−RUCCC described in Section IV-E. According to
Table 7, it results that our best heuristic is faster than ERUC in
22 tests out of 27, while in the remaining 5 test the heuristics
exhibit the same running time. In the last two experiments
for the datasets Americas large, Americas small, and Apj,
our best heuristic is from 10 to about 50 times faster than
ERUC. Concerning the role-set size, our best heuristic returns
a smaller role-set only in 3 tests out of 27 and in one case (i.e.,
last experiment for the Domino dataset) it returns a role-set
of the same size than ERUC. Anyway, in 11 tests out of 27,
the returned solution’s size is less than 10% apart from the
one computed by ERUC. The results are a bit more favorable
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TABLE 7. RUCC framework.

when considering the WSC measure. In this case, in 7 tests
out of 27, our best heuristic has a smaller WSC than ERUC.

VI. CONCLUSION
Constrained RBAC has been the object of several research
works, having the goal to define a resulting set of roles
directly usable for the organization of the structure under
examination. In this paper, we focused on cardinality
constraints, rigorously defining the theoretical aspects and
computational complexity of the associated role mining
problems, and providing a set of heuristics that is practically
applicable in different contexts. We also reported a complete
set of experiments obtained after the application of the
heuristics to benchmark datasets and comparisons with the
available results from previous literature. An open problem
is how to efficiently measure the distance of the resulting
configurations from the optimal constrained RBAC states,
that has been recently addressed in [8] for the case of
unconstrained RBAC. The extension of that approach to the
constrained RBAC scenario could offer another metric to
evaluate the quality of the proposed heuristics effectively.
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