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ABSTRACT In this paper, we consider the problem of analog-to-information conversion for nonstationary
signals, which exhibit time-varying properties with respect to spectral contents. Nowadays, sampling for
nonstationary signals is mainly based onNyquist sampling theorem or signal-dependent techniques. Unfortu-
nately, in the context of the efficient ‘blind’ sampling, thesemethods are infeasible. To deal with this problem,
we propose a novel analog-to-information conversion architecture to achieve the sub-Nyquist sampling for
nonstationary signals. With the proposed scheme, we present a multi-channel sampling system to sample
the signals in time-frequency domain. We analyze the sampling process and establish the reconstruction
model for recovering the original signals. To guarantee the wide application, we establish the completeness
under the frame theory. Besides, we provide the feasible approach to simplify the system construction. The
reconstruction error for the proposed system is analyzed. We show that, with the consideration of noises and
mismatch, the total error is bounded. The effectiveness of the proposed system is verified in the numerical
experiments. It is shown that our proposed scheme outperforms the other sampling methods state-of-the-art.

INDEX TERMS Analog-to-information conversion, compressive sensing, nonstationary signals, sub-
Nyquist, time-frequency.

I. INTRODUCTION
As the cornerstone of digital signal processing, Shannon–
Nyquist–Whittaker sampling theorem states that, to perfectly
reconstruct a band-limited analog signal, the sampling rate
must be at least twice the highest frequency of signals [1], [2].
With the expansion of bandwidth of analog signals, the sam-
pling method based on sampling theorem becomes imprac-
tical, since it is challenging to build sampling hardware that
operates at a sufficient rate [3]. It is, however, well-known
that signals with specific structure can be sufficiently sampled
well-below the Nyquist rate. For example, the signals can be
recovered from incomplete frequency samples-provided that
the signals are sparse in Fourier Transform-by minimizing
a convex function [4]. The sparse assumption is instructive,
since most natural and man-made signals show sparsity in
a particular transform domain. In 2006, the conception of
incomplete sampling and sparse reconstruction is generalized
as the well-known Compressive Sensing (CS) theory [5]–[7],
which shows potential uses in a broad range of applications.

The associate editor coordinating the review of this manuscript and
approving it for publication was Qiangqiang Yuan.

CS is a novel framework for signal processing. Under this
scheme, compressive measurements are conducted to acquire
‘just enough’ samples that guarantee the perfect recovery
of the signal of interest. In essence, CS fuses sampling and
compression, instead of sampling signals at the Nyquist rate
followed by conventional data compression. Then the original
signals can be recovered accurately by exploring the sparsity
in transform domain [8]. CS has the potential to acquire sig-
nals well-below the Nyquist rate, which may lead to signifi-
cant reduction in the sampling costs, power consumption, and
hardware requirement. As a consequence, CS is commonly
believed to be a panacea for wideband signals to achieve the
efficient sampling [9], [10].

A. CHALLENGES FOR NONSTATIONARY SIGNALS
Many signals in nature and man-made systems exhibit time-
varying properties. Such waveforms are called time-varying
or nonstationary signals. They are encountered in various
areas such as audio signals, synthetic aperture radar, and
machinery [9], [11], [12]. Recent advances dealing with
nonstationary signals mainly focus on the time-frequency
analysis methods, since the signals are intrinsically sparse on
the time-frequency plane. Themain goals of suitable methods
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are to capture effective representations to describe the signal
properties. Fruitful results have been made in this field, such
results as Short-time Fourier Transform (STFT) [13], [14],
Wavelet Transform (WT) [15], [16], and Wigner Distribution
(WD) [17], [18].

Typically, time-frequency analysis for nonstationary sig-
nals is conducted by digital signal processing methods,
through which the analog signals are firstly converted into
digital fashion. Due to the time-varying spectral contents,
most nonstationary signals show a wide spectrum (e.g., sev-
eral GHz). In words, under the Nyquist sampling theorem,
achieving such specifications with a single analog-to-digital
converter (ADC) is an elusive goal for current semiconductor
technology [19]. Nowadays, there are mainly two kinds of
approaches to deal with this problem. One is under the frame-
work of Nyquist sampling theorem to design the high-speed
sampling system. One of the typical architectures is time-
interleaving ADC [20]–[22]. It achieves the high sampling
rate with several parallel channels. Then a low working rate
is required in one channel. However, for this architecture,
maintaining an accurate time shift in different channels is
difficult to implement. Another train of thought tries to reduce
the sampling rate with respect to a priori information, such
as modulating rate or delay time [23]. For example, utilizing
the information of modulating rate, Linear Frequency Modu-
lated (LFM) signals can be sparsely represented in fractional
Fourier transforms domain. Exploiting this sparsity, some
works [24], [25] propose the low-rate sampling methods for
LFM signals in fractional Fourier transforms domain. How-
ever, in themore general situation, a priori information is hard
to obtain. That limits its further application.

B. ANALOG-TO-INFORMATION (AIC) SYSTEM
Considering the limitations of current sampling approaches,
CS is viewed as an alternative technique for nonstationary sig-
nals to break through the bandwidth barrier [5]. Indeed, one
of the main advantages of CS is that it enables the acquisition
of larger bandwidth with relaxed sampling-rate requirements,
thus enabling less expensive, faster, and potentially more
energy-efficient solutions. Therefore, CS-based AIC systems
arouse great interest in the literatures for such wideband
applications [26]. The next paragraphs summarize the most
prominent AIC architectures. For each of these architectures,
we briefly discuss the pros and cons from standpoints of
signal sampling and hardware design.

Random Demodulator (RD) is one of the typical AIC
systems that realizes the compressive sampling in one single
channel [27], [28]. RD multiplies the analog input signals by
a (pseudo-)random sequence, and correspondingly, the basic
tones are smeared across the entire spectrum. Then the sam-
ples are captured at a low rate by a low-pass anti-aliasing fil-
ter. Since the sampling rate is far below the Nyquist rate, this
procedure is also called as sub-Nyquist sampling [29], [30].
For RD system, the (pseudo-)random sequence generator
must still run at Nyquist rate. Meanwhile, modulating the
signal with a (pseudo-)random sequence is only suitable

for very specific signal classes, such as signals that are
well-represented in a frequency domain. For nonstationary
signals, however, the good representation in frequency cannot
be guaranteed.

Non-uniform sampling (NUS) is one of the simplest
instances of CS-based AIC systems [31]. In principle, NUS
achieves sub-Nyquist sampling by using an irregularly spaced
time intervals. This architecture is also a one-channel sys-
tem, mainly consisting of a sample-and-hold (S&H) stage
and an ADC. The whole sampling process is controlled
by a non-uniform clock. NUS shows advantages in solving
the problems of noise folding, aliasing, and limited flex-
ibility [32], [33]. The main challenge of NUS lies in the
acquisition of a wideband analog input signal, such as the
nonstationary signals. Although the average sampling rate
is reduced significantly, high-speed conversion, potentially
reaching up the maximal input signal frequency, may still
exist between some adjacent samples.

ModulatedWidebandConverter (MWC) [34] is, in essence,
an extension for RD system. It is comprised of a bank of
modulators and low-pass filters. MWC modulates the analog
signals by periodic waveforms, and then uses the low-pass
filter to achieve the uniform sampling. During reconstruc-
tion, MWC establishes the relationship between samples and
original signals in spectrum [35]–[37]. Similar with the RD,
MWC still has the (pseudo-)random sequence generator
running at Nyquist rate. The reconstruction for the wideband
signals is firstly conducted in frequency domain. In words,
a sparse spectrum is needed for the accurate reconstruction.
For the nonstationary signals, however, the spectrum is usu-
ally not sparse.

C. CONTRIBUTIONS
As analyzed above, a simple and efficient AIC system for
nonstationary signals is still lacking. To fill this gap, in this
paper, we address the construction of feasible AIC system to
achieve the effective sub-Nyquist sampling and reconstruc-
tion for nonstationary signals.

The main contributions are as follows:
1) We propose a novel AIC system for nonstationary

signals exploring the sparsity in time-frequency. Under the
proposed scheme, the sub-Nyquist samples are obtained by
a multi-channel system, which mainly consists of low-pass
filters, integrators, and ADCs.

2) We further explore the system properties to achieve
the simplification in construction. We propose a simplified
scheme for the AIC system, where the same samples can be
obtained with reduced inner-channels and (pseudo-)random
sequence generators.

3) Under the frame theory, we construct a frame with
variable window functions and irregular lattices. We estab-
lish the completeness for the system to make sure that the
time-frequency sampling is reversible.

4)We analyze the reconstruction model for the AIC system
to guarantee the accurate reconstruction. Considering the
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noises and mismatch, we establish the upper bound for the
total reconstruction error.

It is important to note that the proposed AIC system will
make a great sense in some specific applications, such as the
uncooperative receiving in cognitive radio system. Uncoop-
erative receiving for wireless communication signals is one
of the key techniques in spectrum sensing. It requires us to
capture the dynamic spectrum with less user information.
With the proposed AIC system, we reduce the sampling rate
and sample number by exploiting the CS theory, such that
lower working-band and smaller storage is needed for the
receiver. The reconstruction process is ‘blind’ without using
a priori information about users. That makes it more suitable
for an uncooperative receiver.

D. ORGANIZATION
The remainder of this paper is organized as follows.
In Section II, we present the notations and problem for-
mulation. Section III describes some bases for CS theory.
In Section IV, the proposed AIC system is presented, and
then is further simplified. In Section V, we establish the
reconstruction model for AIC system. The completeness is
also established based on the frame theory. In Section VI,
numerical experiments are conducted to evaluate the effec-
tiveness of the proposed system. Section VII discusses the
related works and conclusions about this paper.

II. NOTATION AND PROBLEM FORMULATION
A. NOTATION
Through this paper, we denote matrices and vectors by bold
characters, with italic lowercase letters corresponding to vec-
tors and uppercase letters to matrices. The symbols R and
Z represent the real number field and integral number field
respectively. For the square integrable space, we use L2(·).
Symbol supp(·) denotes the support width, |·| is the absolute
value of the element, and ‖·‖2 represents the l2 norm. The
n-th entry in a vector a is written as an, whereas Aij denotes
the ij-th entry in matrix A. Superscript (·)∗ represents com-
plex conjugation.

B. PROMLEM FORMULATION
Fourier Transform (FT) maps the signal x(t) into frequency
domain X (f ), which can be depicted as

X (f ) =
∫
+∞

−∞

x(t)e−j2π ftdt (1)

As the main tool for signal analysis and processing, FT is
widely used to reveal the essential characteristics of signals.
It is, however, limited in the application of nonstationary sig-
nal analysis, since FT provides no easily understood timing
details about the occurrence of various frequency compo-
nents. To alleviate this problem, we try to analyze the prop-
erties of nonstationary signals using time-frequency analysis
methods.

Time-frequency analysis is an effective tool to
characterize nonstationary signals [11]–[15]. It reflects the

time-varying properties by mapping signals into the joint
time-frequency domain. In the literature, time-frequency
analysis methods can be divided into two categories:
quadratic (bilinear) time-frequency distribution (QTFD) and
linear time-frequency transform (LTFT). Compared with
QTFD, LTFT has the advantages of simple computation and
perfect reconstruction formula, which make it more suitable
for the application in AIC system.

Gabor transform (GT) is one of the most widely used
LTFT methods in signal processing. It is a class of STFT that
employs discrete sampling lattices in time-frequency plane.
Given the window function g(t), Gabor coefficient at lattice
(ak, bl) can be depicted as

Ggx(k, l) :=〈x,MblTakg〉=
∫
+∞

−∞

x(t)g(t − ak)∗e−j2πbltdt

(2)

where MblTakg = g(t − ak)ej2πblt is the time-frequency
shifted window function, a and b are shifting intervals in time
and frequency respectively.

If the collection G(g, a, b) = {MblTakg(t)}k,l∈Z constructs
a Gabor frame for L2(R), there exists the dual window γ (t)
such that

x(t) =
∑
k,l∈Z

Ggx(k, l) ·MblTakγ (t) (3)

In words, with sufficient Gabor coefficients, the original
nonstationary signals can be recovered perfectly. Meanwhile,
considering the inner product in (2), we may obtain the Gabor
coefficients through a bank of filters. That makes it more
possible to implement the GT in analog circuit.

To illustrate the time-varying properties for nonstationary
signals, we conduct the GT for two typical nonstationary
signals: LFM and Hopping Frequency (HF) signals. For com-
parison, spectrum based on FT is also presented. The results
are shown in Figure 1 and Figure 2. It is seen that, compared
with FT, GT achieves an effective representation for LFM and
HF signals in the joint time-frequency domain.

On the other hand, it is seen that the time-varying prop-
erties of nonstationary signals bring an inherent sparsity in
time-frequency domain. Although only LFM and HF signals
are presented in this paper, it is important to note that the
sparsity in time-frequency domain is commonly shared by
many nonstationary signals [11], [12]. That gives us the inspi-
ration to sample the nonstationary signals in time-frequency
domain. Therefore, in this paper, we try to utilize this sparsity
to achieve the efficient sub-Nyquist sampling. We wish to
design a sampling system for nonstationary signals satisfying
the followings

1) The sampling rate should be as low as possible;
2) The system uses less a priori information during sam-

pling and reconstruction;
3) The sample number is supposed to be as small as

possible;
4) The sampling system is simple enough to be imple-

mented with existing analog devices and ADCs.
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FIGURE 1. LFM signals: (a) waveform (b) spectrum (c) time-frequency representation.

FIGURE 2. HF signals: (a) waveform (b) spectrum (c) time-frequency representation.

III. COMPRESSIVE SENSING
In this paper, we try to achieve the efficient sampling for
nonstationary signals by exploring the CS theory. Before
bringing the proposed system into practice, we present some
bases concerning the CS theory in this section.

Let x ∈ RN be the discrete-time, N -dimensional
real-valued signal vector that we wish to acquire. Under the
theory of CS, the signals are supposed to be compressible,
which means that the signals are sparse in a certain transform
domain. Assume that the transform domain is 9, and then x
can be expressed as

x = 9s = s191 + s292 + . . . sN9N (4)

where s is sparse vector, si (i = 1 2 . . . N ) is i-th coefficient
in s, 9 i(i = 1, 2, . . . ,N ) is the i-th column in 9. The signal
is so-called S-sparse if there are S non-zero entries in s.
In practice, sparsity can be a strong constraint to impose,

and we may prefer the weaker concept of compressibility,
which is measured by the error of best S-term approxima-
tion [5]. For p > 0, the lp-error of best S-term approximation
is defined by

σS (s)p := inf
{
‖s− z‖p , z ∈ RN is S-sparse

}
(5)

where nonzero entries in z equal the S largest absolute entries
of s. We call s is compressible if σS (s)p decays quickly in S.
For the sparse and compressible signals, compressive sam-

pling can be achieve by ameasurement process [5], [7], which
can be depicted as

y = 8x = 89s = 2s (6)

where 8 ∈ RM×N is the measurement matrix, 2 = 89 is
the sensing matrix, y ∈ RM is the sample vector. If the signal
is sparse in time, we have 9 = I, where I is identity matrix.

By the measurement matrix8, CS achieves the acquisition
for signals with a far fewer samples. With respect to the
sparsity, we usually have M � N , which implies that only
a small number of samples are generated after sampling.

To recover the original signal, the vector y is supposed to
contain all the information concerning x. This requirement
is guaranteed by the property of measurement matrix, which
is named as Restricted Isometry Property(RIP) [39]. To be
specific, the sensing matrix 2 is supposed to satisfy

(1− δS ) ‖s‖22 ≤ ‖2I s‖22 ≤ (1+ δS ) ‖s‖22 (7)

where δS is the Restricted Isometry Constraint(RIC), 0 <

δS < 1. I is index set with I ⊂ {1, 2, . . . ,N }, 2I is the
matrix formed by choosing the columns of 2 whose indices
are in I. To guarantee the RIP at the order of S, I is supposed
to be any possible index set as I ⊂ {1, 2, . . . ,N }, |I | ≤ S.
With the sensing matrix 2 satisfying the RIP, it is pos-

sible to recover the original signal with sufficient samples,
typically scaling as M ≥ O(S × log(N/S)). This process
is usually conducted by a sparse recovery algorithm that
achieves robust estimates for the sparse vector s, and hence,
enables the recovery for the signal x. For more details on CS,
please refer to [40], [41].

IV. AIC SYSTEM FOR NONSTATIONARY SIGNALS
Under the CS theory, we design a novel AIC sampling system
for nonstationary signals. The system is schematically drawn
in Figure 3. Corresponding parameters are shown in Tabl. 1.
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FIGURE 3. The proposed CS-based AIC system.

TABLE 1. Parameters for AIC system.

In this section, we provide description and analysis for the
proposed AIC system.

A. SYSTEM DESCRIPTION
Our system achieves the sub-Nyquist sampling for nonsta-
tionary signals by exploring the sparsity in time-frequency
domain. The sampling process is conducted in several chan-
nels, implementing different modulation, so that a sufficiently
large number of channels guarantee the accurate reconstruc-
tion for original nonstationary signals.

The proposed AIC systems can be divided into two parts.
One is used to map the nonstationary signals into the
time-frequency domain. The other is used to achieve the
undersampling for time-frequency coefficients. In the first
part, the input signals enter L channels simultaneously. In the
l-th channel, the signals are firstly modulated by the function
e−j2π fl t . Then a low-pass filter is used to prevent aliasing. The
filter output is sampled at the rate 1/T0. Under the conception
of linear time-frequency transform, the sampling period T0
is the shifting interval in time. Note that, different from the
conventional discretization process, here we use the sampler
to achieve the sampling in time, without quantification. This
is mainly because that the filter output is further processed
in analog circuit. The impulse response for low-pass filter is
gl∗(−t), which is conjugated and time-reversedwindow func-
tion g(t). Combined with the modulating function e−j2π fl t ,

the filter, in essence, maps the nonstationary signals into the
time-frequency domain. The definite relationship between
time-frequency coefficient and filter output is presented
in Section IV.B.

The second part is used to achieve the undersampling
for time-frequency coefficients, which is essentially the
implementation of CS theory. In channel l, the undersam-
pling process is conducted in different inner-channels. With
M inner-channels, the filter output is multiplied byM mixing
functions pm(t). As depicted in Figure 4, the mixing func-
tion is generated by the (pseudo-) random sequence gener-
ator, which produces a discrete (pseudo-) random sequence
εm,0, εm,1, εm,2, . . . of numbers that take values±1/

√
K with

equal probability, to yield

εm,k =

{
+1/
√
K , P = 0.5

−1/
√
K , P = 0.5

(8)

FIGURE 4. The generation of mixing function pm(t).

Then the (pseudo-)random sequence is used to create the
continuous-time mixing function pm(t) via the equation

pm (t)=εm,k , t ∈
[
k
T
K
, (k + 1)

T
K

)
, 0 ≤ k ≤ K − 1 (9)

where T = KT0. Under the frame theory, parameters K and
L are supposed to make a dense division for a given time-
frequency interval. The theoretical bound for K and L will be
discussed in Section VB. It is important to note that, although
the filter output is discrete in time, we still use a mixing func-
tion continuous in time. Referring to some current CS-based
AIC systems (such as RD and MWC), continuous-time mix-
ing function is available with simple circuit components.
Then, to have the discrete mixing function, we may need
M more samplers in each channel that work in coordination
with the sampler for the filter. That will obviously increase
the system complexity. Meanwhile, considering the practical
application, the non-ideal sampler will inevitably interfere
with the sampling process. Usingmore samplers will generate
stronger interference. Therefore, in this paper, we just use one
sampler in each channel to sample the filter output. With the
deduction for system output, we will show that it is enough
to achieve the aim of compressive measurement for time-
frequency coefficients.

Actually, (pseudo-)random sequence is widely used in
some current CS-based AIC systems. From a hardware per-
spective, the (pseudo-)random sequence generator used in
these systems must still support the working bandwidth up
to Nyquist rate, which makes it difficult to be implemented
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for wideband signals. In this paper, we use the (pseudo-
)random sequence generator operating at the rate 1/T0. Under
the theory of frame work, time-shifting parameter T0 can be
much larger than the Nyquist period TNyq. That means, with
the proposed system, the working bandwidth of the (pseudo-
)random sequence generator is reduced significantly. That
will make it easier to be implemented in application.

After multiplying with the mixing function, a discrete sys-
tem output is obtained by an integrator and ADC, working at
the rate fs = 1/T . This working rate matches the sampling
rate of the system, since both the integration and quantifica-
tion are conducted at the time period T .
Here, we make an overall description for the proposed

AIC system. The system has the sampling rate far below the
Nyquist rate (fs = 1/T , T = KT0 � TNyq). In practice,
this sampling rate allows flexible choice of an ADC from a
variety of commercial devices in the low rate regime. The
total sample number is LM, where M is determined by the
sparsity of signals. Since the nonstationary signals have good
sparsity in time-frequency domain, we can use few samples
to achieve the accurate reconstruction. The sampling process
uses less a priori information, such that it has wide applica-
bility. Besides, some other advantages in practical implemen-
tation are shown as follows.

1) The analog mixer used in the proposed AIC system is a
provable technology in wideband regime. In words, it is easy
to design themixer adapted to the working bandwidth of input
signals.

2) The special designing of continuous-time random mix-
ing function allows us to use the shift register, which is able to
work at the rate up to 80 GHz. Then the complexity of system
construction is further simplified.

3) Although the sampling process in different chan-
nels is conducted simultaneously, there is not a strict
requirement for time synchronization. In words, we do not
need to consider the problem of timing jitter for practical
designing.

Note that the proposed AIC system is an analog front-
end, where input signals, mixers, and filters work in analog
forms. The system output is digital and discrete, such that it is
convenient for further processing in digital units. Meanwhile,
the system is only used for sampling, since the reconstruction
is carried out in back-end server. That will speed up the
computation and make full use of computing resources.

B. SYSTEM ANALYSIS
Based on the proposed AIC system, we make an analysis
for the whole sampling process. As shown in Section II.B,
the sparsity in time-frequency is the inherent property for
nonstationary signals. This is also the inspiration for us
to design the AIC system. Here, we reveal the relation-
ship between time-frequency coefficients and the system
output.

As analyzed above, the impulse response for low-pass filter
is conjugated and time-reversedwindow function gl(t), which
can be expressed as gl∗(−t). Then the filter output in the

l-th channel can be expressed as

fl(t) =
∫
+∞

−∞

x(t ′)e−j2π fl t
′

· gl∗(t ′ − t)dt ′

=

∫
+∞

−∞

x(t ′) · gl∗(t ′ − t)e−j2π fl t
′

dt ′ (10)

Followed by the sampler operating at the rate 1/T0, the filter
output is sampled in time. Since the filter output is further
processed in analog circuit, for convenience, we introduce
the Dirac delta function δ(t) to depict the sampled filter
output f dl (t), to yield

f dl (t) =
K−1∑
k=0

fl(t)δ(t − kT0) (11)

For t = kT0, we have

f dl (kT0) =
∫
+∞

−∞

x(t ′) · gl∗(t ′ − kT0)e−j2π fl t
′

dt ′ (12)

It is seen from (12) that f dl (kT0) is, in essence, the
time-frequency coefficient at the lattice (kT0, fl). In words,
by the modulating function e−j2π fl t and low-pass filter
gl∗(−t), we realize the time-frequency representation for
nonstationary signals. For convenience, in the following con-
tent, we use the symbol fl,k to represent the filter output f dl (t)
at time t = kT0.
Under the conception of time-frequency analysis, the effec-

tiveness of time-frequency representation depends heavily on
window function gl(t). The designing of window function
aims to have a good time-frequency resolution. To have a
good time resolution, gl(t) is required to be short, whereas,
to have a good frequency resolution, gl(t) is supposed
to be wide. In words, it is contradictory to improve the
time and frequency resolutions simultaneously. The common
countermeasure is utilizing the Gaussian function to cre-
ate a gl(t) with a minimum product of time and frequency
widths [13], [42], such that

1t ·1f =
1
4π

(13)

where

(1t)2=

∫
+∞

−∞
t2 |gl(t)|2 dt∫

+∞

−∞
|gl(t)|2 dt

, (1f )2=

∫
+∞

−∞
f 2 |Gl(f )|2 df∫

+∞

−∞
|Gl(f )|2 df

(14)

And Gl(f ) is the FT for gl(t). With the Gaussian function,
gl(t) can be given by

gl(t) =
1

√
2πσ

e−
t2

2σ2 (15)

where σ 2 is the variance for Gaussian window.
It is important to note that we may use different win-

dow functions with variable window widths in different
channels. It will make sense in some special applications.
For example, when there is a transient component involved
in the nonstationary signals, it is more suitable to use a
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frequency-dependent window function to capture enough
information about the transient property [43]. Then in the l-th
channel, window function gl(t) can be expressed as

gl(t) =
|fl |
√
2π

e−
f 2l t

2

2 (16)

In words, the time-frequency transform in this paper, is
different from some conventional LTFT methods, such as
STFT or GT. Therefore, to guarantee the effectiveness of
the time-frequency transform, we establish the completeness
of time-frequency representation using frequency-dependent
window function. The details are shown in Section V B.

In the l-th channel, M samples are obtained by M inner-
channels. The m-th sample in l-th channel can be described
as

yl,m =
∫ T

0
f dl (t) · pm (t) dt (17)

With the expression of pm (t) and f dl (t) given in (9) and (11)
respectively, yl,m can be rewritten as

yl,m =
K−1∑
k=0

fl,kεm,k (18)

where M � K . That means yl,m is the linear mea-
surement for the time-frequency coefficients. As analyzed
above, nonstationary signals show a good sparsity in the
time-frequency domain, such that most coefficients in
{fl,k}k=0,1,...,K−1,l=1,2,...,L are zero or small enough. That
makes it possible to recover the time-frequency coefficients
from the undersampled measurements. To guarantee the
successful reconstruction of fl,k , a sufficiently large M is
required. Under the CS theory, the theoretical bound for M
is given byM ≥ O(S× log(K/S)), where S is the sparsity for
the set {fl,k}k=0,1,...,K−1.

C. SYSTEM SIMPLIFICATION
As depicted in Figure 3, the proposed AIC system acquires
M samples in M inner-channels. This designing, however,
has a drawback of low utilization for both inner-channel
and (pseudo-)random sequence generator. To deal with this
problem, we present a simplified sampling scheme.

The simplified AIC system is achieved by exploring the
properties of low-pass filter and mixing function. Assume
that signal x(t) is compactly supported on the interval [0, Tw],
and gl(t) is limited to [−Tl/2,Tl/2], satisfying

Tl ≤ 2KT0 − 2Tw (19)

Then we design the new filter with the impulse response
expressed as

g̃l∗(−t) =
M∑
m=1

gl∗(−t + (m− 1)T ) (20)

where KT0 = T . The filter output is pseudo-periodic, which
can be expressed as

fl[t+(m−1)T ]=
∫
+∞

−∞

x(t ′)·g̃l∗[t ′−t−(m−1)T ]e−j2π fl t
′

dt ′

=

M∑
m′=1

∫
+∞

−∞

x(t ′) · gl∗[t ′ + (m− 1)T

− t − (m′ − 1)T ]e−j2π fl t
′

dt ′ (21)

where 1 ≤ m ≤ M . Considering the support time for x(t)
and gl∗(t), fl[t + (m − 1)T ] is non-zero only when m′ = m,
to yield

fl[t+(m−1)T ]=
∫
+∞

−∞

x(t ′) · gl∗(t ′ − t)e−j2π fl t
′

dt ′ (22)

That means fl[t + (m − 1)T ] = fl(t), 1 ≤ m ≤ M .
Meanwhile, we extend the mixing function as

p′(t) =
M∑
m=1

pm[t − (m− 1)T ] (23)

Correspondingly, the integration and system construction
is modified. For the l-th channel, the simplified AIC system
can be depicted in Figure 5.

FIGURE 5. The simplified AIC system.

The system output at the time t = mT can be expressed as

yl(mT ) =
∫ t

t−T
f dl (t) · p

′(t)dt =
∫ mT

(m−1)T
f dl (t) · p

′(t)dt

=

∫ T

0
f dl [t + (m− 1)T ] · p′[t + (m− 1)T ]dt (24)

Since fl[t + (m − 1)T ] = fl(t) (1 ≤ m ≤ M ), with the
sampler operating at rate 1/T0, we have f dl [t + (m− 1)T ] =
f dl (t), to yield∫ T

0
f dl [t + (m− 1)T ] · p′(t + (m− 1)T )dt

=

M∑
m′=1

∫ T

0
f dl (t) · pm[t + (m− 1)T − (m′ − 1)T ]dt

=

∫ T

0
f dl (t) · pm(t)dt = yl,m (25)

That means yl(mT ) = yl,m. In words, in the l-th chan-
nel, the same samples can be obtained by the simplified
AIC system.

It is seen that the simplification is achieved by incorpo-
rating M inner-channels. Therefore, M samples are obtained
in one channel. As analyzed in (25), the simplification does
not change the sampling rate and system output. Moreover,
the (pseudo-)random sequence generators are also reduced.
As a result, to complete the whole sampling process, only
L channels and (pseudo-)random sequence generators are
needed.
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V. RECONSTRUCTION FOR NONSTATIONARY SIGNALS
After sub-Nyquist sampling for nonstationary signals,
another task is to recover the original signals. Based on the
CS theory, we prefer to apply a ‘blind’ process to achieve the
accurate reconstruction.

A. RECONSTRUCTION MODEL
The proposed AIC system maps the time-frequency coeffi-
cients into another low-dimensional space. That will make
sense for data saving and transport. However, it also brings
troubles in reconstruction. In the l-th channel, we define that

yl = [yl,1, yl,2, . . . , yl,M ]T (26)

8 =

 ε1,0 . . . ε1,K−1
...

. . .
...

εM ,0 · · · εM ,K−1

 (27)

f l = [fl,0, fl,1, . . . fl,K−1]T (28)

The equation (19) can be rewritten as

yl = 8f l (29)

where yl ∈ RM , 8 ∈ RM×K , f l ∈ RK . Then the recon-
struction is to recover the vector f l from the sample yl .
Since M < N , the reconstruction model is ill-conditioned.
However, when the vector f l is sparse, we can solve this
problem by optimization algorithm.

Under the theory of CS, the successful reconstruction for
the sparse vector f l requires the matrix 8 to satisfy the RIP.
From the expression of (8) and (27), we can find that the
matrix used in this paper is a kind of random measurement
matrix, which is named as Bernoulli random matrix. The RIP
of Bernoulli randommatrix has been studied in some previous
works [5], [6]. The main results are presented in Lemma I.
Lemma I: Let 8 be a randomM ×K matrix whose entries

εm,k are drawn according to the distribution in (8). Given the
sparsity S, δ3S ∈ (0, 1), c0 > 0 and measurement number
M ≥ O(S×log(K/S)), there exist constant c1 > 0 depending
on the δ3S and 8 satisfying 3S-order RIP with probability

≥ 1− 2e−c1M (30)

where

c1 ≤
3δ23S − δ

3
3S

48
− c0[1+ (1+ log(

12
δ3S

))/ log(
K
S
)] (31)

Then with the Bernoulli random matrix 8, it is possible to
recover the sparse vector f l from the undersampled measure-
ments. The reconstruction model [8] can be expressed as

f̂ l = argmin
∥∥f l∥∥0 subject to yl = 8f l (32)

In words, we try to seek the sparsest vector that satisfies
the condition (29). The introduction of l0 norm gives an
unfavorable complexity in computation. To deal with this
challenge, a fundamental method is relaxing the l0 norm to
l1 norm [4], to yield

f̂ l = argmin
∥∥f l∥∥1 subject to yl = 8f l (33)

Both (32) and (33) are basic reconstruction models in
CS theory, which can be solved by some optimization algo-
rithms such as Sparse Bayesian Learning (SBL) [44], or Iter-
atively Reweighted Least Squares (IRLS) [45].
As analyzed above, the good sparsity of f l is one of the

key points to guarantee the successful reconstruction from
undersampled measurements. In this paper, the sparsity for
f l is guaranteed by the time-varying properties, which are
commonly shared by many nonstationary signals. However,
it is also important to note that the proposed AIC system may
be unsatisfactory in some cases. Firstly, multiple components
in nonstationary signals will increase the sparsity in time-
frequency, and inevitably, increase the sample number. The
proposed system will be meaningless if the sampling number
is too large due to the poor sparsity caused by multiple
components. Secondly, there will be obvious reconstruction
errors if the signals contain stationary components. From the
construction of f l , we know that f l will be non-sparse if the
nonstationary signals contains stationary frequency compo-
nent fl . That will cause failure for the reconstruction of f l .

B. COMPLETENESS
After reconstructing all vectors

{
f l
}
l=1,2,...,L , another main

task is to reconstruct the original signals. Since the entries in
f l are the time-frequency coefficients, it is a natural choice to
introduce the frame theory to provide theoretical support for
the reconstruction process [12], [50].

For convenience, we rewrite the expression of time-
frequency coefficient fl,k as

fl,k =
∫
+∞

−∞

x(t ′) · gl∗(t ′ − kT0)e−j2π fl t
′

dt ′

=

〈
x(t), gl(t − kT0)ej2π fl t

〉
(34)

where the collection
{
gl(t − kT0)ej2π fl t

}
l,k∈Z is the basis for

time-frequency transform. We introduce the translation and
modulation operators as

Txg(t) := g(t − x) (35)

Mωg(t) := g(t)ej2πωt (36)

Then the collection can be simplified as {MflTkT0
gl(t)}l,k∈Z. To guarantee the effectiveness of the proposed
AIC system, we should make sure that for any nonstationary
signal x(t) ∈ L2(R), the coefficient collection

{
fl,k
}
l,k∈Z

is sufficient to represent the signals. Such that the basis{
MflTkT0gl(t)

}
l,k∈Z should be complete to recover the nonsta-

tionary signal x(t). Therefore, we introduce the frame theory
to establish completeness. The definition for a frame is shown
in Definition I.
Definition I: A collection

{
MflTkT0gl(t)

}
l,k∈Z is a frame in

L2(R) if there exist constants 0 < A ≤ B <∞, such that for
any x(t) ∈ L2(R) we have

A ‖x‖2 ≤
∑
k,l∈Z

∣∣〈x,MflTkT0gl
〉∣∣2 ≤ B ‖x‖2 (37)

where A and B are frame bounds.
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If
{
MflTkT0gl(t)

}
l,k∈Z constructs a frame, there exists dual

window γl(t) such that

x(t) =
∑
k,l∈Z

fl,kγl(t − kT0)ej2π fl t (38)

where γl(t) = S−1gl(t). S is the frame operator defined by

Sx =
∑
k,l∈Z

〈
x(t), gl(t − kT0)ej2π fl t

〉
gl(t − kT0)ej2π fl t (39)

Under the scheme of frame theory, completeness is highly
impacted by the density of the lattice (kT0, fl). In this paper,
the density is defined by d = 1/(T0f0), where f0 =
max
l
|fl+1 − fl |, l ∈ Z. Then the time-frequency representa-

tion, also called time-frequency sampling, can be divided into
three categories as:
• Undersampling—d < 1.
• Critical sampling—d = 1.
• Oversampling—d > 1.
In the case of undersampling, the representation is proven

to be incomplete. So the necessary condition for complete-
ness is Tof0 ≤ 1, where critical sampling occurs when
Tof0 = 1.
It is presented in Section II that the collection of window

functions with invariant shifts in time and frequency is able
to construct a Gabor frame. However, in this paper, the col-
lection

{
MflTkT0gl(t)

}
l,k∈Z is not the typical shift-invariant

system, since we may use variable window functions and
irregular lattices in some cases. Considering the differences
above, we present the proof of the existence of the frame with
variable window functions and irregular lattices. The result is
shown in Theorem I.
Theorem I: Assume that gl(t) ∈ L2(R) is compactly sup-

ported on both time and frequency. There exist 0 < T0, 0 <
fl , such that

1) C ≤
L∑
l=1
|Gl(f − fl)|2 ≤ D

2) max
l
|supp(Gl(f ))| ≤ 1

T0
Then for any x(t) ∈ L2(R), we have

C
T0
‖x‖2 ≤

∑
k,l∈Z

∣∣〈x,MflTkT0gl
〉∣∣2 ≤ D

T0
‖x‖2 (40)

In words,
{
MflTkT0gl(t)

}
l,k∈Z is a frame with the bounds

C
T0

and D
T0
.

Proof: see Appendix A.
In particular, the nonstationary signals, considered in this

paper, are compactly supported on the interval [0, Tw]. Mean-
while, for the practical implementation, the frequency content
is also confined to a finite interval [−f�/2, f�/2]. Therefore,
{fl}l∈Z and {kT0}k∈Z are finite and supposed to make a divi-
sion for the joint time-frequency interval. The values ofK and
L are chosen to make sure that

{
MflTkT gl(t)

}
1≤l≤L,0≤k≤K−1

can spread across the intervals [0,Tw] and [−f�/2, f�/2].
Assume that glmin(t) and glmax(t) are the window functions
with minimum support width and maximum support width

in time, respectively. According to the Uncertainty princi-
ple, minimum support in time will result in the maximum
support in frequency. Therefore, we consider the time inter-
val [−Tmax/2,Tmax/2] for glmax(t) and frequency interval
[−fmax/2, fmax/2] for Glmin(f ). The theoretical bounds for K
and L are given by

K ≥
2Tw + Tmax

2T0
(41)

L ≥
f� + fmax

2f0
− 1 (42)

where symmetry in frequency is considered for real-valued
nonstationary signals.

To support a higher f�, the direct method is to increase the
value of L, such that more channels are used in the system.
On the other hand, we can also increase the bandwidth of
low-pass filter. Then the time-shifting parameter T0 must be
reduced, resulting in higher inner-channel processing load
and working bandwidth for the (pseudo-)random sequence
generator.

C. NOISES AND MISMATCH
As analyzed in Section V.A and V.B, we can achieve accu-
rate reconstruction for the nonstationary signals from the
sparse time-frequency coefficients. However, in the practical
implementation, the AIC system will inevitably be interfered
by noises and mismatch. More specifically, the sampling
process may be interfered by some uncertain factors such
as circuit crosstalk, grounding and measurement instability.
Then noises will be mixed in the samples. On the other hand,
there is also a mismatch for the sampling and reconstruction
process, such as the finite samples and approximate duality.
Therefore, we make an analysis for the reconstruction error
at the existence of noises and mismatch.

Assume that x(t) = x0(t)+ e(t), x0(t) is the original signal
without noises, e(t) is the Gaussian noise. Then in the l-th
channel, we have

fl(t) =
∫
+∞

−∞

[x0(t ′)+ e(t ′)] · gl∗(t ′ − t)e−j2π fl t
′

dt ′

=

∫
+∞

−∞

x0(t ′) · gl∗(t ′ − t)e−j2π fl t
′

dt ′

+

∫
+∞

−∞

e(t ′) · gl∗(t ′ − t)e−j2π fl t
′

dt ′

= f 0l (t)+ f
e
l (t) (43)

where

f 0l (t) =
∫
+∞

−∞

x0(t ′) · gl∗(t ′ − t)e−j2π fl t
′

dt ′ (44)

f el (t) =
∫
+∞

−∞

e(t ′) · gl∗(t ′ − t)e−j2π fl t
′

dt ′ (45)

Then the filter output f dl (t) at time t = kT0 is expressed as
fl,k = f 0l (kT0) + f

e
l (kT ) = f 0l,k + f

e
l,k . Besides, we introduce

wl,m as the Gaussian noise caused by uncertain factors during
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sampling. Then the system output can be depicted as

yl,m=
K−1∑
k=0

fl,kεm,k + wl,m=
K−1∑
k=0

(f 0l,kεm,k + f
e
l,kεm,k )+ wl,m

(46)

In matrix form, we have

yl = 8(f 0l + f
e
l )+ wl (47)

where

f 0l = [f 0l,0, f
0
l,1, . . . f

0
l,K−1]

T (48)

f el = [f el,0, f
e
l,1, . . . f

e
l,K−1]

T (49)

wl = [wl,0,wl,1, . . .wl,K−1]T (50)

Assume that zl = 8f el + wl , we have

yl = 8f 0l + zl (51)

Since the noises are independent, entries in zl also follow
Gaussian distribution. Assume that the variance for zl is σ 2

z ,
we modify the reconstruction model as

f̂
0
l = argmin

∥∥∥f 0l ∥∥∥0 subject to
∥∥∥yl −8f 0l

∥∥∥2
2
≤ σ 2

z (52)

In words, f̂
0
l is an estimation for f 0l . To measure the errors

between f̂
0
l and f

0
l , for 1 ≤ l ≤ L, we assume that

K−1∑
k=0

L∑
l=1

∣∣∣f 0l,k − f̂ 0l,k ∣∣∣2 ≤ µ2
1σ

2
z (53)

where f̂ 0l,k is the entry in f̂
0
l , µ1 is determined by both recon-

struction algorithm and matrix 8.
For the practical implementation, the signals are assumed

to be compactly supported on both time and frequency. This
assumption will absolutely cause energy loss during sam-
pling. Support that xc0(t) is the essential signal for x0(t) with
the essential band limited into [−�/2, �/2], to yield∥∥x0(t)− xc0(t)∥∥22 ≤ ε� ‖x0(t)‖22 (54)

It is implied that the time-frequency coefficient f 0l,k is only
obtained from xc0(t), such that∥∥∥∥∥x0(t)−

K−1∑
k=0

L∑
l=1

〈
xc0(t),MflTkT0gl(t)

〉
MflTkT0γl(t)

∥∥∥∥∥
2

2

≤ ε� ‖x0(t)‖22 (55)

where f 0l,k =
〈
xc0(t),MflTkT0gl(t)

〉
.

Actually, there is also a mismatch between the dual win-
dows gl(t) and γl(t), since optimization is used while calcu-
lating the expression of γl(t). Given γl(t), we assume that the
accurate dual window for γl(t) is g′l(t). Then the mismatch
can be measured by Theorem II.

Theorem II: Assume that xc0(t) is essential signal, γl(t) and
g′l(t) are dual windows, and gl(t) is the approximation for
g′l(t) satisfying(
K−1∑
k=0

L∑
l=1

∣∣〈xc0(t),MflTkT0 [g(t)− g
′(t)]

〉∣∣2)1/2

≤µ2
∥∥xc0(t)∥∥2

(56)

Then we have∥∥∥∥∥xc0(t)−
K−1∑
k=0

L∑
l=1

〈
xc0(t),MflTkT0gl(t)

〉
MflTkT0γl(t)

∥∥∥∥∥
2

≤ µ2
√
Bγ
∥∥xc0(t)∥∥2 (57)

where Bγ is the upper bound for the frame constructed
by γl(t).

Proof: See Appendix B.
With all the factors mentioned above, we now give a

bounded total error as expressed in Corollary I.
Corollary I: Assume that x0(t) is the nonstationary signal

without noises, f̂ 0l,k is the estimation for the time-frequency
coefficients. Then the total deviation after reconstruction can
be given by∥∥∥∥∥x0(t)−

K−1∑
k=0

L∑
l=1

f̂ 0l,kMflTkT0γl(t)

∥∥∥∥∥
2

≤
√
ε� ‖x0(t)‖2 + µ2

√
Bγ
∥∥xc0(t)∥∥2 + µ1σN

√
Bγ (58)

VI. NUMERICAL SIMULATIONS
We now present some numerical experiments to illustrate the
effectiveness of the proposed AIC system. The nonstationary
signals used in the experiment are LFM and HF signals. One
example of such signals is shown in Figure 1 and Figure 2.
Here, the signals are compactly supported on the time inter-
val [0, 0.512ms] and essentially bandlimited to [0.05MHz,
0.45MHz]. For LFM signals, the instantaneous frequency
fi(t) is set to

fi(t) = 50000+ 781250000t (59)

For HF signals, the maximum time duration between
frequencies is 0.057ms, the hopping range is [0.05MHz,
0.45MHz]. According to the bandwidths of LFM and HF
signals, we set fNyq = 1MHz, such that TNyq = 1

/
fNyq = 1us.

Considering the properties of signals, we use a fixed win-
dow in different channels, created by Gaussian function with
σ = 7×10−6. Then the corresponding filter impulse response
and magnitude response are shown in Figure 6. The support
widths in time and frequency are 0.042ms and 0.14MHz.

A. LATTICES FOR COMPLETENESS
To make sure that lattices are complete to represent any
nonstationary signals, we discuss the reasonable values of
shifting parameters T0 and fl . Since the low-pass filters in
different channels are the same, we set frequency-shifting
parameter fl = lf0 to make a uniform division for the essen-
tial band. According to Theorem I, the frame bounds are
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FIGURE 6. The impulse response and magnitude response for the
low-pass filter: (a) the impulse response function; (b) the magnitude
response function.

determined by C , D and time-shifting parameter T0. Firstly,
we show the values of C , D with different f0. The result is
shown in Figure 7 (a). It is seen that small f0 will contributes
to the tightness of the frame, where C and D get close
to 1 simultaneously. To guarantee the sampling density, in the
following experiment, we set f0 = 62.5KHz.
Then, we discuss the appropriate value for T0. Actually,

the constraint for T0 in Theorem I is sufficient to construct
a frame. Then with the filter shown in Figure 6, we have
T0 ≤ 7.14 × 10−3ms. However, this constraint is not
necessary. Given f0, T0 will directly determine the number
of samples. So we want T0 to be large enough to reduce
the sample number as much as possible. We recover the
original signals with the filter output to analyze the impact
of T0 in time-frequency representation. The result is shown
in Figure 7 (b) and (c). In this figure, we introduce the Root
Mean Square Error (RMSE) to measure the reconstruction
error, such that

RMSE =

√√√√∥∥x̂(t)− x(t)∥∥22
supp |x(t)|

(60)

where x̂(t) is the reconstructed nonstationary signals. It is
seen that low errors can also be achieved, even T0 is larger
than 7.14×10−3ms. Therefore, we set T0 ≤ 16×10−3ms for
both LFM and HF signals, where time-frequency coefficients
are able to perfectly represent the nonstationary signals.

B. RECONSTRUCTION FOR AIC SYSTEM AND
COMPARISON
Now, we present the reconstruction effect using the samples
from the proposed AIC system. We firstly use the system

FIGURE 7. The analysis for lattice parameters T0 and fl : (a) the values of
C , D with different f0; (b) RMSE for LFM signals; (c) RMSE for HF signals.

output to reconstruct the sparse time-frequency coefficients,
and then recover the original nonstationary signals under the
frame theory. The sparse optimization used in this paper is
SBL algorithm [44]. As analysis above, we set f0 = 62.5KHz.
And T0 is set to 16 × 10−3ms 8 × 10−3ms, 4 × 10−3ms,
respectively. Corresponding, we have L = 8, K = 34, 67,
and 134.

We set different values of M , such that different numbers
of samples are obtained. We use the Monte Carlo method
to conduct the experiment 500 times for each setting. For
each time, we use RMSE to measure the reconstruction error.
If RMSE < 0.01, the reconstruction is viewed as success;
otherwise, it is false. The result is shown in Figure 8. It is
seen that the original signals can be accurately reconstructed
with high probability whenM is large enough. That conforms
to the basic CS theory. Besides, it is seen that the minimumM
guaranteeing the high success probability increases with K .
This is because that, for the same input signals, the ratio K /S
is constant. Then according to Lemma 1, the minimumM is
calculated byM ≥ O(S×log(K/S)). The increasing inK will
lead to a larger value of S. Then, more samples are required
to guarantee accuracy reconstruction.
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FIGURE 8. Reconstruction probability for different M and K : (a) for LFM
signals; (b) for HF signals.

We further compare the effectiveness of the proposed
AIC system with other sampling methods state-of-the-art.
We introduce two widely-used sampling methods, including
Nyquist sampling and Time-interleaving sampling, which are
represented by the terms ‘NS’ and ‘TIS’. And two other AIC
systems, including RD and MWC, are also introduced to
conduct the sub-Nyquist sampling for nonstationary signals.
For TIS, the channel number is set to L. For RD, the sampling
rate is LM/T . For MWC, the channel number is also L,
the sampling rate in one channel is M /T . For the proposed
AIC system, we set K = 34. Besides, we set M = 20,M =
24 for LFM and HF signals, respectively. Then the proposed
AIC system achieves the accurate reconstruction with the
probability up to 99%. The total sampling rate is the product
of channel number and sampling rate (one channel), whereas
the total sample number is calculated in the same way. The
comparison is shown in Table 2.

It is seen that the proposed AIC system reduces the
sampling rate and sample number significantly. Meanwhile,
the total sampling rate and sample number are also below
‘Nyquist’ method. For TIS, it is seen that although sampling
rate (one channel) and sample number (one channel) are
reduced, the total sampling rate and sample number are the
same with ‘Nyquist’ method. That is the essential difference
between AIC system and TIS, since the AIC system achieves
the sub-Nyquist sampling for signals. Compared with RD and
MWC, we know that, with the same total sample number,
the proposed AIC system achieves the lowest sampling rate.
Moreover, the simplified AIC further reduces the total sam-
pling rate by increase the sample number in one channel. That
means the high utilization of system channels also contributes
to the decrease in the total sampling rate.

TABLE 2. Comparison for effectiveness.

For further comparison, we use the samples from the AIC
systems, including RD, MWC and proposed AIC system,
to conduct the reconstruction for nonstationary signals. For
LFM and HF signals, M is set to 20, 40, and 60, respec-
tively. The reconstructed signals are shown in Figure 9 and
Figure 10. To measure the reconstruction effect, RMSEs are
also calculated in Table 3.

TABLE 3. Comparison of reconstruction error.

It is seen from Figure 9 and Figure 10 that by increasing
the value ofM , the reconstruction effect is improved. And the
proposed AIC system achieves a better reconstruction than
RD and MWC. For M = 20 or M = 40, RD and MWC fail
to make an effect reconstruction for LFM and HF signals,
whereas the proposed AIC system reconstructs the original
signals preferably. And as shown in Table 3, for M = 20
or M = 40, RMSEs of RD and MWC are larger than the
proposed AIC system. When M = 60, the reconstruction
effects for RD and MWC are obviously improved. How-
ever, the reconstruction error is still larger than the proposed
AIC system. Therefore, the effectiveness of the proposed AIC
system is verified.

C. THE IMPACT OF NOISES
To explore the impact of noises, we recalculate the RMSE
with noises in different Signal-to-Noise Ratio (SNR). With
K = 34, we set M ≥ 20 and M ≥ 24 for LFM
and HF signals, respectively, where the accurate reconstruc-
tion probability without noises is up to 99%. For each
setting, the experiment is conducted 500 times. Similarly,
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FIGURE 9. Reconstructed LFM signals: (a) RD with M = 20 (b) MWC with M = 20 (c) Proposed AIC system with M = 20 (d) RD with M = 40
(e) MWC with M = 40 (f) Proposed AIC system with M = 40 (g) RD with M = 60 (h) MWC with M = 60 (i) Proposed AIC system with M = 60.

FIGURE 10. Reconstructed HF signals: (a) RD with M = 20 (b) MWC with M = 20 (c) Proposed AIC system with M = 20 (d) RD with M = 40
(e) MWC with M = 40 (f) Proposed AIC system with M = 40 (g) RD with M = 60 (h) MWC with M = 60 (i) Proposed AIC system with M = 60.

If RMSE < 0.01, the reconstruction is viewed as accurate;
otherwise, it is false.

The result is shown in Figure 11. It is seen that the
high probability can also be guaranteed if SNR is large.
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FIGURE 11. The reconstruction probability with noises: (a) for LFM
signals; (b) for HF signals.

Meanwhile, the probability is also impacted byM . When we
increaseM slightly, the reconstruct effect is improved, as the
high probability can be obtained with a smaller SNR. How-
ever, when we continue to increase the value ofM , the recon-
struction effect is worse. This is mainly because that the
increasing in M also introduces more measurement noises.
Therefore, in practical implementation, we can increase the
M appropriately to enhance the robustness of AIC system.
For example, in this experiment, we can chooseM = 21 and
M = 25 for LFM and HF signals, respectively. Then the best
reconstruct effect can be obtained.

D. IMPLEMENTATION ASPECTS
Considering the implementation in practical circuit, the pro-
posed AIC system mainly contains the following compo-
nents: modulator, filter, mixer, (pseudo-)random sequence
generator, integrator and ADC. Typically, the mixer, (pseudo-
)random sequence generator, integrator and ADC compo-
nents are commonly shared by some current CS-based AIC
systems [28], [34]. Therefore, in this sub-section, we mainly
analyze the implementation of modulator and filter.

Under the proposed scheme, the modulating function is the
conventional frequency modulating signal, such that it can
be realized exploiting the widely used frequency synthesis
technique. Nowadays, the frequency synthesizer with high
stability and precision is available [51], [52]. Stable output
signals at the frequency up to 60 GHz will provide a high
working band for the proposed AIC system.

Analog filter is the key missing piece for the proposed
AIC system. For the conventional low-pass filter, the filter
designing mainly focuses on the performance in magnitude
response. However, in this paper, we may pay more atten-
tion to the filter’s impulse response. The latest technique

in continuous-time analog filter designing provides a fea-
sible approach to design an integrated analog Gaussian fil-
ter [53], [54]. The rational approximation for the Gaussian
function in time will guarantee the accurate time-frequency
representation for nonstationary signals.

Considering all the aspects above, we make a comparison
about implementation complexity between the proposed AIC
system and some other sampling methods state-of-the-art,
including:

1) Nyquist sampling(NS);
2) Time-interleaving sampling (TIS);
3) RD;
4) MWC.
It is seen from Table 4 that compared with Nyquist

and T-Nyquist sampling methods, CS-based AIC systems
(RD, MWC and Proposed) use more components in imple-
mentation. This is because to achieve the lower sampling rate,
a more complex system construction is needed. Similarly,
we can see that the proposedAIC system has themost compo-
nents, denoting that it even has a higher complexity than RD
and MWC. However, it is important to note that the proposed
AIC system still makes sense in the application, because
we have a further lower sampling rate that RD and MWC.
Besides, we reduce the working rate for (pseudo-)random
sequence generator, such that it allows a more flexible choice
of (pseudo-)random sequence generator in the application.

TABLE 4. Comparison for implementation.

Another problem in hardware implementation is the
non-ideal factors for the analog realization of the proposed
AIC system. Since most components of the proposed AIC
system works in analog form, the non-ideal analog devices
will absolutely bring errors during the sampling and recon-
struction. Therefore, further studies are required to search a
satisfactory solution.

VII. DISCUSSION
In this section, we make a discussion about the connections
between the proposed AIC system and some other related
works, and then make a conclusion about this paper.

A. RELATED WORKS
Themost direct precedent for this paper is the CS theory, such
works as [5], [39], and [41]. Besides, as shown in work [8],
the random measurement matrix has been proven to be effec-
tive for some applications. Considering more about the CS
theory, these works mainly concentrate on the feasibility of
compressive sampling and sparse reconstruction. Inspired by
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these works, we try to transport the theoretical achievements
into practice. Therefore, we design an analog front-end to
deal with the analog signals directly, and propose the feasible
architecture to achieve the compressive sampling. This work
can be viewed as an application of CS theory for nonsta-
tionary signals. Indeed, our numerical experiments also echo
some results in CS theory.

Actually, the idea of CS-based AIC system has been stud-
ied previously in some works, and the item ‘Xampling’ has
been proposed to convey a balance between CS techniques
and traditional concepts in sampling theory [46], [47]. Some
AIC systems have been proven to be achievable, such as
MWC and RD. Indeed, our proposed system is another case
for ‘Xampling’ system. The main difference of our work lies
in the input signal. For these AIC systems, sparsity for input
signals in frequency domain is necessary to guarantee the per-
fect reconstruction. However, in this paper, we study the non-
stationary signals, which are usually not sparse in frequency.
To deal with this problem, in this paper, we propose a novel
sampling scheme to realize the compressive sampling in time-
frequency domain. We show that it is feasible to recover the
nonstationary signals accurately with a high probability.

This paper is highly inspired by fruitful results in time-
frequency analysis, such works as [42] and [43]. Besides,
the conception of CS in time-frequency domain has also
been studied in some works such as [48] and [49]. These
works explore the feasibility of sparse representation in
time-frequency and provide the theoretical analysis for
the reconstruction process. Compared with these works,
we consider more about practical implementation. So the
time-frequency representation is more practical. Actually, the
proposed AIC system is also inspired by the work [50], where
a Gabor-based sampling system is proposed for short pulses.
Despite the similarity, in this paper, we focus on the sub-
Nyquist sampling for nonstationary signals. Therefore, we
extend the Gabor frame to a more general situation with
irregular lattices and variable window function. Moreover,
we present a novel architecture with advantages in practical
implementation.

B. CONCLUSION
In this paper, we propose a novel AIC system to achieve the
sub-Nyquist sampling for nonstationary signals. We present
a simple architecture such that it can be implemented with
existing analog devices and ADCs. The sub-Nyquist sam-
pling is achieved by exploring the sparsity in time-frequency
domain. With the proposed system, we can sample the non-
stationary signals at a low rate and recover the original signals
without using a priori information.

The sampling process is conducted in a multi-channel
AIC system consisting of low-pass filters, integrators,
and ADCs. We provide a description for the system
construction schematically, and then analyze the sam-
pling process to reveal the essential relationship between
time-frequency coefficients and system samples. For practi-
cal implementation, we further provide the simplified system

construction to reduce inner-channels and (pseudo-)random
sequence generators. In reconstruction, we establish the
reconstruction model for time-frequency coefficients, and
then construct a frame to make sure that these coefficients
are complete to recover the original signals. We consider the
reconstruction error with the existence of noises and mis-
match. It is shown that the proposed AIC system has bounded
total error. We verify the effectiveness by numerical experi-
ments. It is seen that the proposed AIC system outperforms
the other sampling methods state-of-the-art.

For practical application, there are some other aspects we
should pay attention to. Firstly, the accuracy reconstruction
for nonstationary signals depends on the good sparsity in
time-frequency domain. If the signals are not sparse suffi-
ciently, we may need more samples to guarantee accurate
reconstructed. In words, the proposed system is only suit-
able for the nonstationary signals which have good sparsity
in time-frequency domain. Secondly, compared with some
other CS-based AIC systems state-of-the-art, the proposed
AIC system contains more components in circuit implemen-
tation. Therefore, further study is still required to simplify
hardware implementation. Finally, the efficient sampling for
nonstationary signals is determined by the bandwidth of input
signals. That means the fixed system parameters may not suit-
able for all input signals. The feasible solution is to conduct a
coarse signal analysis before the sampling process. However,
the specific implementation scheme requires further study.

APPENDIX A
PROOF OF THEOREM I
We present some basic properties for the translation and
modulation operators as〈

x,TKT0g
〉
=
〈
T−KT0x, g

〉
,

〈
x,Mflg

〉
=
〈
M−fl x, g

〉
(61)(

TKT0x
)∧
= M−KT0X ,

(
Mfl x

)∧
= TKT0X (62)

where (·)∧ is to conduct the FT. Then for any x(t) ∈ L2(R),
we have∑

k,l∈Z

∣∣〈x,MflTkT0gl
〉∣∣2 = ∑

k,l∈Z

∣∣〈X ,TflM−kT0Gl 〉∣∣2 (63)

For convenience, we ignore the phase factors in
T−flMkT0Gl , since they vanish in the inner product. Then∑
k,l∈Z

∣∣〈X ,TflM−kT0Gl 〉∣∣2 = ∑
k,l∈Z

∣∣〈T−flX ,M−kT0Gl 〉∣∣2
=

∑
k,l∈Z

∣∣〈T−flXGl∗,M−kT0 〉∣∣2 (64)

Assume that the support interval for Gl(f ) is Il . In words,
given l ∈ Z, T−flXGl∗ is also compactly supported on interval
Il . Since max

l
|supp(Gl(f ))| ≤ 1

T0
, we have Il ≤ 1

T0
.

Then
{

1
T0
M−kT0

}
k∈Z

is an orthonormal basis for L2(Il).
So we have∑

k,l∈Z

∣∣〈T−flXGl∗,M−kT0 〉∣∣2
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=
1
T0

∑
l∈Z

∫
+∞

−∞

∣∣T−flX (f ) · Gl∗(f )∣∣2
=

1
T0

∑
l∈Z

∫
+∞

−∞

∣∣X (f ) · TflGl∗(f )∣∣2
=

1
T0

∑
l∈Z

∫
+∞

−∞

|X (f )|2
∣∣TflGl∗(f )∣∣2df (65)

Such that

C
T0
‖X (f )‖2 ≤

1
T0

∑
l∈Z

∫
+∞

−∞

|X (f )|2
∣∣TflGl∗(f )∣∣2df

≤
D
T0
‖X (f )‖2 (66)

Then Theorem I is proven.

APPENDIX B
PROOF OF THEOREM II
As the approximate dual window for g(t), γ (t) is also sup-
posed to construct a frame with the bounds Aγ and Bγ , such
that

Aγ ‖x‖2 ≤
∑
k,l∈Z

∣∣〈x,MflTkT0γl
〉∣∣2 ≤ Bγ ‖x‖2 (67)

∥∥∥∥∥∥
∑
k,l∈Z

ck,lMflTkT0γl

∥∥∥∥∥∥
2

2

≤ Bγ

|ck,l |
2∑

k,l∈Z
(68)

Then we have∥∥∥∥∥xc0(t)−
K−1∑
k=0

L∑
l=1

〈
xc0(t),MflTkT0gl(t)

〉
MflTkT0γl(t)

∥∥∥∥∥
2

2

=

∥∥∥∥∥
K−1∑
k=0

L∑
l=1

〈
xc0(t),MflTkT0 [g

′
l(t)− gl(t)]

〉
MflTkT0γl(t)

∥∥∥∥∥
2

2

≤ Bγ
K−1∑
k=0

L∑
l=1

∣∣〈xc0(t),MflTkT0 [g
′
l(t)− gl(t)]

〉∣∣2 (69)

Such that∥∥∥∥∥xc0(t)−
K−1∑
k=0

L∑
l=1

〈
xc0(t),MflTkT0gl(t)

〉
MflTkT0γl(t)

∥∥∥∥∥
2

≤ µ2
√
Bγ
∥∥xc0(t)∥∥2 (70)

Then Theorem II is proven.
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