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ABSTRACT Improving the predicted accuracy of wind power is beneficial to maintaining the secure
operation and dispatching of the power system. Therefore, a combined model consisting of the variational
mode decomposition(VMD), Convolutional Long short memory network(ConvLSTM) and error analysis
is conducted for short-term wind power forecasting. Firstly, the VMD algorithm decomposes the wind
power signal into an ensemble of components with different frequencies; A novel architecture embedding
the convolution operation into LSTM network is procured as the preliminary forecasting engine, which
is appropriate for extracting the spatial and temporal characteristics of each sub-series. Afterwards, all
the predicted sub-signals would be aggregated to obtain the preliminary forecasting results; For the sake
of further mining the unsteady features within the raw wind power series, LSTM modelling the trend of
error sequence of the preliminary forecasting result is adopted. Eventually, the final forecasting results is
obtained by integrating the forecasting error series and preliminary results. As a result, It can be easily
demonstrated that by comparing with the contrastive models, the proposed model achieves the highest
prediction performance for wind power series which is difficult to capture.

INDEX TERMS Wind power forecasting, variational mode decomposition, convolutional neural network,
long short term memory network, error analysis.

I. INTRODUCTION
With in keeping with the fact that wind energy is strong
intermittency, randomness and uncertainty, the large-scale
share of wind energy has made great challenges to the stable
operation of power system with an irreversible trend [1].
Wind power brings many more uncertainties than conven-
tional generation. Efficient and reliable wind power forecast-
ing becomes extremely important to optimize the operation
cost and improve the reliability of the power system with
increased wind penetration. Furthermore, accurate short-term
wind power forecasting improves the utilisation of wind
power, increases system reliability, reduces operating costs
and allows efficient load management strategies. Therefore,
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accurately wind power forecasting is the basis of designing
the optimal dispatching plan and efficient accommodation.

Based on the utilization of meteorological data and histor-
ical data, the forecasting models can be categorized into two
types: Physical model and Statistical model [2], [3].

Physical models resolve a complex scenario considering
the weather patterns to convert the predicted meteorological
parameters into wind power curve to make an extrapolation
of the trend of wind power series [4]. The numerical weather
prediction(NWP) [5] model as the core of physical models
has fully taken the complexity of the terrain and the resolution
of the selected domain into account. A novel architecture
integrating the fuzzy process and NWP model was proposed
to perform the short-term wind speed forecasting, which sig-
nificantly enhanced the forecasting precision [6]. However,
due to the complex features of the computing process and the
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atmospheric conditions, the applicability of Physical model
is strongly limited.

In comparison, statistical models builds the mathematical
functions to fit the mapping relationship between the histor-
ical data and output value. Autoregressive(AR) model [7],
Autoregressive moving average(ARMA) model [8] and
the autoregressive integrated moving average(ARIMA)
model [9] have presented improved performance on dispos-
ing the inference problem by studying the statistical laws of
wind power series. Besides, other methods like support vector
machine(SVR) [10], [11] and time series approach [12] have
been facilitated to perform wind power forecasting. With the
assumption of linearization, statistical models would generate
competitive predictions if the stationary condition is met.
Therefore, there is still some room to be used for promoting
due to the random and intermittent nature of the wind power
series.

As the new branch of the statistical models, the arti-
ficial intelligence algorithms have been applied to cap-
ture the volatility characteristics of the wind speed and
wind power series by mining the potential ability of mod-
eling the nonlinear features. The core component in the
artificial intelligence algorithms is artificial neural net-
work(ANN) [13], which is extensively utilized in time series
prediction domains. A novel methodology combining the
adaptive neuron-fuzzy inference system(ANFIS), radial basis
function neural network(RBFNN) and least squares support
vector machines(LSSVM) is applied for short-term wind
power forecasting [14]. An improved radial basis function
neural network and an error feedback scheme for daily
wind speed and wind power forecasting were employed
and evaluated by comparing with four other artificial neural
network-based forecasting models [15]. As we can see from
the results, under the premise of maintaining the computa-
tional efficiency, the proposedmodel led to higher forecasting
accuracy and stability compared with the benchmark mod-
els. Benefiting from data mining algorithm, the forecasting
performance of wind power had been promoted by deeply
searching the inner relation within it [16]. The recurrent neu-
ral network(RNN) integrating the bound estimation technol-
ogy is proposed to build a powerful non-parametric method
for deducing the wind speed signal [17]. It can be confirmed
that the neural network(NN)-based model can surpass the
physical and statistical models to a prominent degree refer-
ring to the forecasting performance. However, being prone to
falling into the local minimum and overfitting phenomenons,
ANN is in the failure of providing a stable predictor engine.

Motivated by the outperforming achievements in the field
of computer version and image processing [18], the deep
learning algorithms have been introduced to infer the time
series. Originating from the conventional artificial neural
network, deep learning algorithms overcome the drawbacks
of ANN by discovering the distributed features of the raw
data. Wang et al. [19] has proposed a methodology includ-
ing the deep belief network(DBN), wavelet transform(WT)
and spine quantile regression(QR) to learn the nonlinear

and non-stationary features. RNN constitutes a very pow-
erful model that can processes the dynamic sequences.
Qin et al. [20] employed a multi-task method by training
the convolution neural network(CNN) and a Long short-
memory network(LSTM) for the wind signal forecasting.
An innovative hybrid model including the VMD decom-
position, Kullback-Leibler divergence, energy measure and
LSTM prediction engine for wind speed causality processing
was proposed [21].

Except the application of deep learning algorithms, decom-
position technology had also been adopted tomine the volatil-
ity of the wind power series, which is in favour of getting
rid of the adverse influence of the noise data and provid-
ing a more stable predict engine. Secondary decomposition
technology consisting of WT algorithm and Singular Spec-
trum Analysis(SSA) was proposed to disaggregate the wind
speed series into several sub-series [22]. Then, Elman neural
network(ENN) was designed to forecast the wind speed
series. Experimental results demonstrated that the proposed
model was superior to the compared models. Peng et al. [23]
combined the complementary ensemble empirical mode
decomposition with adaptive noise(CEEMDAN) and VMD
decomposition to build a two-stage decomposition scheme.
Extreme learning machine(ELM) was exploited with
Adaboost. RT technique to compare the forecasting capa-
bility with back propagation neural network(BPNN) and
SVM model. Improved complete ensemble empirical mode
decomposition adaptive noise(ICEEMDAN) combining the
intelligent optimization algorithmwas incurred for short-term
wind speed forecasting [24].

Review the aforementioned literature, the following points
can be summarized as:
(a) Physical models need some intricate environmental

factors, of which a large amount of features for depict-
ing the variation tendency of wind power series can be
extracted. The prevailing difficulties in the process of
capturing the topographic data make it a laborious task
to guarantee the steerability of wind power forecasting.

(b) In consideration of the ascendency of seizing the linear
characteristics, statistical approaches have privileges
to eliminate the forecasting bias with respect to the
steady series. However, as for the volatile wind power
sequences, its theoretical supports cannot sufficiently
dispose the non-linear distinctions.

(c) Being prone to falling into the local minimum and
overfitting phenomenons, intelligence arithmetic is in
the failure of providing a stable predictor engine.

(d) An idealized assumption is that the forecasting error
series is a naturally white noise. Scientific assessments
have confirmed that the previous articles promoted the
forecasting performance to a limited degree for the lack
of analyzing the error sequence.

In this paper, we propose a novel hybrid model based on
VMD decomposition, a designed ConvLSTM network and
error feedback scheme to proceed with the above intrinsic
shortcomings, which greatly reduces the interference of the
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initial wind power data. The designed ConvLSTM network
performs the convolution operation in the LSTM network,
which replaces the matrix multiplication to capture the spatial
features. The temporal dependency would be handled with
the merits of LSTM network simultaneously, which can pro-
duce the efficient and reliable forecasting values. The main
contributions of the paper are further explained as follows:

(a) VMD as a non-recursive signal decomposition tech-
nology is taken into consideration with the goal of furthest
grasping the evolvement trend of the wind power series and
then disaggregates the wind power series into a discrete set of
components.

(b) Benefiting from the merits of fast learning and simple
architecture, the ConvLSTM network is implemented as the
predictor engine to remove the noise and extracts the temporal
and spatial information of each sub-series. The preliminary
results would be obtained by aggregating all the forecasting
sub-series. Therefore, one ConvLSTM network is trained for
each sub-series, which would result a component of Con-
vLSTM network with the number predefined by the VMD
algorithm.

(c) The error feedback scheme making up for the prelimi-
nary results would also be built by LSTM network, which can
be modeled by the error series generated from the validate
set. The reason why we select LSTM algorithm to obtain the
forecasting error series is that LSTM network can remember
the irregular trend factor of the long-term periodic compo-
nents. Final forecasting results would be aggregated by the
preliminary results and predicted error series.

The rest of the paper is organized in the following way.
Section II describes the specific methodology which consists
of VMD decomposition, the designed ConvLSTM network
and error analysis. Two cases are illustrated and analyzed to
evaluate the proposed model in section III. Section IV offers
the conclusion.

II. THE HYBRID VMD-CONVLSTM-LSTM MODEL
A. THE ARCHITECTURE OF THE PROPOSED MODEL
Fig.1 presents the overall framework of the VMD-
ConvLSTM-LSTM model. The marching details are divided
into four steps as follows.

(1) Decomposition by VMD: VMD algorithm, as the first
module, decomposes the wind power signal into an ensemble
of intrinsic mode functions(IMFs) owing specific sparsity
properties in the bandwidth. The mathematical theory of the
VMD algorithm are defined in Section II.B.

(2) Performing the forecasting task: Each IMF is trans-
ferred as the trajectory matrix by the sliding window algo-
rithm. ConvLSTM network learns the corresponding matrix
to extract the important attributes and bridge the long time
information to carry out the issues of forecasting each
IMFs. The preliminary forecasting results can be achieved
by abbreviating the predictions of the sub-series. The math-
ematical theory of the CNN network, LSTM network and
ConvLSTM network are defined in Section II.C, Section II.D
and Section II.E, respectively.

(3) Applying the error scheme analysis: Error sequence
would be gained by calculating the difference between real
value and forecasting value. LSTM network which is on the
heels of the preliminary model mines the latent information
within it.

(4) Obtaining the final results and evaluating the pro-
posed model: Integrating the preliminary forecasting results
and error analysis to obtain the final results, which would be
evaluated and compared with the benchmark models in the
experimental section.

B. VARIATIONAL MODE DECOMPOSITION
As an adaptive and non-recursive signal processing method,
VMD algorithm decomposes the original time series into sev-
eral components uk by determining the correlation frequency
with limited bandwidth. Readers may refer to [21] for the
detailed procedures about VMD.

The mathematical theory of the variational problem can be
presented as min

{yk },{wk }
{

K∑
k=1

∥∥∥∥∂t [(δ(t)+ j
π t

) ∗ yk (t)]e−jwk t
∥∥∥∥2
2
}

s.t.
∑

k yk = z(t)
(1)

where {yk} = {y1, . . . , yK } and {wk} = {w1, . . . ,wK }
represent the set of all modes and respective centre fre-
quencies. For converting the constrained variational problem
to an unconstrained optimization one, the quadratic penalty
α and Lagrange multipliers λ are introduced to encourage
reconstruction fidelity and enforces constraints strictly, as the
following formula shown

L({yk}, {wk}, λ)

= α{

K∑
k=1

∥∥∥∥∂t [(δ(t)+ j
π t

)yk (t)]e−jwk t
∥∥∥∥2
2

+

∥∥∥∥∥z(t)−
K∑
k=1

yk

∥∥∥∥∥
2

2

〈
λ(t), z(t)−

K∑
k=1

yk (t)

〉
} (2)

By using the alternate direction method of multipliers
(ADMM), each mode and its respective center frequency
would be regulated to obtain the optimal yk ,wk and λ, which
stand for the saddle point of the unconstrained optimization
problem from the mathematical perspective

_y
n+1
k =

ẑ(w)−
∑
i6=k

_yi(w)+
λ̂(w)
2

1+ 2α(w− wk )2
(3)

ŵn+1k =

∫
∞

0 w
∣∣∣_yk (w)∣∣∣2 dw∫

∞

0

∣∣∣_yk (w)∣∣∣2 dw (4)

λ̂n+1(w) = λ̂n(w)+ τ (ẑ(w)−
∑
k

_y
n+1
k ) (5)

where ẑ(w),_yi(w) and λ̂(w) represent the Fourier transforms
of each variable, n is the number of iteration.
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FIGURE 1. The framework of the VMD-ConvLSTM-LSTM model.

C. CONVOLUTION NEURAL NETWORK
CNN [25] comprised of convolution layer and pooling layer
is worldwide used to cope with complex characteristics from
the multiple wind power series.

Convolution layer is a mathematical operation which
merges the two sets of information to map the local
features into global features. Convolution layer
reduces the size of input vectors as the formula(6)
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shown:

y = σ (W n
⊗ x + bn) (6)

where n is the size of kernels. W , x, b are the connecting
weights in kernels, the decomposed sub-series of wind power
sequences which is taken as the input vector, the vector of
bias, respectively. The symbol ⊗ presents the convolution
operation. σ denotes the activated function, which is adopted
by Rectified Linear Unit(ReLU) and the definition is

f (x) =

{
0, x < 0
x, x ≥ 0

(7)

Pooling layer further reduces the size of representation of
the convolution layer. The extent to which such potential can
be developed is determined by the size of the pooling layer.
Max pooling as a non-linear subsampling layer combines the
output of neuron cluster from previous layer.

D. LONG SHORT TERM MEMORY NETWORK
Constituting an RNN variant, LSTM can preserve the
long-term memory by conducting the constant error
carousel(CEC) with the memory cell. The extracted vectors
are taken as the input which flows to the adaptive units incor-
porated of the input gate, the forget gate and the output gate.
Benefiting from the special mechanism, LSTM can bridge
the long time range to carry out the issues of vanishing errors
that traditional RNN would always occur. Figure.2 presents
the schematic of LSTM.

FIGURE 2. The schematic of LSTM.

For the input gate, assuming the input signal, the previous
states of the hidden layer and the memory cells are x ti , y

t−1
n

and sc, respectively. The activation value btl is calculated as
the equation(8).

btl = f (
I∑
i=1

wilx ti +
H∑
h=1

whlyt−1n +

C∑
c=1

wclst−1c ) (8)

where wil,whl,wcl denote the weight matrices connecting
the three gate units and the hidden status, cell memory and

input signal. I ,H ,C represent the dimension of the input
gate, hidden gate and output gate, respectively. The activate
function f (·) adopts the sigmoid function.

f (x) =
1

1+ e−x
(9)

The forget gate determines the degree to which the last
moment information are regulated to keep in the cell, the out-
put vectors are described as

btφ = f (
I∑
i=1

wiφx ti +
H∑
h=1

whφyt−1n +

C∑
c=1

wcφst−1c ) (10)

where wiφ,whφ,wcφ are the sets of weights of the forget gate.
The cell state would be modified by multiplying the pre-

vious memory cell state with the output value of forget gate,
which is defined as

stc = btφs
t−1
c + bthg(

I∑
i=1

wicx ti +
H∑
h=1

whcyt−1n ) (11)

where the activate function is the hyperbolic tangent function,
as the formula(12) shows:

g(x) = tanh(x) =
ex − e−x

ex + e−x
(12)

The output gate filters the information obtained from the
memory cell when performing the learning task, the mathe-
matical processes are defined as the formula(13) shown:

btw = f (
I∑
i=1

wiwx ti +
H∑
h=1

whwyt−1n +

C∑
c=1

wcwstc) (13)

As mentioned in the above context, the hidden state are
defined as the product between the output of the output gate
and the activation of the memory cell,that is

btc = btwg(s
t
c) (14)

E. ConvLSTM NETWORK
ConvLSTM network involves the convolution operation in
both input-to-state and state-to-state transitions, which gets
rid of the matrix multiplication in LSTM. The temporal
information can still determined by the current input vectors
and historical cell states, which means that the ConvLSTM
network not only take the merits of CNN network to mine
the spatial features, but can capture the temporal features
simultaneously. The mathematical theory of the ConvLSTM
network is given as follows:

btl = f (Wxi ∗ Xt +Whi ∗ Ht−1 +Wci ◦ Ct−1) (15)

btφ = f (Wxf ∗ Xt +Whf ∗ Ht−1 +Wcf ◦ Ct−1) (16)

Ct = btφ ◦ Ct−1 + b
t
l ◦ g(Wxc ∗ Xt +Whc ∗ Ht−1) (17)

btw = f (Wxo ∗ Xt +Who ∗ Ht−1Wco ◦ Ct ) (18)

btc = btw ◦ g(Ct ) (19)

To differ from the full connected LSTM model, some
mathematical symbols of the ConvLSTM network have been
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TABLE 1. The detailed statistics of the four data sets.

changed. ∗ denotes the convolution operation, ◦ denotes the
dot operator.W is presented as the parameters of the network.
H and C are the hidden state and cell state, respectively.
In ConvLSTM network, the feature vectors generated by
CNN activations are fed as input to the LSTM network. As a
result, it performs both the spatial and temporal operations
simultaneously to avoid the lost information.

III. CASE STUDY
A. MODELING DATA
The historical data deployed in this paper was collected from
two wind farms in China between the September 1, 2012 and
the March 1, 2013. To verify the generalized property of the
VMD-ConvLSTM-LSTMmodel, we conducted four datasets
involving two output series from wind turbines and the others
from wind farms. The rated power of the wind turbine and
wind farm is 1.5MW and 49.5 MW, respectively. Figure. 3
illustrates the trend of four training wind power series and
the table1 presents the detailed statistics of the four data sets.

FIGURE 3. The training wind power series.

B. PERFORMANCE EVALUATION INDEXES
Four evaluated metrics, Root Mean Square Error(RMSE),
Mean Relative Error(MRE),Mean Absolute Error(MAE) and
Mean Squared Error(MSE) are regarded as the forecasting
accuracy indexes to provide comprehensive understandings
of the fitting effects of the involved approaches, which can

be calculated by formulas (20-23):

RMSE =

√∑N
i=1 [x(t)− x̂(t)]2

N
(20)

MRE =

∑N
i=1 (

∣∣x(t)− x̂(t)∣∣/xr )
N

(21)

MAE =

∑N
i=1

∣∣x(t)− x̂(t)∣∣
N

(22)

MSE =

∑N
i=1 [x(t)− x̂(t)]

2

N
(23)

where x(t) is the actual data, xr is the rated value, x̂(t) is the
predicted data, N is the number of forecasting samples.

C. EXPERIMENT 1: ANALYSIS FOR THE FORECASTING
RESULTS WITH TWO WIND TURBINES
To verify the generalized capacity of the proposed
VMD-ConvLSTM-LSTM model, seven benchmark mod-
els including BPNN model, Elman mdoel, LSTM model,
the VMD-BP model, the VMD-Elman model, the VMD-
LSTM model and VMD-ConvLSTM model are employed
to conduct the 15-min, 30-min and 1-h power forecasting of
two wind turbines. Figures 4-9 give the comparison results
between the proposed model and benchmark models in a
visible manner. The evaluated metrics of two wind turbines
on different time scales are illustrated in Tables2-3.

FIGURE 4. 15-min wind power forecasting for the wind turbine#1.
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FIGURE 5. 30-min wind power forecasting for the wind turbine#1.

FIGURE 6. 1-h wind power forecasting for the wind turbine#1.

FIGURE 7. 15-min wind power forecasting for the wind turbine#2.

FIGURE 8. 30-min wind power forecasting for the wind turbine#2.

From the results given in Tables 2-3 and Figures 4-9, the
general survey of the comparisons in this experiment can be
summed up below:

(1)The single LSTM model deeply seizes the dynamic
fluctuation of the wind power sequences and exhibits slightly
superior forecasting precision and stability to the other two
single models. For the wind turbine #1, in terms of the RMSE

FIGURE 9. 1-h wind power forecasting for the wind turbine#2.

metric, LSTM approach in different time scales produces
the values as 111.35KW, 197.26KW and 293.56KW. The
corresponding values of MRE are 0.056KW, 0.091KW and
0.132KW, respectively. The MAE and MSE share the ana-
logical performance, in which the enhancements of MAE
are 249KW, 39KW and -13.5KW by comparing the LSTM
model with BPNN model and the relevant promotion by
comparing the LSTM model with Elman model of MAE
are 165KW, 106.5KW and 22.5KW, respectively. In terms
of the wind turbine #2, from 15-min to 1-h predictions,
the LSTM model can improve the MRE by 0.041KW, 0KW,
0.001KW, the MAE by 61.5KW,0KW, 1.5KW, the MSE
by 21767.59KW, 2099.06KW, 3730.91KW and the RMSE
by 55.77KW, 6.08KW, 7.91KW compared to the BPNN
model; the LSTMmodel can improve the MRE by 0.044KW,
0.106KW, 0.015KW, the MAE by 66KW, 159KW, 22.5KW,
the MSE by 65803.69KW, 88514.62KW, 66835.07KW
and the RMSE by 138.97KW, 172.87KW, 115.4KW com-
pared to the Elman model; This consideration indicates that
traditional single model limited by the local minimum and
over-fitting problems cannot produce the forecasting perfor-
mance generated from the deep learning methods, in which
there are still some room to be used for promoting to some
certain extent.

(2)For comparison II, as for the VMD-LSTM model ver-
sus the single LSTM model, it can be observed that in
wind turbine #1, from 15-min to 1-h predictions, the VMD-
LSTMmodel can improve the MRE by 0.009KW, 0.025KW,
0.026KW, the MAE by 13.5KW, 37.5KW, 39KW, the MSE
by 1277.01KW, 19520.95KW, 51510.75KW and the RMSE
by 5.89KW, 58.01KW, 107.37KW compared to the LSTM
model. In terms of the wind turbine #2, from 15-min
to 1-h predictions, the VMD-LSTM model can improve
the MRE by 0.041KW, -0.002KW, 0.041KW, the MAE
by 61.5KW, -3KW, 61.5KW, the MSE by 10438.9KW,
1753.03KW, 30539.52KW and the RMSE by 34.83KW,
5.25KW, 79.47KW compared to the LSTM model. This per-
oration suggests that the VMD algorithm can pose positive
impacts on the uncertainty analysis of the wind power series.

(3)When comparing the VMD-ConvLSTM-LSTM model
with the BPNNmodel, it can be observed that in wind turbine
#1, from 15-min to 1-h predictions, the VMD-ConvLSTM-
LSTM model can improve the MRE by 0.02KW, 0.077KW,
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TABLE 2. The evaluated results between the proposed model and seven benchmark models for the wind turbine #1.

TABLE 3. The evaluated results between the proposed model and seven benchmark models for the wind turbine #2.

0.086KW, the MAE by 300KW, 115.5KW, 129KW, the MSE
by 120831.64KW, 37402.03KW, 60471.85KW and the
RMSE by 312.17KW, 133.45KW, 182.54KW, respectively.
In terms of the wind turbine #2, from 15-min to 1-h pre-
dictions, the VMD-ConvLSTM-LSTM model can improve
the MRE by 0.125KW, 0.042KW, 0.086KW, the MAE
by 187.5KW, 63KW, 129KW, the MSE by 48919.7KW,

24626.5KW, 53966.13KW and the RMSE by 194.28KW,
96.73KW, 180.35KW, respectively.

(4)When comparing the VMD-ConvLSTM-LSTM model
with the Elman model, it can be observed that in wind turbine
#1, from 15-min to 1-h predictions, the VMD-ConvLSTM-
LSTMmodel can improve the MRE by 0.144KW, 0.122KW,
0.11KW, the MAE by 216KW, 183KW, 165KW, the MSE by
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88921.79KW, 112995.13KW, 87774.91KW and the RMSE
by 312.17KW, 133.45KW, 182.54KW, respectively. In terms
of the wind turbine #2, from 15-min to 1-h predictions,
the VMD-ConvLSTM-LSTM model can improve the MRE
by 0.128KW, 0.148KW, 0.114KW, the MAE by 192KW,
222KW, 171KW, the MSE by 92955.8KW, 111042.06KW,
117070.29KW and the RMSE by277.48KW, 263.52KW,
287.84KW, respectively.

(5)When comparing the VMD-ConvLSTM-LSTM model
with the LSTMmodel, it can be observed that in wind turbine
#1, from 15-min to 1-h predictions, the VMD-ConvLSTM-
LSTMmodel can improve the MRE by 0.034KW, 0.051KW,
0.095KW, the MAE by 51KW, 76.5KW, 142.5KW, the MSE
by 10996.32KW, 33522.48KW, 80646.57KW and the RMSE
by 73.9KW, 123.85KW, 219.19KW, respectively. In terms
of the wind turbine #2, from 15-min to 1-h predictions,
the VMD-ConvLSTM-LSTM model can improve the MRE
by 0.084KW, 0.042KW, 0.085KW, the MAE by 126KW,
63KW, 127.5KW, the MSE by 27152.11KW, 22527.44KW,
50235.22KW and the RMSE by 138.51KW, 90.65KW,
172.44KW, respectively.

(6)When comparing the VMD-ConvLSTM-LSTM model
with the VMD-BPNN model, it can be observed that
in wind turbine #1, from 15-min to 1-h predictions, the
VMD-ConvLSTM-LSTM model can improve the MRE
by 0.087KW, 0.035KW, 0.05KW, the MAE by 130.5KW,
52.5KW, 75KW, the MSE by 109127.15KW, 26723.61KW,
11177.25KW and the RMSE by 295.01KW, 105.79KW,
54.89KW, respectively. In terms of the wind turbine #2,
from 15-min to 1-h predictions, the VMD-ConvLSTM-
LSTM model can improve the MRE by 0.09KW, 0.027KW,
0.058KW, the MAE by 135KW, 40.5KW, 87KW, the MSE
by 29549.86KW, 12714.83KW, 22837.4KW and the RMSE
by 145.53KW, 58.71KW, 102.95KW, respectively.

(7)When comparing the VMD-ConvLSTM-LSTM model
with the VMD-Elman model, it can be observed that
in wind turbine #1, from 15-min to 1-h predictions, the
VMD-ConvLSTM-LSTM model can improve the MRE
by 0.102KW, 0.084KW, 0.075KW, the MAE by 126KW,
130.5KW, 168KW, the MSE by 56538.8KW, 53616.24KW,
53936.8KW and the RMSE by 203.26KW, 169.5KW,
169.49KW, respectively. In terms of the wind turbine #2,
from 15-min to 1-h predictions, the VMD-ConvLSTM-
LSTMmodel can improve the MRE by 0.124KW, 0.085KW,
0.094KW, the MAE by 186KW, 127.5KW, 141KW, the MSE
by 56859.25KW, 51937.85KW, 56076.11KW and the RMSE
by 211.42KW,162.25KW, 184.71KW, respectively.

(8)When comparing the VMD-ConvLSTM-LSTM model
with the VMD-LSTM model, it can be observed that
in wind turbine #1, from 15-min to 1-h predictions, the
VMD-ConvLSTM-LSTM model can improve the MRE
by 0.025KW, 0.026KW, 0.069KW, the MAE by 37.5KW,
39KW, 103.5KW, the MSE by 9719.31KW, 14001.53KW,
29135.82KW and the RMSE by 68.01KW, 65.84KW,
111.82KW, respectively. In terms of thewind turbine #2, from
15-min to 1-h predictions, the VMD-ConvLSTM-LSTM

FIGURE 10. 15-min wind power forecasting results of the wind farm #1.

model can improve the MRE by 0.043KW, 0.044KW,
0.044KW, the MAE by 64.5KW, 66KW, 66KW, the MSE by
16713.21KW, 20774.41KW, 19695.7KW and the RMSE by
103.68KW, 85.4KW, 92.97KW, respectively.

(9)When comparing the VMD-ConvLSTM-LSTM model
with the VMD-CNN-LSTM model, it can be observed that
in wind turbine #1, from 15-min to 1-h predictions, the
VMD-ConvLSTM-LSTM model can improve the MRE by
0.014KW, 0.026KW, 0.032KW, the MAE by 21KW, 39KW,
48KW, the MSE by 3148.35KW, 8020.61KW, 17658.3KW
and the RMSE by 30.01KW, 42.39KW, 77.91KW, respec-
tively. In terms of thewind turbine #2, from 15-min to 1-h pre-
dictions, the VMD-ConvLSTM-LSTM model can improve
the MRE by 0.027KW, 0.017KW, 0.017KW, the MAE
by 40.5KW, 25.5KW, 25.5KW, the MSE by 8908.63KW,
11608.33KW, 5712.67KW and the RMSE by 69.91KW,
54.63KW, 36.715KW, respectively.

(10)The assessments achieved on the above mentioned
results have indicated that the proposed model offers more
attractive results than the contrast models relative to the fore-
casting accuracy and stability. Furthermore, the wind power
series of two wind farms would be implemented to evaluate
the universality of the proposed model in the next section

D. EXPERIMENT 2: ANALYSIS FOR THE FORECASTING
RESULTS WITH TWO WIND FARMS
In this section, the proposedVMD-ConvLSTM-LSTMmodel
which has the same parameters space with the above men-
tioned case is employed to yield the volatile output of two
wind farms. The forecasting results which are illustrated
in Figures 10-15 and tables4-5 have verified that the proposed
model strengthens the forecasting stability and accuracy in a
outstanding degree.

The wind power series that were forecast by the proposed
model and benchmark models are compared to the actual
measurements in Figures10-15 and tables 4-5. It can be
observed that the forecasting results of wind farm share the
analogical behaviors with the wind turbine. From the results
given in Tables 4-5 and Figures 10-15, the general survey of
the comparisons in this experiment can be summed up below:

(1)The values in tables 4-5 show that the LSTM model
outperforms conventional single models for short-term wind
power forecasting. In two cases, the values of MRE, MAE,
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FIGURE 11. 30-min wind power forecasting results of the wind farm #1.

FIGURE 12. 1-h wind power forecasting results of the wind farm #1.

FIGURE 13. 15-min wind power forecasting results of the wind farm #2.

FIGURE 14. 30-min wind power forecasting results of the wind farm #2.

MSE, RMSE of the LSTM model are lower than the two
single forecasting models. For the wind farm #1, in terms
of the RMSE metric, LSTM approach in different time
scales produces the values as 1384.01KW, 1542.07KW
and 2077.34KW. The corresponding values of MRE are
0.0194KW, 0.021KW and 0.026KW, respectively. The MAE
and MSE share the analogical performance, in which the

FIGURE 15. 1-h wind power forecasting results of the wind farm #2.

enhancements of MAE are 2059.2KW, 1039.5KW and
1831.5KW by comparing the LSTM model with BPNN
model and the relevant promotion by comparing the LSTM
model with Elman model of MAE are 1118.7KW, 2376KW
and 6534KW, respectively. In terms of the wind farm #2,
from 15-min to 1-h predictions, the LSTM model can
improve the MRE by 0.4039KW, 0.0313KW, 0.037KW,
theMAE by 19993.05KW, 1549.35KW, 1831.5KW, theMSE
by 658143782KW, 27719586.31KW, 32977032.09KW and
the RMSE by 23456.07KW, 2991.46KW, 2437.28KW com-
pared to the BPNN model; the LSTM model can improve
the MRE by 0.1699KW, 0.2783KW, 0.187KW, the MAE
by 8410.05KW, 13775.85KW, 9256.5KW, the MSE by
177639070.5KW, 393224242.35KW, 270026156.7KW and
the RMSE by 11224.09KW, 16939.15KW, 11796.8KW com-
pared to the Elman model.

(2)For the forecasting results of the two farms, the MRE
metric obtained from the VMD-LSTM model varies from
0.0148KW to 0.085KW, with the average of 0.035KW. As
for the single LSTM model, the range of the MRE met-
ric is from 0.0194KW to 0.091KW, with the average of
0.0396KW. For the wind farm #1, from 15-min to 1-h predic-
tions, VMD-LSTM model can produce the improvements of
MRE as 0KW, 0.0062KW and 0.0034KW compared with the
LSTM model. In terms of wind farm #2, from 15-min to 1-h
predictions, VMD-LSTM model can produce the improve-
ments of MRE as 0.0177KW, 0.0135KW and 0.006KW com-
pared with the LSTM model. The MAE, MSE and RMSE
metrics present the similar phenomenon, which gives a strong
proof that the VMD algorithm can pose positive impacts on
the more broader applicability of the wind power series.

(3)The forecasting accuracy of the VMD-ConvLSTM-
LSTM model is higher than the BPNN model obviously,
it can be observed that in wind farm #1, from 15-min to
1-h predictions, the VMD-ConvLSTM-LSTM model can
improve the MRE by 0.0552KW, 0.0311KW, 0.047KW,
the MAE by 1831.5KW, 346.5KW, 2326.5KW, the MSE
by 8285607.27KW, 767502.93KW, 14146893.4KW and the
RMSE by 2952.65KW, 1373.6KW, 2711.92KW, respec-
tively. In terms of the wind farm #2, from 15-min to
1-h predictions, the VMD-ConvLSTM-LSTM model can
improve the MRE by 0.431KW, 0.058KW, 0.097KW,
the MAE by 21334.5KW, 2871KW, 4801.5KW, the MSE
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TABLE 4. The evaluated results between the proposed model and seven benchmark models for the wind farm #1.

TABLE 5. The evaluated results between the proposed model and seven benchmark models for the wind farm #2.

by 661975312.6KW, 33993725.68KW, 58237383.52KWand
the RMSE by 24547.27KW, 4239.65KW, 5637.88KW,
respectively.

(4)The forecasting accuracy of the VMD-ConvLSTM-
LSTM model is higher than the Elman model obviously,
it can be observed that in wind farm #1, from 15-min to
1-h predictions, the VMD-ConvLSTM-LSTM model can

improve the MRE by 0.0362KW, 0.0581KW, 0.142KW,
the MAE by 891KW, 1683KW, 7029KW, the MSE by
11561856.05KW, 31493050.91KW, 90416865.61KW and
the RMSE by 3400.92KW, 5112.42KW, 8338.57KW, respec-
tively. In terms of the wind farm #2, from 15-min to
1-h predictions, the VMD-ConvLSTM-LSTM model can
improve the MRE by 0.197KW, 0.305KW, 0.247KW, the

134432 VOLUME 8, 2020



Z. Sun, M. Zhao: Short-Term Wind Power Forecasting Based on VMD Decomposition, ConvLSTM Networks and Error Analysis

MAE by 9751.5KW, 15097.5KW, 12226.5KW, the MSE
by 181470601.1KW, 399498381.7KW, 295286508.1KWand
the RMSE by 12315.29KW, 18187.34KW, 14997.4KW,
respectively.

(5)The forecasting accuracy of the VMD-ConvLSTM-
LSTM model is higher than the LSTM model obviously,
it can be observed that in wind farm #1, from 15-min to
1-h predictions, the VMD-ConvLSTM-LSTM model can
improve the MRE by 0.0136KW, 0.0101KW, 0.01KW,
the MAE by 673.2KW, 499.95KW, 495KW, the MSE by
1687506.08KW,1627966.0012KW, 2747036.0932KW and
the RMSE by 906.54KW, 676.06KW, 825.02KW, respec-
tively. In terms of the wind farm #2, from 15-min to
1-h predictions, the VMD-ConvLSTM-LSTM model can
improve the MRE by 0.0271KW, 0.0267KW, 0.06KW,
theMAE by 1341.45KW, 1321.65KW, 2970KW, theMSE by
3831530.56KW, 6274139.37KW, 25260351.42KW and the
RMSE by 1091.2KW, 1248.19KW, 3200.6KW, respectively.

(6)The forecasting accuracy of the VMD-ConvLSTM-
LSTM model is higher than the VMD-BPNN model obvi-
ously, it can be observed that in wind farm #1, from 15-min
to 1-h predictions, theVMD-ConvLSTM-LSTM model can
improve the MRE by 0.0532KW, 0.0261KW, 0.043KW,
the MAE by 2633.4KW, 1291.95KW, 2128.5KW, the MSE
by 9204476.11KW, 3848615.77KW, 9471099.57KW and the
RMSE by 2593.76KW, 1278.44KW, 2070.24KW, respec-
tively. In terms of the wind farm #2, from 15-min to
1-h predictions, the VMD-ConvLSTM-LSTM model can
improve the MRE by 0.052KW, 0.011KW, 0.047KW,
the MAE by 2574KW, 544.5KW, 2326.5KW, the MSE
by 10295054.47KW, 67572050.99KW, 17660429.49KW
and the RMSE by 2219.13KW, 6545.32KW, 2466.97KW,
respectively.

(7)The forecasting accuracy of the VMD-ConvLSTM-
LSTM model is higher than the VMD-Elman model obvi-
ously, it can be observed that in wind farm #1, from 15-min
to 1-h predictions, the VMD-ConvLSTM-LSTM model can
improve the MRE by 0.0512KW, 0.0351KW, 0.042KW,
the MAE by 2534.4KW, 1737.45KW, 2079KW, the MSE
by 17644032.3KW, 1141941.3421KW, 11211032.65KW
and the RMSE by 3750.06KW, 509.47KW, 2322.5KW,
respectively. In terms of the wind farm #2, from 15-min
to 1-h predictions, the VMD-ConvLSTM-LSTM model
can improve the MRE by 0.122KW, 0.22KW, 0.426KW,
the MAE by 6039KW, 10890KW, 21087KW, the MSE by
73172073.99KW, 227855034.9KW, 786538194.9KW and
the RMSE by 7429.18KW, 13323.43KW, 25797.34KW,
respectively.

(8)The forecasting accuracy of the VMD-ConvLSTM-
LSTM model is higher than the VMD-LSTM model obvi-
ously, it can be observed that in wind farm #1, from
15-min to 1-h predictions, theVMD-ConvLSTM-LSTM
model can improve the MRE by 0.013KW, 0.015KW,
0.028KW, the MAE by 673.2KW, 193.05KW, 326.7KW,
theMSE by 1687506.07KW, 323395.35KW, 2260917.40KW
and the RMSE by 906.54KW, 170.03KW, 704.52KW,

respectively. In terms of the wind farm #2, from 15-min
to 1-h predictions, the VMD-ConvLSTM-LSTM model can
improve the MRE by 0.0094KW, 0.0132KW, 0.054KW,
the MAE by 465.3KW, 653.4KW, 2673KW, the MSE by
121288.08KW, 1444895.22KW, 31329803.86KW and the
RMSE by 49.12KW, 349.99KW, 3723.13KW, respectively.

(9)The forecasting accuracy of the VMD-ConvLSTM-
LSTM model is higher than the VMD-ConvLSTM model
obviously, it can be observed that in wind farm #1, from
15-min to 1-h predictions, the VMD-ConvLSTM-LSTM
model can improve the MRE by 0.0032KW, 0.0031KW,
0.0056KW, the MAE by 158.4KW, 153.45KW, 277.2KW,
the MSE by 255367.15KW, 105851.65KW, 1808064.12KW
and the RMSE by 217.76KW, 59.1KW, 585.17KW, respec-
tively. In terms of the wind farm #2, from 15-min to 1-h pre-
dictions, the VMD-ConvLSTM-LSTM model can improve
the MRE by 0.009KW, 0.018KW, 0.048KW, the MAE by
445.5KW, 891KW, 2376KW, the MSE by 1389581.06KW,
5182580.58KW, 22124648.79KW and the RMSE by
479.27KW, 1069.12KW, 2910.33KW, respectively.

IV. CONCLUSION
Accurate wind power forecasting is crucial in the electricity
market. This paper proposes a short-term wind power fore-
casting model including VMD decomposition, ConvLSTM
predictor and error series modelling. VMD decomposition
technology is firstly applied to eliminate the non-stationary
features of the raw wind power series. ConvLSTM model
is implemented as the predictor engine for the preliminary
results. Considering the valuable information within the error
sequence, the LSTM network modeling the error sequence is
built to further strengthen the stability and accuracy of the
forecasting results. Seven different models are executed on
two experiments, it is worth mentioning that the proposed
scheme can significantly increase the forecasting accuracy
and stability. For two experiments, the accuracy improvement
in MRE, MAE, MSE and RMSE metrics of benchmark mod-
els by the proposed scheme are introduced in the experimental
section. It demonstrates that forecasting of short wind power
output is a promising research direction, and the proposed
hybrid model has much potential for promoting the opera-
tional performance of wind power system.

However, there are still limitations in this paper. The initial
parameters of the VMD algorithm,CNN model and LSTM
network are selected by the expertise, wihch would result
a large computational cost to obtain the optimal paramters.
In the next research work, we will search other intelligent
algorithms to optimize the proposed model.
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