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ABSTRACT The growing demand for eliciting useful knowledge from data calls for techniques that can
discover insights (in the form of patterns) that users need. Methodologies for describing intrinsic and relevant
properties of data through the extraction of useful patterns, however, work on fixed input data, and the
data representation, therefore, constrains the discovered insights. In this regard, this paper aims at providing
foundations to make the descriptive knowledge that is extracted by pattern mining more user-centric by
relying on flexible data structures defined on two different perspectives: concepts and data records. In this
sense, items in data can be grouped into abstract terms through subjective hierarchies of concepts, whereas
data records can also be organized based on the users’ subjective perspective. A series of easy-to-follow toy
examples are considered for each of the two perspectives to demonstrate the usefulness and necessity of the
proposed foundations in pattern mining. Finally, aiming at experimentally testing whether classical pattern
mining algorithms can be adapted to such flexible data structures, the experimental analysis comprises
different methodologies, including exhaustive search, random search, and evolutionary approaches. All these
approaches are based on well-known and widely recognized techniques to demonstrate the usefulness of the
provided foundations for future research works and more efficient and specifically designed algorithms.
Obtained insights demonstrate the importance of working with subjectivity: an item is a type of soda but
belongs to a pack, including two or more soda types.

INDEX TERMS Pattern mining, space of concepts, space of records, user-centric knowledge.

I. INTRODUCTION
Over the last decade there has been a massive explosion of
data collected in almost any application domain, leading to an
exponentially growing interest in managing and transforming
tons of facts into useful information [1]. Generally, raw data
is uninteresting and an in-depth analysis is required to obtain
different forms of data from which new information can be
derived [2]. The process of discovering valuable insights from
a collection of records has given rise to the field known as
knowledge discovery in databases (KDD) [3]. KDD methods
and techniques are generally user-centric as the aim is tomake
sense of data and decrease its uncertainty.

In general terms, the key element in the process of elic-
iting useful knowledge is the pattern [4], which defines
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subsequences, substructures or itemsets (sets of values) [5]
that represent any type of homogeneity and regularity in
data [6]. Patterns represent intrinsic and important properties
of datasets, and these patterns are required to be novel, signif-
icant, unexpected, nontrivial and actionable [7]. Given a set of
items (values or symbols) I = {i1, i2, . . . , in} in a database�,
a pattern P describes valuable data features and it can be
formally defined as a subset of I , i.e. P = {ij, . . . , ik} ⊆ I ∈
�, 1 ≤ j, k ≤ n. The value of the discovered information lies
not only in the knowledge itself but in the actions that can be
taken as a result of the insights [8]. A well-known example
of application domain is market basket analysis in which the
extraction of patterns and analysis of correlations between
items have been largely studied [9]. Here, the aim is to
understand consumer purchasing habits to design successful
marketing strategies. For instance, discovering that someone
who acquires a productA has a high probability of also buying
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a product B provides valuable insights to managers, who
may then co-promote these products by launching a tailored
advertising campaign.

Nowadays, actions based on data insights are more and
more relevant in any application field and users’ requirements
are getting increasingly complex. These intricate expecta-
tions can be hardly fulfilled using insights discovered by
conventional pattern mining approaches [7]. Hence, novel
mechanisms that enable extracting more valuable knowledge
are required [10]. In this regard, there are some progresses
in supplying existing pattern mining approaches [11] with
methods to extract more actionable insights [6]. For example,
some approaches enable restricting the search space with var-
ious constraints [12]; others are ready to use on new and more
flexible forms of information [13]; and finally, some methods
can handle context-sensitive concepts to avoid discriminative
behavior [14]. Nevertheless, even when there is an increasing
awareness of the importance of extracting an appropriate
knowledge type, it is still far from accomplishing the users’
aim, and a more in-depth analysis is usually required to fully
understand the discovered insights.

It is obvious that the knowledge discovered by any pattern
mining approach highly depends on the stored information
so different insights can be produced only from disparate
information. Nevertheless, the same data can be analysed
from contrasting perspectives or views that will produce com-
pletely different results (comprising the same information but
expressed differently), and these results may be useful for
a specific purpose but useless for another. This is similar
to the fact that two people may describe the same thing
from two different angles and both be right. Based on this
idea, this paper aims to provide the foundations to make the
descriptive knowledge that is extracted by pattern mining
more user-centric [15] by relying on flexible data structures
defined on two different spaces or perspectives: concepts and
records. In this regard, the contribution of this research work
can be summarized as follows:

1) The idea of flexibility in the input data is provided by
defining items (concepts in the domain at hand) on
different levels of abstraction through a context-free
grammar, which minimizes the limitations of using
homogeneous tree structures to represent the subjective
knowledge.

2) The proposed use of context-free grammars enables
the subjective knowledge to be modelled as inho-
mogeneous taxonomies (not all the concepts include
abstractions in every level) and considering ambiguous
concepts (each node is not unequivocally identified by
an ancestor node).

3) Because data organization is key to produce the right
insights, different ways of handling such arrangement
are provided. Any pattern analysed from the whole
dataset point of viewwill produce an insight that highly
differs from that obtained when the same pattern is
analysed on records grouped by the same object, e.g.
the same customer.

4) The proposed methodology is able to cope with either
objective and subjective information to group records.
Additionally, it is able to consider different levels of
ambiguity, which is essential in many situations (for
example, descriptive analysis considering different cus-
tomers and periods of time).

The final aim of this paper is to set the bases for further
research studies on the ideas here presented, so the algo-
rithmic solutions presented for each of the two perspectives
are just adaptations of well-known algorithms demonstrating
that all the proposed ideas are feasible to be carried out.
Here, user-centring insights can be obtained, which are easily
applicable (improving understanding) and focused on the task
at hand (increasing actionability). The rest of the paper is
organized as follows. Sections II and III describe different
to handle data so more user-centric descriptions and insights
can be produced from two different views: concepts and data
records. Then, some classic approaches are adapted to the
proposed foundations (see Section IV), which are then exper-
imentally analyzed (see Section V). Finally, a lesson learned
is described in Section VI and some concluding remarks are
outlined in Section VII.

II. SPACE OF CONCEPTS
The space of concepts in pattern mining is a key element in
the discovery of insights from data. Heretofore, the amount of
concepts or items has been mainly considered as an invariant
number so data are generally represented either as a number
of transactions including a series of items or as a tabular
representation with a fixed number of columns (one per item).
These representations in isolation cannot include all forms
of information since sets of items might appear because of
some abstract information not defined in such input data.
For example, information about smoking habits is only appli-
cable for smokers and such blended information cannot be
considered as missing data for non-smokers. It is therefore
hardly identifiable whether a record belongs to a smoker
or non-smoker unless any subjective information out of the
input data is provided. Aiming at providing ways of extract-
ing more powerful, applicable, actionable and user-centric
insights impossible to be extracted with primitive concepts
included in traditional input data, this section proposes to
enrich such primitive concepts with subjective knowledge
through a taxonomy of concepts.More specifically, a context-
free grammar is considered to represent different forms of
taxonomies depending on the final requirements. This section
provides two different visions of the problem: inhomoge-
neous taxonomies and ambiguous concepts.

A. INHOMOGENEOUS TAXONOMIES
Traditional pattern mining [9] works on a fixed data structure
where the number of both items and transactions is predeter-
mined. Sometimes, however, this data structure is not enough
to extract useful information from data and more abstract
as well as subjective knowledge is required to be provided.
In this regard, hierarchical pattern mining [16], [17] was
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proposed to extract patterns at different levels of abstraction
always combining items from the same level. Here, the level
of abstraction for a specific item is encoded through a tax-
onomy of concepts represented in a homogeneous tree shape
(any primitive concept has an abstract concept in each level
of abstraction). Items are accordingly encoded through a
fixed-length string of digits that represents from the prim-
itive ideas to higher and more abstract concepts [18]. It is
noteworthy that this encoding might be performed during the
data collection process and no extra encoding pass is therefore
required. According to Han and Fu [13], this encoding pro-
cedure is more convenient than using standard SQL queries
which are generally related to only a portion of the transac-
tional database [19]. When considering a variable number
of concepts, however, it is not easy to follow an encoding
based on a fixed-length string of digits since not all the con-
cepts include abstractions in every level. Thus, working with
homogeneous trees (fixed-length strings of digits) is not an
option in real-problems and new ways of handling concepts
at any level of abstraction are needed. In other words, existing
methods do not support all forms of knowledge so it is crucial
to provide new mechanisms capable of producing adaptable
insights that meet the increasingly complex expectations of
the users.

Taking all the above into consideration, this paper pro-
poses the use of context-free grammars to represent concept
hierarchies and to produce the right insights. Here, the paths
from the root to the primitive concepts in the hierarchy are
analysed. Two elements (items or more abstract concepts)
cannot be combined (appear in the same pattern) if the groups
of elements obtained by traversing their paths are included
one in another. The final idea is to avoid combining items
that produce the same insights. This methodology is really
promising since it not only enables elements from different
levels of abstraction to be combined, but it also enables het-
erogeneous trees to represent subjective knowledge. In other
words, it is not restricted to regular tree structures where every
primitive concept has a higher abstract concept at every level
of the hierarchy.

As a matter of clarification, let us consider a toy dataset
related to a market basket as shown in Table 1. Let us also
consider a sample concept taxonomy represented through

TABLE 1. Transactional dataset for a toy example of a market basket
analysis.

a context-free grammar (see Figure 1) in which not every
concept has the same number of abstraction levels. As it is
illustrated, items {BumGenius}, {Huggies} and {Pampers}
belong to the concept of diapers. Additionally, the concept
of beer is divided into two subtypes, that is, regular and
light. Here, items {Luvs} and {SamuelAdams} belong to the
first subtype, whereas {Budweiser} and {Heineken} belong
to the second subtype. As a result, not every single item is
represented with the same number of abstraction levels.

FIGURE 1. Context-free grammar defined to represent a hierarchy and
expressed in extended BNF notation.

Following the proposed methodology based on paths of the
hierarchy (context-free grammar), the following patterns can
be obtained (absolute frequency is denoted in brackets) from
Table 1 and considering the hierarchy denoted by Figure 1:
• {Beer}(9)
• {Diapers}(9)
• {Huggies}(8)
• {Beer, Diapers}(8)
• {Light}(7)
• {Huggies, Beer}(7)
• {Diapers, Light}(6)
• {Regular}(5)
• {Luvs}(5)
• {Pampers}(5)
• {Diapers, Regular}(5)
• {Budweiser}(5)
• {Pampers, Beer}(5)
• . . .
• {Diapers, Luvs}(4)
• {Diapers, Budweiser}(4)
• {Huggies, Pampers}(4)
• . . .
• {SamuelAdams}(3)
• {Heineken}(3)
• {BumGenius}(3)
• {Diapers, SamuelAdams}(3)
• . . .
As it was already described, it is possible to combine items

belonging to different levels of abstraction. For example,
the pattern {Diapers, Light} reveals that 6 people bought
diapers (no matter the brand) and light beer (no matter the
brand) together. Similarly, the pattern {Diapers, Luvs} indi-
cates that 4 people bought, at the same time, beer of the
brand Luvs (a regular beer) and any kind of diapers. This
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FIGURE 2. Context-free grammar defined to represent a concept hierarchy including ambiguous concepts expressed in extended BNF notation.

ability to combine items belonging to any level of abstraction
according to a context-free grammar provides a really useful
tool for users to obtain accurate and actionable knowledge.
Besides, the methodology follows the same process previ-
ously described to discard patterns by analysing their paths in
the hierarchy. Thus, the pattern {Beer, Heineken} is a useless
pattern and it is required to be discarded since Heineken is
also a beer.

B. AMBIGUOUS CONCEPTS
As previously described, the ability to extract specific infor-
mation on different levels of abstraction is essential for many
companies to design successful marketing strategies [20].
In traditional hierarchical pattern mining, each concept of an
abstraction level is unequivocally defined by a single ancestor
in its upper level of abstraction. In some situations, however,
a concept might be ambiguously defined by more than a
unique abstract concept (two or more ancestors in its upper
level). This problem can be seen as that of mining disjunctive
relations among items [21], but existing algorithms [22] for
this kind of relations do not consider any subjective knowl-
edge so they only work on items within data. Some addi-
tional authors [16], [17] have partially solved the problem
by including twice the brand concept, that is, one for each
supertype in the hierarchy. Nevertheless, these proposals are
unable to produce information about the percentage of the
abstract concepts bought by customers. Considering the same
market basket analysis shown in Table 1, let us consider a
weekend pack that holds regular beer (no matter the brand)
and a pack of diapers (no matter the brand). Now, regular beer
is a subtype of beer, but it is also a subtype of the weekend
pack. The main problem is that existing proposals consider
a rigid tree shape (each node is unequivocally identified by
an ancestor node) so ambiguity in terms of abstraction levels
is impossible. Additionally, none of the existing proposals is
able to define abstract concepts that depend on multiple com-
binations of elements. For example, imagine that it is required
to analyse the buying habits considering packs of two or
more packs of beers (no matter the brands). This ambiguous
combinationmay be somehow related to the purchase of other

products and it can be hardly extracted by existing pattern
mining proposals.

The use of a context-free grammar to represent the hier-
archy of concepts is essential to consider the aforementioned
ambiguities. Similarly, the analysis of the paths (from the root
to the primitive concepts) is key to avoid useless patterns,
that is, those that produce the same insights. With all of
this in mind, and considering the same market basket dataset
shown in Table 1, let us consider the context-free grammar
illustrated in Figure 2. This grammar includes two different
ambiguous terms. First, regular beer might be a kind of beer
and a part of the concept<WeekendPack>. Hence, this term
is not unequivocally represented by an upper abstract concept.
Second, the abstract concept <atLeast2BeerBrands> repre-
sents any combination of 2 or more types of beer brands.
It might represent the pack formed by Luvs and Samuel
Adams, as well as the pack formed by all the brands at the
same time: Luvs, Samuel Adams, Budweiser, Heineken.

Following the proposed methodology based on paths of the
hierarchy, the following patterns can be obtained (absolute
frequency is denoted in brackets) from Table 1 and consider-
ing the hierarchy denoted by Figure 2:

• {Beer}(9)
• {Diapers}(9)
• {Beer, Diapers}(8)
• {Light}(7)
• {Huggies, Beer}(7)
• . . .
• {atLeast2BeerBrands}(6)
• {atLeast2BeerBrands, Diapers}(5)
• {WeekendPack}(5)
• . . .
• {WeekendPack, Light}(3)
• {SamuelAdams}(3)
• {Heineken}(3)
• {BumGenius}(3)
• {Diapers, SamuelAdams}(3)
• . . .

As it was shown, it is possible to combine items belonging
to different levels of abstraction and considering ambiguity
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within data. For example, the pattern {atLest2BeerBrands}
indicates that 6 people bought two or more packs of beer (no
matter the brand). Similarly, the pattern {atLest2BeerBrands,
Diapers} indicates that 5 people bought, at the same time, two
or more packs of beer (no matter the brand) and any brand
of diapers. Finally, it is also possible to extract the pattern
{WeekendPack, Light}(3), denoting that 3 customers usually
buy the weekend pack (diapers and any brand of regular
beer) and they also buy light beer. Maybe this information
provides clues about the necessity of considering not only
regular but also light beer in the weekend pack (some family
members will prefer light beer). Thus, to summarize, this
ability to combine items belonging to any level of abstraction
according to a context-free grammar provides a really useful
tool for users to obtain accurate and actionable knowledge.

Last but not least, it is important to remark that, as already
described, this methodology is able to discard some pat-
terns, that is, those which items share paths in the hierar-
chy. For example, the pattern {Beer, atLeast2BeerBrands}
is a useless pattern since <Beer> is a predecessor of
<atLeast2BeerBrands> and, therefore, does not provide any
useful insight. At this point it is important to remark two
important things. First, the context-free grammar definition
is key to produce the right insights and it is the responsability
of the users. For example, if<atLeast2BeerBrands> concept
is not a kind of <Beer> in the hierarchy, then both concepts
would be compatible and might appear, therefore, in the same
pattern. Second, when a specific concept has multiple paths
to the root, all of them are taken into account. For example,
<Regular> is a type of beer but it is also part of the weekend
pack so none of the following patterns are useful: {Regular,
WeekendPack} and {Regular, WeekendPack}.

III. SPACE OF RECORDS
Traditional datasets organize the information by transactions
where each of these transactions is clearly defined by a sin-
gle record including a set of elements or items. Sometimes,
though, data information is ambiguous in the sense that a
specific concept may be described by an undefined number
of different records like, for example, a market basket dataset
where each customer (the concept) is represented by mul-
tiple records (one per purchase). This ambiguity cannot be
handled by traditional frequent pattern mining approaches,
which provide a general description of homogeneity and reg-
ularity in the whole dataset. The state-of-the-art in descriptive
analysis includes some studies [23] to deal with such ambi-
guity, aiming at extracting insights or patterns that describe
groups of specific features. However, these studies are in an
immature stage and they do not consider different views that
may produce a completely different characterization of the
results through considering either objective and subjective
information. Besides, no studies related to different levels of
ambiguity can be found, which is essential in many situations
(for example, descriptive analysis considering different cus-
tomers and periods of time). Hence, new and more flexible
data representations on the space of records are required to

meet the users’ expectation and to obtain the right insights.
In this section, new and different ways in which the space of
records should be treated are grouped into two main groups
(single and multiple level of ambiguity) as it is described
below. It is also important to highlight that any of the pro-
posed analyses of the space of data records is fully compatible
with the analysis of the space of concepts described in the
previous section.

A. SINGLE LEVEL OF AMBIGUITY
Data ambiguity that is inherent to many application domains
was first studied byDietterich et al. [24] in 1997 in the context
of drug activity prediction, giving rise to themultiple-instance
learning problem. Here, authors aimed at predicting whether
a given molecule is a good drug molecule, which was mea-
sured by its ability to bind to a given target. Each molecule
was represented as a bag of transactions (a set of instances
or data records), and each one matched to a different confor-
mation (molecular structure) of a particular compound [25].
Thus, each bag was associated with an outcome, that is,
a discrete or real-valued label, whereas it was only known
that each transaction belonged to a specific bag (no outcome
was associated with a transaction but with its bag). Finally,
the number of transactions belonging to each bag was not
defined and it might vary from bag to bag (see Table 2
including m features and n bags).

TABLE 2. Structure of a sample multi-instance dataset with n bags.

In traditional approaches for mining frequent patterns,
there is no ambiguity in data and each transaction is clearly
defined by a single record. However, as it was proposed by
Luna et al. [23], there are some scenarios where patterns of
interest are required to be extracted on inherently ambiguous
domains. Here, a specific pattern occurs in a bag if it appears
in at least one of its transactions. As a matter of example,
let us consider the toy market basket dataset (see Table 1)
used in the previous section but grouping the transactions by
customers (each transaction is identified by a customer ID
as shown in Table 3). Considering the single concept ID as
the one for forming groups of transactions (those data records
with the same ID are grouped under the same bag), four differ-
ent bags are considered each one gathering a different number
of data records. On this new scenario and given a database �
comprising a set of n bags � = {B1,B2, . . . ,Bn}, each bag
Bj comprises an undetermined number of transactions, i.e.
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TABLE 3. Transactional dataset for a toy example of a market basket
analysis including customers’ ID.

Bj = {t j1, . . . , t
j
p}. A pattern P occurs in a bag Bj if and only

if P is a subset of at least one transaction t ji from Bj, i.e. ∃t ji :
t ji ∈ B

j
∧P ⊆ t ji . The frequency of occurrence of P in�, also

known as support(P) [26], is defined as the number of bags
in which P satisfies at least one transaction, i.e. support(P) =
|∀Bj ∈ �, ∃t ji : t

j
i ∈ B

j
∧ P ⊆ t ji |. Additionally, the relative

support is denoted as supportr (P) = support(P)/|�|. In this
toy dataset, the pattern P ={Budweiser} is satisfied by all
the four bags so support(P) = 4 and its relative support
is supportr (P) = 1.00. This pattern denotes that 100%
of the customers have bought beer of the brand Budweiser
at least once in all their purchases. This knowledge highly
differs from the one obtained on traditional data represen-
tation (see Table 1) where the relative support of the same
pattern is supportr (P) = 0.50, denoting that only 50% of
the transactions describe a purchase including beer of the
brand Budweiser. This data representation can seen as one
of sequential pattern mining [27] including multiple records
per customers but considering single itemsets.

Heretofore, the analysis of patterns in bags through the
flexibility in the space of records has stated that a pattern
occurs in a bag if it appears in at least one of its transactions.
It may provoke that a specific pattern could be satisfied in
every transaction of a particular bag Bj and, at the same time,
it may occur in just a single transaction of another bag Bk .
The mere fact that a specific bag Bk includes a high number
of transactions provokes a higher possibility of finding the
pattern in such a bag. Hence, it may be of high interest for
the usefulness of the insights to determine the significance
of the pattern within each bag. In this regard, it might be
valuable to determine a minimum percentage of transactions
to be satisfied to consider that the pattern is fully described by
the bag. Formally, and considering a database� comprising a
set of n bags� = {B1,B2, . . . ,Bn}, each bag Bj comprises an
undetermined number of transactions, i.e. Bj = {t j1, . . . , t

j
p}.

A pattern P is significant in a bag Bj if and only if P is a
subset of at least minimum percentage (minp) of transactions
in Bj, i.e. |∀t ji : t

j
i ∈ Bj ∧ P ⊆ t ji |/|B

j
| ≥ minp. The

frequency of occurrence of P in�, also known as support(P),
is defined as the number of bags in which P satisfies at least a
significance minp, i.e. support(P) = |∀Bj,∀t

j
i : B

j
∈ �∧ t ji ∈

Bj ∧ |P ⊆ t ji |/|B
j
| ≥ minp|. Additionally, the relative support

is denoted as supportr (P) = support(P)/|�|, similarly to
the one already proposed in [28]. As a matter of example,
let us consider again the view of the database organized
by customers, which was illustrated in Table 3. A product
bought by a customer is of high significance for him/her if
it appears in a high number of transactions. Diapers of the
brand Pampers is included in every purchase of the customer
with ID #2, in 75% of the purchases of the customer with
ID #1, and only in 25% of the purchases of the customer
with ID #3. It demonstrates that the same item can be really
important for specific customers and not much too important
for others. Taking a minimum value ofminp = 0.75 (a pattern
will occur in a bag if and only if it appears in at least
75% of its transactions), it is obtained now that the pattern
P ={Budweiser} is satisfied by two bags (customers with
IDs #2 and #4) so support(P) = 2 and its relative support
is supportr (P) = 0.50. This pattern denotes that 50% of
the customers usually buy beer of the brand Budweiser in
their purchases. This knowledge highly differs from the one
previously obtained (100% of the customers have bought beer
of the brand Budweiser at least once in all their purchases).

Flexibility in the space of records allows the same dataset
to be described by an undefined number of views according to
the users’ expectations. Each of these views implies a differ-
ent organization of the bags in data, producing a completely
different characterization of the results. Hence, it is crucial
to apply the right view to achieve the expectations and the
same dataset that was previously organized by customers’ IDs
(see Table 3) can also be organized by a different concept
within data (or any abstract concept according to a hierarchy
of concepts), enabling general trends for all the pre-fixed
concepts to be described.

B. MULTIPLE LEVELS OF AMBIGUITY
The space of records in data has been grouped into different
ways to obtain different views that provide the right insights
(according to the users’ expectations). Up to this moment,
data records have been grouped according to a single level
or concept (either subjective or objective concepts may be
considered). However, this assemblage of data records based
on a single level is useless in many situations and not a single
but multiple levels are required to carry out the grouping
procedure. As a matter of clarification, let us consider that
experts want to know which products are usually bought
together at least once for most of the customers regardless
the season (some products are seasonal and their sales highly
increase in a specific season). The fact of defining the bags
of records through a single concept does not solve the prob-
lem since the season in which the product was bought is
also required. Now, each bag of records is also divided into
sub-bags of records and the number of sub-bags, as well as
records per sub-bag, is completely different from a bag and
another. Formally, given a database � comprising a set of
n bags � = {B1,B2, . . . ,Bn}, each bag Bj comprises an
undetermined number of sub-bags S j1, S

j
2, . . . , S

j
m and each
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TABLE 4. Transactional dataset for a toy example of a market basket
analysis including customers’ ID and season.

sub-bag S jk gathers an undetermined number of transactions,
i.e. S jk = {t

k
1 , . . . , t

k
p }. In general terms, a pattern P occurs in

a bag Bj if and only if P is a subset of at least one transaction
tki from S jk and it happens for every sub-bag in such bag,
i.e. ∀S jk ∈ Bj. The frequency of occurrence of P in �, also
known as support(P), is defined as the number of bags in
which P is satisfied, i.e. support(P) = |{∀Bj ∈ � : (∀Sk ∈
Bj, ∃tki : t

k
i ∈ Sk ∧ P ⊆ tki )}|. Additionally, the relative

support is denoted as supportr (P) = support(P)/|�|. As a
matter of clarification, let us consider the toy example for
a market basket dataset where the customers’ ID and the
season in which the purchases were carried out are considered
(see Table 4). Considering multiple concepts, it is obtained
that the pattern P = {Pampers}(2) is satisfied for two cus-
tomers (ID #1 and #2) in any of the seasons. The relative
support for this pattern is therefore supportr (P) = 0.5,
meaning that 50% of the customers buy diapers of the brand
Pampers at least once per season (denoting that this is not
a seasonal product for half of the customers). Here, it is
important to highlight that the concept of season may be an
abstract concept obtained by a date. In other words, the same
date may be considered as a period A or B depending on
the meaning the users want to consider (seasons, semesters,
holiday periods, etc).

The use of multiple concepts in the space of records pro-
vides novel powerful mechanisms to extract what users really
need, considering new views in which patterns are mined
(completely new insights are therefore obtained). It should
be highlighted that the number of levels in which the space of
records is organized is related to the probability of finding
frequent patterns (a higher number of levels will hamper
the chance of mining a pattern that frequently occurs for all
the levels). However, the extraction of frequent patterns on
flexible space of records produces knowledge that is more in
connection to the users’ background as well as in accordance
with their expectations. The concepts used to organize data
records highly depends on the users (and their expectations),
and the percentage of records satisfied per sub-bag is also a
pre-requisite that can be modified by the users. As a matter of
example, let us consider now the same toy example organized
by customers and seasons (see Table 4). Additionally, let us
consider that a bag Bj is satisfied if and only if most of its

sub-bags are also satisfied (≥50% of the sub-bags include
at least one transaction that satisfies the pattern). In this
scenario, it is obtained that P = {Luvs}(3), stating that 75%
of the customers buy beer of the brand Luvs at least once
per season in most of the seasons (more than 50% of the
seasons). Thus, it is not only important to consider how data
records are grouped but also the thresholds that patterns must
satisfy for a bag and sub-bag.

IV. APPROACHES
To demonstrate the usefulness of the proposed ideas and
how they can be accomplished, disparate methodologies
including exhaustive search, random search and evolution-
ary approaches are proposed. All these approaches are just
adaptations of well-known and widely recognised techniques
with the aim of serving as a demonstration of the usefulness of
the provided foundations for future research works as well as
more efficient and specifically designed algorithms. Adapted
algorithms belong to two different methodologies (exhaustive
search and heuristic-based approaches).

A. SPACE OF CONCEPTS
Different adaptations based on contrasting methodologies
are proposed in this section to deal with flexibility in the
space of concepts. First, let us propose an exhaustive search
approach (see Algorithm 1), based on the well-knownApriori
algorithm [29], in which valid patterns are analysed after
the mining procedure. In this first proposal, the exhaustive
search process is applied to a transformed database accord-
ing to the provided grammar. Each path and subpath within
the grammar should be therefore transformed into an item
within the new database (see lines 3 to 6, Algorithm 1). After
that, the proposal generates frequent itemsets as tradition-
ally Apriori does, the main difference is the final process
(see lines 24 to 28, Algorithm 1) in which the proposal
analyses each solution and checks whether the solution is
valid or not (according to the proposed grammar).

The previous proposal has the main drawback that any pat-
tern, valid or not, is previously mined. This issue hinders the
mining process since the number of items of the transformed
database is usually much greater than that of the original
database. In this regard, a modified approach is also proposed
so themining of candidate patterns takes into account not only
the support of the patterns but also whether it is a valid pattern
or not. It implies a reduction in the number of patterns to be
analysed and, therefore, a more efficient algorithm. Similarly
to the previous approach, the mining process is applied to
a transformed database according to the provided grammar.
Each path and subpath within the grammar should be there-
fore transformed into an item within the new database (see
lines 3 to 6, Algorithm 2). Then, the proposed methodology
generates candidate itemsets (see line 15, Algorithm 2) from
the previous set of frequent itemsets, and these candidates Cj
need to satisfy two restrictions: a) 6 ∃i ∈ Cj : ix ∈ i, iy ∈
i, path(ix) ⊆ path(iy). In other words, there is no pair of items
in i ∈ Cj in which elements in the path of one of the items
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Algorithm 1 Exhaustive Search Approach in Which Valid
Patterns Are Analysed After the Mining Procedure
Require: D,G, α F Dataset D, grammar G and support

threshold α
Ensure: R F SetR of discovered patterns
1: L← ∅
2: �← ∅ F Encoded dataset
3: for all path p ∈ G do F Analyse each path p within the

grammar G
4: t ← getTransactions(p,D) F Transactions satisfied

by p in D
5: �← � ∪ < p, t > F The path p and transactions t

are added to �
6: end for
7: L1← {1− itemsets} F Generate all the single itemsets
8: for all items i ∈ L1 do
9: if support(i, �)≥ α then F Check whether i is

frequent
10: L1← L1 ∪ i
11: end if
12: end for
13: j = 2
14: while Lj−1 6= ∅ do F Generate all the j-itemsets from

the set of j− 1
15: Cj← generateCandidates(Lj−1)
16: for all patterns p ∈ Cj do
17: if support(p, �)≥ α then F Check if p is a

frequent pattern
18: Lj← Lj ∪ p
19: end if
20: end for
21: j← j+ 1
22: end while
23: R← ∅
24: for all patterns p ∈ L do F Check common paths
25: if 6 ∃ix , iy ∈ p : path(ix) ⊆ path(iy) then
26: R← R ∪ p
27: end if
28: end for
29: returnR

constitute a subset of the elements in the path of the other
item (see line 17, Algorithm 2); b) the candidate itemset i ∈ Cj
should be frequent —based on the number of transactions in
which it appears— according to a minimum threshold value
(see line 18, Algorithm 2).

A third proposal is based on a random search method-
ology, which belongs to the field of stochastic optimiza-
tion [30] whose strategy is to sample solutions from across
the entire search space using a uniform probability distribu-
tion. Each future sample is independent of the samples that
come before it through ite iterations. The proposed algorithm
(see Algorithm 3) works therefore on ite iterations and each
iteration is responsible for generating M random patterns

Algorithm 2 Exhaustive Search Approach in Which Valid
Patterns Are Analysed During the Mining Procedure
Require: D,G, α F Dataset D, grammar G and support

threshold α
Ensure: L F Set L of discovered patterns
1: L← ∅
2: �← ∅ F Encoded dataset
3: for all path p ∈ G do F Analyse each path p within the

grammar G
4: t ← getTransactions(p,D) F Transactions satisfied

by p in D
5: �← � ∪ < p, t > F The path p and transactions t

are added to �
6: end for
7: L1← {1− itemsets} F Generate all the single itemsets
8: for all items i ∈ L1 do
9: if support(i, �)≥ α then F Check whether i is

frequent
10: L1← L1 ∪ i
11: end if
12: end for
13: j = 2
14: while Lj−1 6= ∅ do F Generate all the j-itemsets from

the set of j− 1
15: Cj← generateCandidates(Lj−1)
16: for all patterns p ∈ Cj do F Check common paths
17: if 6 ∃ix , iy ∈ p : path(ix) ⊆ path(iy) then
18: if support(p, �)≥ α then F Check whether p

is frequent
19: Lj← Lj ∪ p
20: end if
21: end if
22: end for
23: j← j+ 1
24: end while
25: return L

(see Lines 7 to 24, Algorithm 3). When generating a ran-
dom pattern, the algorithm produces a random value l which
maximum value is the number of attributes in �. Then,
the algorithm randomly chooses items from the dataset� till
the number l is reached (see Lines 11 to 15, Algorithm 3)
and, finally, the new pattern p is evaluated according to its
support (see Line 18) previously checking if it is a valid
pattern (see Line 17). This new pattern p will be included
in the resulting set P if it is good enough according to its
support (only the best n solutions are kept in P . The main
advantage of this proposal with regard to the two exhaustive
search approaches already described is the reduction of the
computational cost since it does not require to explore the
whole search space. On the contrary, its major downside is
related to its inability to explore the whole search space,
especially in high-dimensional data, not guaranteeing that the
global optimum is reached.
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Algorithm 3 Random Search Algorithm to Cope With Flex-
ibility in the Space of Concepts
Require: n, ite,M ,D, α
Ensure: P
1: �← ∅ F Encoded dataset
2: for all path p ∈ G do F Analyse each path p within the

grammar G
3: t ← getTransactions(p,D) F Transactions satisfied

by p in D
4: �← � ∪ < p, t > F The path p and transactions t

are added to �
5: end for
6: P ← ∅ F Form the population P
7: for i from 1 to it do F Iterate ite times seeking solutions
8: for j from 1 to M do F GenerateM patterns in each

iteration
9: Random number l ∈ [1, k] F k is the number of

attributes in �
10: p← ∅
11: for j from 1 to l do F Iterate l times to generate

a pattern p
12: Select a random attribute ak ∈ �
13: dj ← Select a random (uniform) discrete

value for ak
14: p← p ∪ dj
15: end for F Check common paths
16: if 6 ∃ix , iy ∈ p : path(ix) ⊆ path(iy) then
17: if support(p, �)≥ α then F Check whether p

is frequent
18: P ← take best n solutions from P ∪ p
19: end if
20: end if
21: end for
22: end for
23: return P

A fourth proposal (see Algorithm 4) is based on an evo-
lutionary computation methodology, which unlike random
search methods, guides the search process through promising
areas of the search space. The proposal follows a well-known
generational schema where, in each generation of the evo-
lutionary process, solutions are crossed and mutated, and
new offspring are obtained. The algorithm starts by encoding
patterns through a process similar to the already described
random search approach, that is, it produces a random num-
ber l between 1 and k (number of attributes in data) to
determine the length of the solution (number of items in the
pattern) and attributes/items are randomly chosen from the
dataset � till the number l is reached (see Lines 4 to 10,
Algorithm 4). Finally, a generational schema is carried out
through G generations (see Lines 19 to 32, Algorithm 4),
producing new solutions thanks to crossover and mutation
and finally returning the set E comprising those best solutions
found along the evolutionary process. A fitness function is

Algorithm 4 Evolutionary Algorithm to Cope With Flexibil-
ity in the Space of Concepts
Require: n,G,M , �, α
Ensure: E
1: P ← ∅ F General population
2: E ← ∅ F Elite population with the best solutions found

so far
3: for j from 1 to M do F GenerateM random solutions

(patterns)
4: Random number l ∈ [1, k] F k is number of

attributes in �
5: p← ∅
6: for j from 1 to l do F Iterate l times to generate a

pattern p
7: Select a random attribute ak ∈ �
8: dj ← Select a random (uniform) discrete value

for ak
9: p← p ∪ dj

10: end for F Check common paths
11: if 6 ∃ix , iy ∈ p : path(ix) ⊆ path(iy) then
12: support(p, �) F Calculate the fitness of p as its

support in �
13: if support(p, �)≥ α then F Check whether p is

frequent
14: E ← take best n solutions from E ∪ p
15: end if
16: end if
17: P ← P ∪ p
18: end for
19: for g from 1 to G do F Iterate G times seeking

solutions
20: parents← apply parent selector on P F Tournament

size is 2
21: offspring← apply crossover andmutation on parents
22: for all patterns p ∈ offspring do F Check common

paths
23: if 6 ∃ix , iy ∈ p : path(ix) ⊆ path(iy) then
24: support(p, �) F Calculate the fitness of p as

its support in �
25: if support(p, �)≥ α then F Check whether

p is frequent
26: E ← take best n solutions from E ∪ p
27: end if
28: end if
29: end for
30: P ← update the general population considering the

set offspring
31: end for
32: return E

proposed to define how good or promising a solution p is,
in such a way that it is defined as the support of p in �
(see Lines 12 and 24, Algorithm 4). In order to obtain new
solutions along the evolutionary process, two simple genetic
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operators have been considered. The crossover genetic oper-
ator just swaps two random items from two patterns. The
mutator genetic operator, on the contrary, takes a random item
from a parent and modifies its value. Similarly to the random
search proposal, the evolutionary proposal provides a major
advantage with regard to the exhaustive search approach,
it reduces the computational cost since it does not require to
explore the whole search space. On the contrary, its major
disadvantage is its inability to explore the whole search space,
especially in high-dimensional data. An advantange of this
proposal with regard to the random search proposal is that it
is able to guide the search process towards promising areas,
whereas the random search approach produces completely
new solutions each time (each future sample is independent
of the samples that come before it).

Finally, let us analyse the size of the search space, which
highly depends on the taxonomy provided by the user. In the
best case, the search space is equal to that of existing method-
ologies for pattern mining like, for example, Apriori [29].
In these methodologies, the number of items is equal to
the primitive concepts so the search space includes 2k − 1
solutions when k primitive concepts and no taxonomy are
considered. In the proposed approaches, this number of solu-
tions varies with the taxonomy since both abstract elements
and relationships among elements are considered. For the
sample market basket dataset (see Table 1), the search space
for a traditional pattern mining algorithm (no taxonomy is
considered) is 27 − 1 since 7 different items are consid-
ered (BumGenius, Huggies, Pampers, Luvs, SamuelAdams,
BudWeiser and Heineken). On the contrary, considering the
taxonomy shown in Figure 1, 11 items are considered and
a total of 211 − 1 solutions can be found if no restric-
tion is included. This number of solutions, however, should
be reduced depending on the taxonomy restrictions so, for
example, {Beer} cannot appear together with any of the fol-
lowing items: {Regular}, {Light}, {Luvs}, {SamuelAdams},
{Budweiser} and {Heineken}.

B. SPACE OF DATA RECORDS
Traditional pattern mining works on datasets where each
transaction or data record is unequivocally described by a
row or list of features [6], [9]. For example, in a market
basket analysis, each transaction includes information for
a specific purchase. Sometimes, however, the final aim of
the analysis may require the whole set of transactions to be
grouped by customers so a specific customer may include
a high number of purchases (data records). At this point,
the extracted knowledge might be completely different when
data records are considered as a whole to the insights obtained
when data are grouped by a specific concept (customers in
this example). With the aim of avoiding inaccurate insights
to be extracted (information that is biased against occasional
customers), some previous attempts [23] have considered the
organization of data records into bags of records. This, how-
ever, did not consider the possibility of analysing the dataset
into different views (different organizations of the records

according to the users’ requirements). Thus, the existingmod-
els do not support all forms of knowledge and it is therefore
crucial to provide new mechanisms that produce adaptable
insights that meet the increasingly complex expectations of
the users. The aim of this sub-section is to describe different
approximations to demonstrate that the ideas proposed in this
section are feasible. The algorithmic solutions provide new
mechanisms for dealing with datasets organized into groups
of records considering either a single or multiple levels of
assemblage.

The first proposal is an adaptation of the already proposed
Apriori-MI [23] considering new features (records organized
into multiple-levels, different ways in which a bag is denoted
as satisfied, etc). In this approach (see Algorithm 5) the eval-
uation process (see lines 4 and 12, Algorithm 5) is the most
important part, each of the records within a bag of records
are analysed so the bag Bj will be satisfied for a pattern P
if and only if |∀t ji : t

j
i ∈ Bj ∧ P ⊆ t ji | ≥ α. As described

in previous sections, this α value can be a fixed value or a
value depending on the number of records of Bj (percentage
of records from Bj satisfied by P). In situations where bags
are also organized into sub-bags, then it is required to check
whether a sub-bag Sk ∈ Bj is satisfied or not (according to a
new α1 value for bags and α2 for sub-bags).

Algorithm 5 Exhaustive Search Approach to Cope With
Flexibility in the Space of Data Records
Require: �,α F Dataset � organized into bags
Ensure: L F Set L of discovered patterns
1: L← ∅
2: L1← {1− itemsets} F Generate all the single

itemsets
3: for all elements i ∈ L1 do F Check whether i is a

frequent item
4: if support(i, �)≥ α by considering the bags and sub-

bags then
5: L1← L1 ∪ i
6: end if
7: end for
8: j = 2
9: while Lj−1 6= ∅ do F Generate all the j-itemsets from

the set of j− 1
10: Cj← generateCandidates(Lj−1)
11: for all elements p ∈ Cj do F Check whether p is a

frequent pattern
12: if support(p, �)≥ α by considering the bags and

sub-bags then
13: Lj← Lj ∪ p
14: end if
15: end for
16: j← j+ 1
17: end while
18: return L
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Algorithm 6 Random Search Algorithm to Cope With Flex-
ibility in the Space of Data Records
Require: n, ite,M , �, α F Dataset � organized into bags
Ensure: P
1: P ← ∅ F Form the population P
2: for i from 1 to it do F Iterate ite times seeking

solutions
3: for j from 1 to M do F GenerateM patterns in

each iteration
4: Random number l ∈ [1, k] F k number of

attributes in �
5: p← ∅
6: for j from 1 to l do F Iterate l times to generate

a pattern p
7: Select a random attribute ak ∈ �
8: dj ← Select a random (uniform) discrete

value for ak
9: p← p ∪ dj

10: end for F Check whether p is a frequent
pattern

11: if support(p, �)≥ α by considering the bags and
sub-bags then

12: P ← take best n solutions from P ∪ p
13: end if
14: end for
15: end for
16: return P

A second proposal (random search, see Algorithm 6) is
based on stochastic optimization [30] whose strategy is to
randomly obtain new solutions from across the entire search
space and each solution is independent of those already
obtained in previous iterations. The proposed approach works
on ite iterations and each iteration is responsible for gen-
erating M random solutions or patterns (see Lines 3 to 14,
Algorithm 6). To produce a new random solution
(see Lines 4 to 10, Algorithm 6), the algorithm randomly
chooses a value l in the interval [1, k], which is the maximum
number of attributes included in �, and produces l random
items from �. The resulting pattern is finally evaluated
according to its support (see Line 11). The main advantage of
this proposal with regard to the exhaustive search approach
is the reduction of the computational cost since it does not
require to explore the whole search space. On the contrary,
its major downside is related to its inability to explore the
whole search space, especially in high-dimensional data, not
guaranteeing that the global optimum is reached.

A final proposal (see Algorithm 7) is based on an evolu-
tionary computationmethodology, guiding the search process
through promising areas of the search space thanks to a
fitness function based on the support of a solution p in �.
Unlike the random search proposal previously described, this
evolutionary approach is able to guide the search process
towards promising areas, that is, each future sample highly

Algorithm 7 Evolutionary Algorithm to Cope With Flexibil-
ity in the Space of Data Records
Require: n,G,M , �, α F Dataset � organized into bags
Ensure: E
1: P ← ∅ F General population
2: E ← ∅ F Elite population with the best solutions

found so far
3: for j from 1 to M do F GenerateM random solutions

(patterns)
4: Random number l ∈ [1, k] F k number of

attributes in �
5: p← ∅
6: for j from 1 to l do F Iterate l times to generate a

pattern p
7: Select a random attribute ak ∈ �
8: dj ← Select a random (uniform) discrete value

for ak
9: p← p ∪ dj

10: end for
11: if support(p, �)≥ α then F Check whether p is a

frequent pattern
12: E ← take best n solutions from E ∪ p
13: end if
14: P ← P ∪ p
15: end for
16: for g from 1 to G do F Iterate G times seeking

solutions
17: parents← apply parent selector on P F The

tournament size is 2
18: offspring← apply crossover andmutation on parents
19: for all patterns p ∈ offspring do
20: if support(p, �)≥ α then F Check whether p is

frequent
21: E ← take best n solutions from E ∪ p
22: end if
23: end for
24: P ← update the general population considering the

set offspring
25: end for
26: return E

depends on the samples that come before it. This proposal is
based on a well-known generational schema where existing
solutions are crossed andmutated to produce new solutions in
each generation of the evolutionary process. At the beginning
of the algorithm new solutions are produced from scratch,
that is, following a similar process of the already described
random search approach —it produces a random number l
between 1 and k (number of attributes in data) to determine
the length of the solution (number of items in the pattern)
and attributes/items are randomly chosen from the dataset �
till the number l is reached (see Lines 3 to 15, Algorithm 7).
Finally, a generational schema is carried out through G gen-
erations (see Lines 16 to 25, Algorithm 7), producing new
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solutions thanks to crossover and mutation and finally return-
ing the set E comprising those best solutions found along
the evolutionary process. Here, whereas the crossover genetic
operator just swaps two random items from two patterns,
the mutator genetic operator takes a random item from a
parent and modifies its value. The proposed evolutionary pro-
posal reduces the computational cost since it does not require
to explore the whole search space, which is a major advantage
with regard to the exhaustive search approach. Nevertheless,
its major disadvantage is its inability to explore the whole
search space, especially in high-dimensional data.

Finally, it is important to highlight that the search space
when no restriction is considered is the same as any traditional
pattern mining algorithm on rigid data representation [29],
that is, 2k − 1 for a dataset comprising k elements. However,
even when the search space remains the same, the compu-
tational complexity of the proposed algorithmic solutions
could be much higher/lower when records are organized into
objective concepts (concepts included in data). Here, each
data record may be analysed for more than a single bag
and, therefore, the time required to analyse the whole dataset
highly depends on the data organization as well as the users’
requirements.

V. EXPERIMENTAL ANALYSIS
The aim of this analysis is to compare the proposed
approaches in terms of runtime and solution quality
(heuristic-based approaches vs exhaustive search proce-
dures). Here, it is also interesting to analyse how the extracted
knowledge (set of solutions) varies according to the provided
grammar and/or the way in which data records are orga-
nized. The experimental analysis is therefore divided into two
main studies: space of concepts and space of data records.
Finally, some solutions are analysed with/without a hierarchy
to demonstrate the power of the presented foundations.

The experimental study was performed using some syn-
thetic datasets comprising information about up to 23 items
that anyone can buy in a supermarket and including the
purchasing habits of between 100 and 10,000 different cus-
tomers. Values for these items were uniformly distributed.
Additionally, random concept hierarchies were considered so
comparisons are as fair as possible and not depending on
the hierarchy. These random hierarchies produce different
search spaces when they are applied to the same dataset and,
therefore, different results as it will be proved later on. It is
important to highlight that results obtained by this analysis is
useless in terms of insights and it was only performed to check
how the algorithms perform and how different the results are
when different taxonomies are considered.

The following parameters were considered through the
experimental analysis. These parameters were fixed after a
previous analysis aiming to be as fair as possible so all the
proposed approaches work on similar circumstances, e.g.
a similar number of evaluated solutions. Authors are aware
that these parameters cannot be the optimal ones for any
dataset/problem and should be therefore adjusted for further

applications. Exhaustive search approacheswork on a support
threshold value of 0.3 (the same threshold is used either
on the space of concepts and data records). As for the ran-
dom search approach, a total of 5000 random solutions are
considered. Regarding the evolutionary algorithm, it runs on
100 generations, considering a population size of 50 and a
tournament size of 3. The genetic operators’ probabilities
were set up to 0.85 for crossover and 0.4 for mutation. Finally,
in any of the analysed approaches, the best 20 discovered
patterns are returned. Nevertheless, some extra studies are
also considered for a different number of returned patterns as
it will be explained. The experiments were run on an Intel(R)
Core(TM) i7 CPU at 2.67GHz with 12GB main memory,
running CentOS 5.4.

A. SPACE OF CONCEPTS
In this analysis, it is interesting to analyse first how the run-
time varies according to the size of the search space (the num-
ber of instances remains the same). Taking a synthetic dataset
(23 items uniformly distributed and 100 instances/customers)
different concept hierarchies are applied so different search
spaces are produced on the same dataset. The four pro-
posed approaches are analysed: AprioriPost (analysis after
the mining process), AprioriIn (analysis during the min-
ing process), Random Search and Evolutionary Algorithm.
Figure 3 illustrates the variation in runtime for each algorithm
on a logarithmic scale, demonstrating that exhaustive search
approaches are appropriate for small search spaces. Both
exhaustive search proposals present a runtime that is expo-
nential with regard to the search space, AprioriPost behaving
worse than AprioriIn —around four orders of magnitude
lower for a search space of 104 solutions. When large search
spaces are analysed, then heuristic-based proposals (random
search and evolutionary algorithm) perform much better.
In fact, these two approaches are run on an almost constant
runtime. Here, it is interesting to highlight that the random

FIGURE 3. Variation of the runtime when the search space increases (the
number of instances is the same).
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search approach slightly reduces its runtime when the search
space increases. This behaviour is caused by the huge number
of invalid solutions (those that do not satisfy the hierarchy or
those that are not present in data) which gives rise to a lower
probability of having to try adding a solution into the elite
population (set of best solutions found so far). This behaviour,
on the contrary, does not appear in the evolutionary algorithm
since it guides the search process through promising areas
avoiding solutions that are not present in data.

In this study, it is also interesting to analyse whether the
number of instances has a huge impact on the runtime. To this
aim, the same concept hierarchy (search space including
21,963 solutions) with a variation in the number of instances
is considered (this number varies from 100 to 10,000). The
results of this analysis are shown in Figure 4, where it is
demonstrated that the number of instances to be evaluated is
not a key issue in the runtime. Again, both the evolutionary
approach and the random search proposal achieve the best
results in runtime, whereas AprioriPost highly differs (around
four orders of magnitude higher).

FIGURE 4. Variation of the runtime when the number of instances
increases (the search space is the same).

Once the runtime has been analysed, it is of high interest
to demonstrate how good heuristic-based solutions are. In this
sense, and based on the fact that exhaustive search approaches
obtain thewhole set of solutions, the aim is to analysewhether
the resulting set of solutions provided by heuristic-based
proposals is close to the real optimum (the set of top solu-
tions provided by exhaustive search approaches). Table 5
shows the percentage, in per unit basis, of the proximity
between the average support value of the top solutions found
by both exhaustive search and heuristic-based approaches.
Values close to 1 represent a similar average, whereas values
close to 0 indicate completely dissimilar average support
values. As shown in that table, the higher the number of top
solutions to be considered, the more difficult it is to reach the
optimum. Nevertheless, in general terms, results demonstrate
that the evolutionary algorithm (EA) widely outperforms the
random search (RS) approach. In fact, and taking into account

TABLE 5. Comparative of the average support values when they are
compared to the optimum (provided by exhaustive search approches).

the previous analyses (see Figure 3 and Figure 4) it can
be asserted that the evolutionary algorithm is a really good
option for large search spaces since it obtains really good
solutions (close to the optimum) in an acceptable runtime.
On the other hand, exhaustive search approaches, and more
specifically AprioriIn, are useful in small search spaces.

B. SPACE OF DATA RECORDS
In this second analysis, and similarly to the previous analysis
carried out on the space of data records, it is interesting to
analyse first how the runtime varies according to the size of
the search space. This study is carried out with the three pro-
posed approaches: AprioriIn (exhaustive search approach),
Random Search and Evolutionary Algorithm. Figure 5 illus-
trates the variation in runtime for each algorithm, demon-
strating that the exhaustive search approach is appropriate
for small search spaces, presenting a runtime that is expo-
nential with regard to the search space. On the contrary,
heuristic-based proposals (random search and evolutionary
algorithm) perform much better when large search spaces
are considered. In fact, the evolutionary algorithm is run
on an almost constant runtime. Here, and similarly to the
results obtained in the analysis on the space of concepts, it is
also interesting to highlight that the random search approach
slightly reduces its runtime when the search space increases
and this reduction is even higher than the one obtained in the

FIGURE 5. Variation of the runtime when the search space increases.
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space of concepts. This behaviour is caused by the huge num-
ber of solutions having a support value lower than the prede-
fined minimum threshold, which implies a lower probability
of having to try adding a solution into the elite population (set
of best solutions found so far). This threshold value is much
more restrictive when records are organized into bags and this
is why the behaviour slightly differs from the one obtained
when analysing the space of concepts. This behaviour is not
observed for the evolutionary algorithm since it guides the
search process through promising areas avoiding solutions
that are not present in data.

The following study is related to whether the number of
bags (sets of instances) has a huge impact on the runtime.
To this aim, the same search space is considered but the
number of bags is varied, providing the results illustrated
in Figure 6. Taking the heuristic-based proposals (random
search and evolutionary algorithm), it is observed that the
number of bags does not have a huge impact on these algo-
rithms’ runtime. The exhaustive search approach, on the
contrary, presents a huge increment in the runtime when the
number of bags also increases. An additional analysis must
also be performed, considering a fixed search space and a
fixed number of bags while varying data density. This density
is quantified according to the average number of instances
per bag in data. Figure 7 illustrates how the three proposed
algorithms behave when density is varied. In general terms,
the density does not influence much performance, all the
algorithms running in an almost similar time.

FIGURE 6. Variation of the runtime when the number of bags (groups of
instances) increases (the search space is the same).

Finally, and once the runtime has been analysed, it is of
high interest to evaluate how good heuristic-based solutions
are when considering flexibility in the space of data records.
In this sense, and based on the fact that AprioriIn obtains
the whole set of solutions, the aim is to analyse whether
the resulting set of solutions provided by heuristic-based
proposals is close to the real optimum (the set of top solutions
provided by the exhaustive search approach). Table 6 shows
the percentage, in per unit basis, of the proximity between
the average support value of the top solutions found by both

FIGURE 7. Variation of the runtime when the density (average number of
instances per bag) increases (the search space is the same).

TABLE 6. Comparative of the average support values when they are
compared to the optimum (provided by exhaustive search approches).

exhaustive search and heuristic-based approaches. Values
close to 1 represent a similar average, whereas values close
to 0 indicate completely dissimilar average support values.
In general terms, results reveal that as the number of top solu-
tions is increased, it is more difficult to reach the optimum.
Additionally, the evolutionary algorithm (EA) widely outper-
forms the random search (RS) approach, achieving results
close to the maximum in any case. Taking into account the
previous analyses (see Figure 5, Figure 6 and Figure 7) it can
be asserted that the evolutionary algorithm is a really good
option for large search spaces since it obtains really good
solutions (close to the optimum) in an acceptable runtime.
For really small search spaces, on the contrary, an exhaustive
search is much more appropriate.

C. ANALYSIS OF THE INSIGHTS
This study aims to analyse the solutions found by the pro-
posed approaches to assess their usefulness and their ability
to extract user-centric knowledge. With this aim, let us con-
sider first a synthetic dataset comprising information about
23 items that anyone can buy in a supermarket. This dataset
includes the purchasing habits of 100 different customers.
Each customer has bought, on average, 11.43 items (standard
deviation of 2.26). Applying a traditional pattern mining
approach, where no flexibility is added to the input dataset,
it is possible to obtain solutions such as those illustrated
in Table 7. Here the product that is most frequently bought
is item14, almost 60% of the customers have bought this
item. If we analyse patterns of length two (patterns with #Id
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TABLE 7. Set of solutions obtained on a sample market basket dataset (rigid data structured). Solutions are ranked (top to bottom, left to right)
according to their support in per unit basis.

FIGURE 8. Context-free grammar defined to represent subjective information on a dataset related to customers’
purchasing habits. The grammar is expressed in extended BNF notation.

from 24 to 58), the one with the highest support is #Id 24,
which represents that 37% of the customers bought item1 and
item7 together.

Continuing with this dataset, let us consider adding some
conceptual information to extract user-centric knowledge.
For that, a hierarchy of concepts is provided (see Figure 8)
in which items are grouped to produce abstract concepts.
Here, it is indicated that items 0 to 4 are different types of
beer, whereas items 5 to 7 are types of soda. Additionally,
there exist a promotion of packs of soda, including two or
more items that belong to soda (any type of soda). This and
further information is properly represented/defined through
a context-free grammar (see Figure 8). Applying the pro-
posed approaches on the dataset together with the defined
hierarchy, a set of solutions is obtained (see Table 8) which
is, obviously, larger than the one obtained without hierarchy.
A total of 2806 solutions are found, including all the previous
solutions (Table 7) and much more.

Analysing the set of solutions, it is found that anyone
that goes to the supermarket buys a dairy product (cheese,
egg, milk, yoghurt, butter). Similarly, 100% of customers
usually buy beverages (beer or soda). These insights are quite
interesting and actionable since they are dealingwithmultiple
products (from item13 to item22) as a whole (dairy products)
and, therefore, this information can be used for launching
the right advertising campaign. Of course, this knowledge is
impossible to extract from traditional and rigid data repre-
sentations used by existing pattern mining approaches. Using
a hierarchy of concepts does not imply that items (in the
lowest abstraction level) cannot be extracted as traditional
pattern mining approaches do. For example, the pattern with
#Id 124 denotes that 59% of the customers usually buy
item14, which is the same pattern obtained with no grammar
(see Table 7). These primitive items can also be combined
with abstract concepts as pattern #Id 566, which represents
that 44% of the customers generally buy item3 (a specific
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TABLE 8. Set of solutions obtained on a sample market basket dataset and considering the hierarchy of concepts (flexible data structured) defined
in Figure 8. Solutions are ranked (top to bottom, left to right) according to their support in per unit basis.

type of beer), soda (no matter which one) and a personal care
product (no matter which one). Finally, it is of high interest
to demonstrate that the hierarchy is perfectly satisfied and
invalid patterns are not obtained. This is easily demonstrable
by analysing the five first patterns (#Id 1 to #Id 5). Here, beer
appears like a really frequent product (98% of the customers
usually buy it), and it is combined with dairy (100% of the
customers usually buy a dairy product) in pattern #Id 5, but
it is not combined with beverages (100% of the customers
usually buy a beverage). Beer and beverages are incompatible
items since beer is, by definition, a type of beverage so the
resulting insight is useless.

Finally, and continuing with the same dataset, let us con-
sider now a completely different conceptual information
(see Figure 9). Here, it is represented that items from 0 to 7 are
different types of beverages, not being important whether it
is a beer or a soda. Items from 8 to 12 represent personal care
product, and it does not matter the product type. Finally, items
from 13 to 22 represent dairy products in general. Apply-
ing the previous dataset together with the defined hierarchy
on the already proposed approaches, a set of solutions is
obtained (see Table 9) which is, obviously, larger than the
one obtained without hierarchy and smaller than the previous
one (the hierarchy is now much more simple or abstract).
As shown, results for this hierarchy were already obtained
in the previous hierarchy. The main difference is that results
are simplified because there are less abstract concepts.

To sum up, the use of a hierarchy of concepts allows
encoding much richer information in the data. Results with
and without a hierarchy are completely different except for
the primitive concepts, which are obtained in any case. If the
hierarchy is slightly modified, the results also change, being
more general or specific depending on the hierarchy. As it
has been demonstrated, the use of a hierarchy is essential to
obtain useful and user-centric insights.

Finally, and considering the same hierarchy defined in
Figure 9, it is possible to organize data records into groups

TABLE 9. Set of solutions obtained on a sample market basket dataset
and considering the hierarchy of concepts (flexible data structured)
defined in Figure 9. Solutions are ranked (top to bottom, left to right)
according to their support in per unit basis.

or bags of instances. This analysis is of high interest in
situations where all the purchases of the same customer must
be analysed at the same time, avoiding inaccurate insights
to be extracted (information that is biased against occasional
customers). Results of this analysis are shown in Table 10,
which highly differ from those obtained in Table 9 even when
the hierarchy is the same. As shown, the support values are
different and some of the variations are quite interesting. For
example, item14 in isolation has a support value of 0.71 but
when it appears together with dairy (a support of 100%)
produces a not too high support value (see pattern #Id 543,
support value of 0.37). It is caused by the fact that a pattern
that appears in 100% of the bags does not necessarily appear
together with others. It may happen that the two items appear
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FIGURE 9. Context-free grammar defined to represent a completely different subjective information on the same
dataset. The grammar is expressed in extended BNF notation.

TABLE 10. Set of solutions obtained on a sample market basket dataset
organized into bags (space of data records) and considering the hiearchy
of concepts (flexible data structured) defined in Figure 9. Solutions are
ranked (top to bottom, left to right) according to their support in per unit
basis.

in different transactions/records within the same bag. In other
words, a product may always be bought by all the customers
but it does not mean that this product is bought at the same
time (in the same transaction) as others.

VI. LESSON LEARNED
The growing demand for eliciting useful insights from data on
different domains has resulted in a growing need for extract-
ing rich information that satisfies the requirements of users.
Existing methodologies for describing intrinsic and impor-
tant properties of data through the extraction of useful pat-
terns, however, work on fixed input data and the discovered
insights are therefore restricted by the data structure. These
approaches were not designed for discovering adaptable and
user-centric knowledge, which can be obtained simply by
analysing data from contrasting perspectives or views. Each
of these views comprises the same information but expressed
differently and, therefore, the obtained results might be useful
for some specific aims but useless for others. Based on this
idea, it is possible to extract more user-centric knowledge
using flexible data structures in two different spaces or per-
spectives: concepts and records.

The first way in which flexible data structures can be
applied is related to the space of concepts, dealing with
the importance of defining concepts at different abstraction
levels. Concepts (elements or items in data) are the key
piece to produce the final insights. Hence, with such con-
cepts on different abstraction levels plays a crucial role in
providing powerful, applicable and actionable information

that was inaccessible to traditional approaches based only
on primitive concepts. Thanks to the use of a context-free
grammar, it is possible to achieve heterogeneous hierarchies
(not all the items or concepts have an abstract concept in every
level of abstraction) and including concepts that produce two
or more different generalizations of such concepts (every
concept is formally defined by a single abstract concept in
the existing methodologies). The first analysis was related to
how the runtime varies when different concept hierarchies are
considered (different search spaces as a result) by using the
same dataset. As it was illustrated in Figure 3, exhaustive
search methods exponentially grow with the search space,
whereas heuristic-based methods remain almost constant.
Focusing on exhaustive search methods, it is faster to apply
pruning during themining process than considering this prun-
ing after the mining process. Additionally, when considering
the same hierarchy but increasing the number of instances
(see Figure 4), heuristic-based solutions remain almost the
same whereas exhaustive search methods linearly increase
(noted that y-axis is in logarithmic scale). Finally, when
considering the ability to extract the top n solutions, it is
obvious that exhaustive search approaches are impossible
to be outperformed since they always produce any feasible
result. However, the experimental analysis has shown (see
Table 5) that evolutionary computation approaches are really
good and much better than a random search approach.

In a second analysis, the necessity of handling ambiguous
descriptions on the space of records was considered. As it
has been studied, the importance of patterns in data highly
depends on the way in which data is organized, in such a
way that the same pattern may produce completely different
results when it is analysed on a dataset organized by rows
(each one represents a transaction) and on a dataset organized
by bags of rows (each bag comprises a variable number
of transactions). This analysis is of high interest in many
situations such as the market basket analysis where all the
purchases of the same customer are required to be analysed
together to avoid extracting inaccurate insights (information
that is biased against occasional customers). The analysis
carried out in this space of concepts has demonstrated the util-
ity of grouping records at different levels, considering either
objective and subjective concepts, and taking into account
the significance of a pattern within each bag of data records.
The very same analysis as the one performed in the space
of concepts was performed, considering different concept
hierarchies for the same dataset (see Figure 6), different bags
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of instances for the same hierarchy of concepts (see Figure 6)
and, finally, whether evolutionary approaches are much better
than random search methods to extract the best n solutions
found by exhaustive search (see Table 6).
In any of the spaces in which data structures can be mod-

elled to achieve the right insights, the obtained results will
be more suitable to the background or subjective knowledge
provided by users. In other words, if the concept hierarchy
is not well defined, the results cannot produce the right
insights. Something similar happens when working on the
space of data records since transactions are organized by a
concept (or multiple concepts) provided by the expert and,
therefore, the extracted knowledge highly depends on such
organization. The analysis carried out on two different spaces
(concepts and records) has giving rise to interesting ways in
which the pattern mining task can be improved (according to
the users’ expectations), and that will serve as the basis for
future research studies on this field.

VII. CONCLUSION
This paper has settled the basis for the extraction of more
user-centric patterns, easily applicable (improving the under-
standing), and focused on the task at hand (increasing the
actionability). The idea is that the same data can be analyzed
from contrasting perspectives or views that will produce com-
pletely different results (comprising the same information but
expressed differently), and these results may be useful for a
specific aim but useless for another. It is similar because two
peoplemay describe the same thing from two different angles,
and both be right. In this regard, flexible data structures have
been described based on two different spaces or perspectives:
concepts and records. In each of these spaces, examples to
understand the importance of the proposed foundations have
been included. It is important to note that the final aim is to
set the bases for further research studies on the ideas here
presented, so the algorithmic solutions included in each of
the two perspectives are just adaptations of well-known and
widely used algorithms to demonstrate that all the proposed
ideas are feasible and, therefore, further research studies
could provide high-performance approaches in this field.

For future work, several research directions can be
explored. A possibility is to consider Web Ontology Lan-
guage (OWL) to represent rich and complex concepts
and groups of concepts and relations. This computational
logic-based language could provide advanced operators
and semantic definitions to improve the understanding and
increase the actionability of the extracted insights. This is a
natural extension of this work that brings new technological
and performance challenges to be faced.
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