IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 15, 2020, accepted July 3, 2020, date of publication July 21, 2020, date of current version July 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3010804

Increasing the Lifetime of Flash Memory
Based SSDs by Improving the Merge
Operation in Flash Translation Layer

PEYMAN FOROUHAR", (Graduate Student Member, 1EEE),

AND FARSHAD SAFAEI", (Associate Member, IEEE)

Faculty of Computer Science and Engineering, Shahid Beheshti University G. C., Tehran 1983963113, Iran

Corresponding author: Farshad Safaei (f_safaei @sbu.ac.ir)

ABSTRACT The impressive features of Solid-State Drives (SSDs) have made them be used in a wide
range of storage systems. NAND Flash memory, as a good choice for SSDs, caused many challenges. The
impossibility of data overwritten in this type of memories is their biggest challenge since this constraint
ultimately leads to a decrease in memory lifetime. Numerous designs have been developed to overcome the
above challenge in the interface layer of flash memories known as Flash Translation Layer (FTL). In this
paper, we present a new FTL that aims to improve the lifetime of memory based on an equation. Using this
equation, two major challenges in SSDs can be targeted simultaneously and both can be improved. Reduction
of the number of unused pages erased in merge operations and simultaneous increase of the number of invalid
pages released in the Garbage Collection (GC) operations, are two of the achievements of our proposed FTL.
The results of evaluation on real workloads indicate that parameters of unused erased pages decreased by
5% to 11%, invalid pages released increased by 10% to 28%, redundant written pages in garbage collection
operations decreased by 8% to 25% and finally the number of erased blocks decreased by 3% to 12%.
Therefore, the significant improvement of these four parameters has a direct impact on the memory lifetime.

INDEX TERMS Solid-state disk, flash translation layer, garbage-collection, merge operation, life-time.

I. INTRODUCTION

NAND flash memory is used as a non-volatile memory in
Solid-State Disks (SSDs) because of the high density of data
storage. This type of memories is generally classified into
two categories: Single-Level Cell (SLC) and Multi-Level
Cell (MLC). The memory lifetime in SLCs is longer than
MLCs, which is due to the physical properties of its con-
struction and the concept of Floating Gate in their MOSFET
transistors [1], [2]. In NAND-based SSDs, the reading and
writing unit is a single page, which consists of a number of
SLC or MLC transistors. However, the erasing unit in the
flash memory is a block, which is made up of a number of
pages. A unique feature of SSDs is the impossibility of data
overwriting. For example, if at time tl, a page is written in
the address x of physical memory, then it will not be possible
to write a new page at address x at time t2. In this case,
the controller will allocate an empty page on another address,
so that the new page can be written at that address, and then

The associate editor coordinating the review of this manuscript and

approving it for publication was DuSan Gruji¢

134324

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

the address x of the memory will be put in the invalid state.
This operation is hidden from the user; however, this page will
not be available for reuse unless the block associated with the
page at the address x is erased [3].

One of the other most important challenges for flash
memories is their limited lifetime. Repeated writing and eras-
ing of memory blocks, over time, cause them to be worn
out and, as a result, the information in some parts of the
memory could not be properly read [4]-[6]. Clearly, the more
we reduce the amount of unnecessary write operations in
flash memories, the longer will be their associated lifetime.
The write operation, which is carried out in the memory
backend section and commanded by the Flash Translation
Layer (FTL), can be related to running commands such as
garbage collection or merge operation, which the user has no
interference with their productions [7].

The FTL is a software layer that manages and controls
various memory sections; commands such as garbage col-
lection, mapping, wear leveling, and merge operation are
issued and run in FTL [8]-[11]. The following presents a brief
description for each of these commands.

VOLUME 8, 2020

https://orcid.org/0000-0002-3554-736X
https://orcid.org/0000-0002-8546-3148
https://orcid.org/0000-0002-7949-8766

P. Forouhar, F. Safaei: Increasing the Lifetime of Flash Memory Based SSDs by Improving the Merge Operation in FTL

IEEE Access

The mapping space in flash drives is divided into physical
and logical addresses. The logical addresses are user-defined
and used constantly; each logical address is mapped to a phys-
ical address in the main memory and multiple referrals over
time to a logical address will repeatedly change its related
physical address, which, as previously indicated, is obvious
because of the impossibility of overwriting. The mapping of
the logical addresses to the physical addresses is carried out
in the Mapping Tables. Mapping through mapping tables can
take place at the level of the page, block, or a combination
of both. There is a physical address in each logical address
of a page in the page mapping. In this way, the data access
speed is very high, and, on the other hand, a very high space
of memory is needed to store the page table. In the block map-
ping, there is a physical block address for each logical block
address, and access to pages of that block is made possible
through the offsets. In this method, less space is needed to
store the block table. However, when updating a page, you
must copy all block pages related to that page in a new block,
which results in erosion of memory. The third method, which
is the most widely used, is a hybrid of the two preceding
methods, so that the storage space is divided into two general
parts. The first part is called data blocks, and the second part is
called update blocks. Write operations are carried out in data
blocks and pages are updated in update blocks or log blocks.
Data blocks access Log blocks through block mapping, and
accessing the pages in the log blocks is through the page
mapping [12]-[14]. This method greatly improves the limits
of the other two methods, and most modern FTLs are based
on the third method.

As mentioned earlier, due to the update of pages in mem-
ory, many invalid pages are created in different blocks that are
practically non-usable. The only way to release these pages
for reuse is to erase the blocks associated with them. To do so,
this requires firstly to copy the valid pages of the correspond-
ing block to another empty block, then to erase the block
to release the corresponding invalid pages. This is called
garbage collection (GC), implementation of which is efficient
when the number of invalid pages of a block is more than an
accepted threshold. It is clear that to run this command, some
unnecessary ‘“‘write”” operations must be done. The more the
number of these operations is reduced, the greater the erosion
of memory will be prevented [15], [16].

The merge operation can take place in three general forms:
partial merge, switch merge, and full merge. Figure. 1 shows
the different merge forms. The least costly one is the switch
merge; then the partial merge and, ultimately, the full merge
are in the next ranks respectively. Therefore, improving full
merge can greatly increase the lifetime of the memory [17].
In Log-block based methods of mapping, each log block
associates with a number of data blocks from which it has
received the data.

In the merge operation, the valid pages of the data blocks
are merged with the valid pages of their associating log
blocks, and are written in an empty data block, and finally
the log blocks and their associating data blocks are then

VOLUME 8, 2020

Data Block Data Block Data Block

Log Block

Log Block

& Erase & Change

Free ‘Block Data ' Block

(a)Full Merge

(b)Partial Merge

Data Block Log Block

& Erase i Change
ock Data' Block

—i=

(c)Switch Merge

I invalid Pages Valid Pages

FIGURE 1. (a) An example of full merge, (b) an example of partial merge
and (c) an example of switch.

erased and added to the list of usable empty blocks. Here,
the maximum cost of memory erosion is associated with the
FTL. The obvious reason for this is the transfer of valid pages
that carries out multiple unnecessary writings; in addition,
many unused pages are erased unnecessarily in the process
of erasing.

Wear Leveling helps to make a fair distribution of data at
the level of memory blocks, and it causes the lifetime of those
sections of the memory on which the hot data is written not to
expire earlier than other blocks so that the information stored
in that section will not be lost [18], [19].

Focusing on lifetime of the flash memories, especially in
SSDs, is important for applications for which the memory

134325

IEEE Access

P. Forouhar, F. Safaei: Increasing the Lifetime of Flash Memory Based SSDs by Improving the Merge Operation in FTL

lifetime is critical. For example, in large IT corporations that
billions of videos and data are daily uploaded to their servers,
it is essential to reduce the memory erosion. Replacing flash-
technology-based storage systems and transferring their data
to prevent loss of data is very costly and delaying a disk failure
(that is, increasing the lifetime of a memory disk) can be very
cost-effective [20].

In section II, we will examine some of the most widely
used, basic and up-to-date FTLs, and investigate the advan-
tages and disadvantages of each one. Then, in the section III,
we introduce the new FTL and show its performance with an
example. In the Section IV, a comparison is made to compare
the simulation results of the new FTL and the other FTLs pre-
viously presented. Finally, the future work and conclusions
are expressed in Section V.

Il. RELATED WORKS

In this section, some important FTLs are reviewed. Fully
Associative Flash Translation Layer (FAST) is considered
as the most basic FTL, which is the starting point for most
of today’s advanced FTLs. The next Flash translation layer
is Reuse aware NAND Flash Translation Layer (RN-FTL);
this structure, like most modern FTLs, relies on update
blocks, and restricts associativity with a parameter called K.
In other words, it can be called extended K-Associative Sector
Translation Layer (KAST). Ultimately, we will review one
of the newest flash translation layers, Dynamic Associa-
tive Flash Translation Layer (DA-FTL,) which is a flexible
structure in accordance with the conditions governing the
system.

In the FAST structure, the physical memory block is
divided into two separate sections. The first section consists
of data blocks where the initial data is stored. This section
covers most of the memory block and is called data block.
The second section is made up of update blocks that are
called log blocks, and only the updated pages are stored
there. This section has a small share of the overall memory
space [21]. It is noteworthy to mention that this partitioning
is done programmatically and there is no physical change in
memory space. When a workload is applied to the storage
system, the initial writings are stored in the storage cells in
the data block section. If a logical address is referenced to
for the second time, then it means that the contents of its
physical address should be updated, and, as data overwriting
is impossible, a new physical address will be allocated to
it. In FAST, this address will be selected from the mapping
space associated with log blocks. Communications between
the data blocks and their associating log blocks are stored
in a block-based mapping table. Each log block in FAST
is allowed to receive and store updated pages from all data
blocks. The reason for such naming is the unrestricted dis-
tribution of data. In the best case, a log block can only be
associated with one data block; this occurs if the writing is
done serially and consecutively, and in the worst case, a log
block can be associated with a number of data blocks equal
to its pages. In fact, there will be a problem when there is no

134326

space for storing a new page in the log blocks section. In this
case, the Merge command is called. Once the command
is run, a log block is selected as the victim, and then the
associated data block is marked. Each data block is merged
with the existing pages in that victim block and then they
are written in an empty data block. This process continues
for the entire data blocks associated with the victim block,
and then the victim block, along with its entire associated
data blocks, is erased and added to the empty block list.
Finally, a new log block is assigned to the log blocks list
to store the recent updated page. The data blocks associated
with the log block contain many unused pages, and given the
fact that there is no limitation for associativity, the number
of blocks containing unused pages can be very large. These
unused pages are unnecessarily erased in merge operations.
In block-erasing step, this leads to severe erosion of memory.
One of the advantages of this structure is the full use of
the pages of log blocks, and it is to be ensured that the log
block selected as the victim does not contain an empty page.
However, due to the limited storage space of the log blocks,
the Merge command is executed repeatedly and many unused
pages are unnecessarily erased.

RN-FTL as already mentioned, is the advanced form of
KAST [22]. In KAST, a constraint K is considered for asso-
ciativity of log blocks with data blocks. It means that each log
block is allowed to be associated with only K data blocks.
This provides a guarantee for calculation of the worst case
in the merge operation, and a log block in merge operation
requires to be merged with at most K data blocks. Reduction
of the number of merges prevents the severe erosion that
occurs in structures like FAST. However, this constraint itself
causes some problems, and one of the most important of these
is that there is no guarantee that all pages of a log block used
before are to be erased in merge operation. In fact, in KAST,
filling log blocks is not the only required condition for enter-
ing the merge phase. In addition, there will be a situation
where a page of a data block is updated, but no log block has
already been allocated to this page. Therefore, it is necessary
to assign a new log block to this data block. However, there
will be blocks in the list of log blocks that have empty space
for the new data storage, but their K limit does not allow
them to receive new blocks. The RN-FTL structure provides
a solution to solve this problem [23]. The idea of this design
is that if a log block is forced to join the merging process
because its k capacity is full, while there are plenty of unused
pages, then, after merging it with its associated data block,
it is added to the list of random log blocks and it will not be
erased. This method improves efficiency and prevents erosion
of memory blocks largely. Yet, as mentioned before, a limited
number of memory blocks can be placed in the update blocks,
and if the list of log blocks exceeds the standard limit, we will
have to erase some of them and transfer them to the data block
list; the repeated erase operations will lead to a decrease in
memory lifetime.

By reviewing different FTLs and different solutions
presented in them, DA-FTL by a new structure is presented

VOLUME 8, 2020

P. Forouhar, F. Safaei: Increasing the Lifetime of Flash Memory Based SSDs by Improving the Merge Operation in FTL

IEEE Access

that is highly flexible [24]. This structure is designed based
on update blocks, and has benefited from ideas presented in
KAST and other FTLs. The main difference of this FTL is in
its merge operation section. When a log block is to be selected
as the victim for merge operation, the data blocks associated
with this log block are checked before entering the merging
phase. The data blocks that repeatedly undergo the merge
operation will impose considerable costs in terms of erosion
to memory; therefore, we move it to another log block or in
other certain circumstances, if there is an empty space in the
victim log block, we can move the available data block in
other log blocks that are ready to be merged to the victim
log block before the merge operation so that we can make a
proper merge operation by creating an ideal state. Obviously,
the K constraint in the KAST structure will not allow any
transfer; but in DA-FTL, the K value in the update blocks
has changed from the static state to a dynamic one, so the K
value of a log block can exceed its constant limit considering
the governing circumstances to improve the merge operation.
Sometimes this limit will be lower depending on the situa-
tion. The results show remarkable improvement during the
merge operation. However, the overhead due to the transfer
of pages of a data block to log blocks and the change of
association in different logs cannot be ignored, and some-
times the excessive increase of association in a log block can
create difficult conditions for future input/output (I/O) oper-
ations; this requires an efficient management to prevent the
crisis. This is what makes the structure of the FTL extremely
complex.

Ill. THE PROPOSED FLASH TRANSLATION LAYER

In this section, anew FTL architecture is proposed. It is called
Optimized Victim Select (OVS). Like other recent architec-
tures, this FTL is based on update blocks, and the memory
space is programmatically divided into two sections, the data
blocks and log blocks. The idea behind this design is to use
the ability to restrict association in log blocks without causing
any physical or software changes in the main structure of the
memory. This structure attempts to avoid selecting log block
with high merging costs as victim block in merging opera-
tions as much as possible, and practically, to delay their merge
so that they will be in a better situation when this command is
run for them. The main goal of this FTL is to reduce the num-
ber of unused pages that are unnecessarily erased in the merge
operation and thereby cause a significant reduction in the
lifetime of the memory cells. It has also attempted to release
as much invalid pages as possible in the merge operation to be
reused.

Log blocks are divided into random and serial log blocks,
so that we may benefit from the advantages of the switch
and partial merge operations as much as possible. Table *A’
(Associative table) is considered for each log block to specify
the associated data block. An association constraint is consid-
ered in the new FTL as in KAST. We store such information
as the number of valid and invalid pages of each data block
in this table.

VOLUME 8, 2020

A. BASIC DEFINITIONS
Addresses at the user level and in the workloads are
recognized as I/O_Address and according to (1); the Logical
Block Address (LBA) is obtained by dividing I/O_Address
by the block size.
1/0_Address
LBA = ———— (1)
Block_Size

Valid_Count, the number of valid pages and Invalid_Count,
the number of Invalid pages available at a Physical Block
Address (PBA) are obtained from the WValid_List and
Invalid_List tables according to the (2) and (3).

Valid_Count = Valid_List(PBA) 2)
Invalid_Count = Invalid_List(PBA) 3)

Unused_Page, the number of unused pages contained in a
data block is calculated of (4).

Unused_Page = Block_Size
—[Valid _List(PBA) + Invalid_List(PBA))]
4)

In (3) and (4), Valid_Count and Invalid_Count are
respectively the equivalents of the number of valid and
invalid pages of physical block in the PBA address, and
Unused_Pages represents the number of unused pages of a
physical block in the PBA address.

B. OPTIMIZED VICTIM SELECT ALGORITHM

Suppose that after applying a string of Inputs/Outputs (I/Os)
to a flash-based storage system such as an SSD, there is no
possibility of updating a new page of a data block due to the
lack of an empty association capacity in log blocks. In this
case, a log block is selected as the victim and is put into
merge operation so that the new page can be updated and
stored by releasing it. Log blocks are placed in a linked list.
The proposed FTL checks log blocks from the beginning to
the end of the list. For each log block, we obtain the SEL
parameter, which is computed from the (5).

K
SEL = Z (Invalid_list(PBA;) — Unused_Pages) —
i=1

K
SEL = Z[z s Invalid_List(PBA;)
i=1

+Valid_List(PBA;) — Block_Size] 5)

In (5), the difference between the number of invalid pages
and the number of unused pages is calculated for each of the
data blocks associated with that log block, and finally they
summed together. The reason for choosing such an equation
is that the more the number of invalid pages supposed to
be released in the merge operation is, the better it is. Thus,
we select the positive sign for the Invalid_List parameter.
On the other hand, the lower the number of unused_Pages
of a data block is, the better is the situation of that block for

134327

IEEE Access

P. Forouhar, F. Safaei: Increasing the Lifetime of Flash Memory Based SSDs by Improving the Merge Operation in FTL

the merge operation. Therefore, we consider a negative sign
for the parameter of the number of unused pages of a block,
which is obtained based on the (6).

Unused_Pages = Block_Size

—[Valid_List(PBA;)+1Invalid_List(PBA;)]
(6)

We calculate this difference for all data blocks associated with
that log block which is equivalent to K, and then we sum
up them together to obtain a suitable criterion for choosing
a victim log block. Now in the linked list of the log blocks,
SEL(Log;) is compared to SEL(Log;), and the bigger one is
considered as the Victim parameter. This will continue for the
entire linked list, and at the end, the Victim is the address of
the log block to be included in the merge operation.

Regarding the reasons for the parameter SEL setting,
the proposed FTL provides a way to run Garbage Collection
and merge functions in the most optimal conditions. The
general view is that a log block should be selected for merge
operations that has two features. First, the total number of
unused pages of the associated data blocks is the lowest, and
second, the sum of invalid pages of the associated data blocks
has the most number. This is achieved by providing the SEL
equation. By using SEL, a log block is selected for the merge
operation to apply the least amount of erosion to the memory
blocks after the merge function is executed. It is important
to note that the weight value of releasing an invalid page
(to become a valid and usable page) is the same as erasing an
unused page, because in both cases there is a discussion about
using part of the memory space is the size of the cells that
make up a page. In (5), the sum of the values of the negative
parameter affecting the lifetime of the flash memory is sub-
tracted from the sum of the values of the positive parameter
affecting the lifetime of the memory (given that the values
of these parameters are equal) and a number is obtained for
SEL. It should be noted that if the FTL selects the victim
log block without any calculation and prioritization, many
unused pages may be erased for no reason, or the least invalid
pages in the merge operation may be released for reuse, which
can lead to erosion.

We will investigate the proposed FTL pseudocode in the
following. This section includes four basic functions that we
explain briefly. In the function “write”” of Fig. 2, once an
I/O command is read from the workload, the part related
to the address is extracted so that the data could be written
in its corresponding address. The logical block address is
obtained through dividing this address by the block size. The
offset of the page is computed based on the remainder of
division of LBA by the block size. In a granular mapping
table, at the block level, it is examined whether a physical
block has already been assigned to this logical address or not.
In the case that this section of the mapping table is empty,
a block data is selected from the free physical block space
of the flash memory and its address is mapped onto the LBA
in the mapping table. Then, the data is written in the correct
offset of the PBA, and the Valid_List counter increases by

134328

1 write(event)

2 BEGIN
3 LBA: =event.address div BLOCK_SIZE; //LBA : Logical Block
Number

4 offset: =LBA mod BLOCK_SIZE;

5 if(map.table(LBA) == EMPTY) / map.table: map LBA to PBA
6 PBA=get.new_BLOCK; // PBA: Physical Block Number

7 map.table(LBA)=PBA;

8 write data at PBA ;

9 Valid_List(PBA)++; // Increase PBA valid pages
10 end of if

11 else

12 if (PBA.offset = EMPTY)

13 write data at PBA offset;

14 Valid_List(PBA)++; // Increase PBA valid pages
15 Else

16 Invalid List(PBA)++; // Increase PBA invalid pages
17 call: write_to_log_block(LBA,PBA,offset, DATA)
18 end of else

19 END

FIGURE 2. “wrtite” function of proposed FTL.

1 write_to_log_block(LBA,PBA,offset,data)

2 BEGIN

3 if (offset ==0)

4 write DATA to the serial_log_block;

5 else

6 if(page.table(PBA) == random_log) // page.table :map PBA to

random_log BLOCKs

7 if (there is unused page in random_log)

8 write DATA at the next unused page in random_log;

9 else

10 call: merge(random_log)

11 else

12 if (there is a free BLOCK in random_log linked-list)

13 page.table(PBA)=random_log;

14 write DATA at the first unused page in random_log;

15 else

16 scan the random_log linked-list:

17 if (associativity of a random_log is less than K) // K: limit on
associative

18 write DATA at the first unused page in random_log;

19 else

20 call: OVS_function;

21 end of scan

22 end of else

23 end of else

24 end of else

25 END

FIGURE 3. “wrtite_to_log_bock” function of proposed FTL.

one (according to the writing of the new page). However,
if a physical address has already been assigned to the LBA,
there will be two scenarios. In the first scenario, the offset
of the page is free in the physical block and the page will
be written in that offset and then, the Valid_List increases by
one (according to the writing of the new page). In the sec-
ond scenario, the corresponding offset contains a value that
shows the page update operation in that offset, and then, the
Invalid_List increases by one (according to the page updated
of PBA). Finally, function “write_to_log_block” is called.
In Function “write_to_log_block” of Fig. 3, the updated
page is written in the update blocks, that is, the log blocks.
If the offset of the updated page is zero, this page is written
in the serial log blocks. In the case that a random log block
is assigned to a PBA in the related mapping table and the
log block has an unused free page, the updated page will
be written in the first free cell in the random log block;
otherwise, the function “merge” is called. However, if no
random log block is previously assigned to PBA, there will
be two scenarios. In the first scenario, if there is a free block

VOLUME 8, 2020

o

. Forouhar, F. Safaei: Increasing the Lifetime of Flash Memory Based SSDs by Improving the Merge Operation in FTL

IEEE Access

OVS_function(random_log)
BEGIN
for (i=1; i<K;i++)
Invalid(random_log(x)): =sum(Invalid_List(PBA(i))); // sum of
invalid pages in all associated data blocks of random_log(x)
5 unused(random_log(x)): =sum (BLOCK_SIZE-[Valid_List(PBA(i))
+Invalid_List(PBA(i))) ;//sum of unused pages in all associated data blocks
of random_log(x)
6 SEL (random_log(x)): =Invalid(random_log(x)-
unused(random_log(x)); // SEL is the Best Victim Choice Indicator
7 end of for
/* Updated Valid_List() and Invalid_List() are available from previous
functions, and you don't need to scan any data blocks to get these values. */

AW~

8 for(i=start;i!=end-1;i++) // start/end is the first/end in random log blocks
linked-list

9 if (SEL (random_log(i)<SEL (random_log(i+1))

10 victim: =random_log(i+1);

11 else

12 victim: =random_log(i);

13 end of for

14 merge(victim);

15 END

FIGURE 4. “OVS” function of proposed FTL.

in the list of random log blocks, we select a free block, assign
it to the PBA and write the updated page in the first free cell of
the log block. In the second scenario, there is no unused log
block; thus, the linked list of random log blocks is scanned
and if a used log block is found with an associative limit less
than the parameter K, the page will be written in the first
unused free cell in the log block. Nonetheless, if all random
log blocks have reached their associative limit and there are
still unused pages, the function “OVS” is called.

We define the *SEL’ parameter in the function “OVS” to
select the best random log block for the merge operation. This
parameter is defined to select the log blocks with the largest
number of invalid pages and the least number of unused pages
in all data blocks corresponding to that log block. In this
function shown in Fig. 4, all the data blocks corresponding
to a random log block are examined in a ’for’ loop. First,
the sum of all invalid pages is computed in data blocks; then,
the sum of all invalid pages in all data blocks corresponding
to the random log block is calculated (the number of unused
pages of a data block is obtained by subtraction of the block
size and sum of valid and invalid pages of that block).

It is of a significant importance to note that updated
Valid_List and Invalid_List are available from the other func-
tions, and there is no need to scan any data blocks to get
these values, so the SEL is obtained in the shortest possible
time with a simple calculation. In the *SEL’ equation the sign
of the total invalid pages is positive (that is, the greater the
number of invalid pages be released in the merge operation,
the better it is) and the sign of the total unused pages is
negative (that is, the fewer the number of unused pages be
erased in merge operation, the better it is). Then, the log
blocks with greater *SEL’ parameter are selected as the victim
for the merge operation. Finally, this random log block is sent
as the argument to the function “merge”.

In the function “merge” of Fig. 5, we first find all of
the data blocks corresponding to the victim log block. Next,
the valid pages of the data blocks and the victim log block
are copied in a new data block in the list of free data
blocks, and, for each page copy in the new free block,

VOLUME 8, 2020

1 merge(victim)

2 BEGIN

3 find(associated.data_blocks) ;//find all data blocks associated to
the victim block

4 copy_to_freeblock(valid_pages) ;//copy all valid pages in the data
blocks and victim block to a new data block

5 increase_valid_pages(freeblocks); / Increase valid pages counter of

new data blocks for each copy of the page
erase(victim);
erase (associated data blocks);
ADD_FreeBlock(victim and associated data blocks);
clear(valid_pages_counter); //Clear valid pages counters of all associated
data blocks
10 clear(invalid_pages_counter); //Clear invalid pages counters of all
associated data blocks
11 update map tables;
12 END

FIGURE 5. “Merge” function of proposed FTL.

Nel-CHEN o

the Valid_List counter increases by one. After GC operation,
the victim block and all its corresponding data blocks are
erased and added to the list of reusable empty block. Then
clear Valid_List and Invalid_List counters of all associated
data blocks. Finally the mapping tables are updated.

C. AN EXAMPLE

Here is an example to explain the proposed solution in details.
Suppose the physical memory space has 16 blocks, each
block size being 4 pages. There are 12 blocks in data block
section, and 4 blocks in log block section; there is one log
block for serial writing, and the other three blocks are for
random writing. The numbers above each block indicate their
physical address, (that is, PBA). The association rate of a K is
defined to be half the size of a block, which is 2 in this case.
After applying a string of I/Os, the memory schema will be
as shown in Fig. 6.

By executing the next command on the I/O workloads,
the data of 'L’ update command is issued by data block
number 5 that has not been previously assigned to any log
block. There is empty space in log blocks, but the K value has
reached the maximum amount (that is, 2) in this case, in all of
them. Therefore, a log block should be selected as the victim
and put into the merge operation so that we can execute the
current command after it is erased. At this stage, the tables
presented in the proposed FTL design section are reviewed.
The Decision Table is adjusted as Table 1 according to the
equations presented in Section III.

In the last column, you can see the SEL parameter for each
of the log blocks. Given that SEL is the largest in log14, this
block is selected as the victim block, and is included in the
merge operation.

Table 2 shows how many unused pages will be erased and
how many invalid pages will be released if each of the log
blocks are selected as the victim block in the merge operation.

As you can see in Table 2, when Logl4 is selected as
the victim block the lowest number of the unused pages are
erased and the highest number of invalid pages is released in
the merge operation.

IV. EVALUATION
To evaluate the proposed FTL, it is compared with the FAST
as a base FTL, RN-FTL as the closest design to the proposed

134329

IEEE Access

P. Forouhar, F. Safaei: Increasing the Lifetime of Flash Memory Based SSDs by Improving the Merge Operation in FTL

(Data Blocks Area)

#0 #1 #2 #3

A c E F

B ° H E
1]

#4 #5 #6

jol
BRI

.

-

Unused Pages . Invalid Pages

(Log Blocks Area)

#12 #13 #14 #15

Data Associatives | Data Associatives Data Associatives Data Associatives

A 0 D 1 H 2 J 4
B 0 G 3 | 2 R 9
N 7

(Serial Writes)

(Random Writes)

FIGURE 6. Example of a Memory Structure after Running a String of 1/0
Operations.

TABLE 1. The Decision Table to Select the Victim Log Block.

LOG-Block Associative valid invalid unused SEL
1 ; R S —(
P e
1 5 o ——

structure and DA-FTL as a new FTL. The FlashSim sim-
ulator is used to execute and run each of the FTLs [25].
Simulations are driven by four open access workloads called,
Finl, Fin2, MSN and LiveMapsBE. The Finl and Fin2 traces
were collected at a large financial institution. Financiall is
write intensive and 77.9% of the commands are ““write”” type.
Financial2 is read intensive and only 18% of the commands
are “write” type [26]. MSN [Microsoft Enterprise Traces]

134330

TABLE 2. The Number of Unused Pages Erased and the Number of Invalid
Pages Released in the GC Operation If Each of the Log Blocks were

selected as the Victim Block.

Victim LOG Unused Pages Invalid Pages
Blocks Erased Released
13 2+2=4 1+1=2
14 1+1=2 2+1=3
15 3+2=5 0+1=1
TABLE 3. Simulated SSD Specifications.
Characteristics Description Samsung 4GB
SSD_Size Chips per SSD 4
Package Size Dies per Chip 8
Die_Size Planes per Die 4
Plane Size Blocks per Plane 128
Block Size Pages per Block 128(Page)
Page_Size Words per Page 2KB

was collected at Microsoft’s several live file servers, and
unlike financial traces, their requests have larger sizes and
are sequentially burly. LiveMapsBE [Microsoft Production
Server Traces] was collected for LiveMaps back-end server
for a duration of 24 hours, and the number of switch merge
and partial merge operations is higher than the number of full
merge operations [27].

Using different workloads with unique features can
challenge the proposed FTL. The proposed scheme
is implemented in simulation of the SSD-Samsung
K9G4GO8UOA 4GB platform with the specifications
provided in Table 3 [28].

The defined parameters for evaluating and comparing the
FTLs include the total number of block erase commands at
the end of each workload, the total number of unused pages
that are erased during the merge operation, the total number of
invalid pages that are released at the end of each workload and
the total number of full merge operations. The main cause for
selecting each of the above parameters is the efficient effect
each of them can have on the memory block lifetime.

Figure. 7 compares the number of unused pages that
are erased in GC operations in different FTLs over 4 real
workloads. As indicated in the Section III, the priority for
OVS-FTL is to reduce the number of unused pages that are
unnecessarily erased. This is accomplished with the correct
selection of the victim block before the execution of the
merge operation.

Choosing a victim block that contains the smallest number
of unused pages inside itself followed by choosing its asso-
ciated data blocks will allow us not only to obtain the most
optimal parameter, but also it makes it possible to give the
other blocks with higher number of unused pages the oppor-
tunity to find a better position by continuing the process
of input/output commands. Consequently, they will impose
lower cost on memory erosion if they are selected as the
victim block. The proposed FTL, considering Fig. 7, clearly
improves the parameter of the number of unused pages erased
in GC operations and decreased up to 11%.

Figure. 8 shows the number of invalid pages in the victim
log block and its associated data blocks, which are released

VOLUME 8, 2020

P. Forouhar, F. Safaei: Increasing the Lifetime of Flash Memory Based SSDs by Improving the Merge Operation in FTL

IEEE Access

300000

250000
FAST
BRN-FTL
B DA-FTL
B OVS-FTL

200000

150000

100000

50000

Unused Pages Erased in Merge Operation

0

Finl LiveBE

FIGURE 7. Comparison of the Number of Unused Pages Erased in GC
Operations in Different FTLs.

25000

20000
FAST

BRN-FTL
B DA-FTL
BOVS-FTL

15000

10000

Invalid Pages Released in GC Operation
1%
S
(=]
IS]

Finl Fin2 MSR LiveBE

FIGURE 8. Comparison of the Number of Invalid Pages Released in GC
Operations in Different FTLs.

in GC operations. As we know, the larger this parameter, the
higher efficiency of memory space it has.

In the proposed FTL, the parameter affecting the selection
of alog block as the victim is derived from the (5) (the number
of invalid pages minus the number of unused pages). The
lower is the number of unused pages in a log block and its
associated data block, the higher will be the chance of that
log block to be selected as the victim block. The result of this
can be seen in the evaluation shown in Fig. 7. This equation
also shows that the higher is the number of invalid pages of
a log block and its associated data block, this equation will
have a larger number, and again the chances of selection of
that log block as a victim will be higher. Improvement in
the number of invalid pages released following the merge
operation, comparing the proposed FTL to the other FTLs,
can be seen in Fig. 8. This parameter is increased to 28% in
the proposed FTL.

Figure. 9 and Figure. 10 show 25% decrease in the number
of pages written and copied during the merge operation, and
12% decrease in the number of blocks erased in the GC
operation in the proposed FTL compared to other FTLs; the
obvious reason for this is the postponing of the merging
operations in the log blocks for which the resulted num-
ber of differential parameters are smaller than the rest of
the log blocks, which consequently improves the use of
empty space in their associated data blocks. Postponing
the merge operation reduces the number of referrals to the
Merge command; in other words, it reduces repeated calls

VOLUME 8, 2020

70000

60000

50000
B FAST

BRN-FTL
@ DA-FTL
B OVS-FTL

40000

30000

20000

10000

Pages Write Counts in Merge Operation

LIS LTSI

LSS TSSs

LiveBE

FIGURE 9. Comparison of the number of pages write during the merge
operation in different FTLs.

25000

20000
EFAST
15000 B DA-FTL

B VBP-FAST

10000 B OVs-FTL

5000

Total Number of Blocks Erased

L LL LA

Finl LiveBE

FIGURE 10. Comparison of the total number of erased blocks during the
merge operation in different FTLs.

for the Merge command, which in turn reduces block-erasing
operations in GC operations.

What is remarkable is the addition of overhead time to
perform calculations and search for the best victim block
among log blocks. Clearly, there is a trade-off between getting
a good parameter and losing another. In this FTL, to get a
longer lifespan, we have applied an overhead time to select
the best victim block for merge operations. All available
FTLs to select the victim block in the merge operation have
performed a process that ultimately applies an overhead to the
system. The important point is that the priority of flash-based
storage systems, according to the limited number of write and
erase operations in them (which is related to their physical
characteristics) increases their lifespans, and given the very
high speed of SSDs (due to the elimination of mechanical
parts and full-electronic structure), increasing lifespan as a
major challenge in flash memory is a much higher priority
than process execution speed.

The worst-case scenario in the proposed FTL occurs when
the amount of SEL between log blocks during the merge
function does not differ significantly, and this indicates that
the additional calculations performed were somewhat worth-
less and only applied overhead to the system. The greater the
difference between the maximum SEL value and the mini-
mum SEL value, the better the proposed FTL performance. In
OVS FTL, SEL parameter variables are updated in the asso-
ciated data blocks after each command of the input workload
(this variable is located in OOB). Consequently, this helps

134331

IEEE Access

P. Forouhar, F. Safaei: Increasing the Lifetime of Flash Memory Based SSDs by Improving the Merge Operation in FTL

ol |a @ @@ B]| n
D2 | i |] | n|o|p
Random
Log Block blc| k| d| 1| m|d]| e
(a)
D1 b
D2 [
Random b .
Log Block J
(b)

FIGURE 11. The best and worst memory situation for OVS-FTL
performance.

us to get SEL for each log block with a simple calculation
and perform a simple search to find the best SEL parameter
among the log blocks during the merging process. In the worst
case, the process can be as long as log-num, which is the total
number of log blocks. It is noteworthy that in FTLs based on
the hybrid structure, the space allocated for update blocks is
much smaller than the data blocks, so it will not take long
for this search. This helps to ensure that, if at the time t0, the
merge process is not significantly improved by selecting the
victim block using the proposed method and using the SEL
parameter, then at the time t1 of the merge function, it is not
necessary to perform all calculations to obtain SEL for each
of the log blocks as the update of the main SEL parameters
for all data blocks has already been done and can be easily
calculated.

For example, suppose a log block corresponds to two data
blocks D1 and D2, and each block has 8 pages. In the best
case, the data blocks can be filled as shown in Fig. 11-a,
and 7 updated pages from D1 and D2 are written in the
random log block. It is of a great value to mention that the
update of the eighth page of one of the two data blocks fills
the capacity of the log block. So this block is sent to the
merge function to release its pages without interruption. It is
assumed that the call to the merge function is due to the
association limitation. In this case, SEL is +7 according to the
(5). In the worst case, the data blocks can be filled as shown in
Fig. 11-b and in this case, SEL is equal to -12. Therefore,
in this memory with 8-page blocks, the SEL value can be
in the range between -7 to +12. The greater the difference
between the lowest value and the highest value of SEL when
selecting the victim block is, the better the proposed FTL will
perform. Conversely, if this difference is minimal, the OVS
efficiency decreases.

It is important to note that the existence of valid pages
in data blocks makes more copies when the merge function
executes, but it is obvious that if a page remains unused, it is

134332

Data Block

b B c| d
€)) (®)

FIGURE 12. Compare SEL for a data block filled with valid pages or
unused pages.

equivalent to erasing a page that was not used in the merge
operation, so it is a negative score for SEL and if it is filled
with a valid page, a page transfer operation will occur when
merging data block and log block. So, again, a negative score
will be generated when the unused page is erased, leading
to memory erosion. Therefore, these two situations will have
the same effect on SEL for a page when performing the merge
function.

For example, suppose we want to get SEL for the data block
in the Fig. 12, and consider copying valid pages as a negative
factor, in which case the SEL equation changes as (7).

SEL = (invalid_pages) — (unused_pages) — (copy_pages)
(7N

So according to the new SEL equation, in Fig. 12-a, which
does not have a valid page, SEL is equal to -2, and for
Fig. 12-b, which assumes two valid pages, SEL is equal to -2.
Obviously, the result will not change.

In presenting of (5), the negative impact of page copy
has been eliminated according to the presented explanations.
Therefore, this helps to prioritize the selection of blocks
that have more valid pages and fewer unused pages in the
implementation of the merge function; as a result, it increases
the efficiency of memory space.

V. CONCLUSION

In this paper, we presented a new FTL with the main purpose
of increasing the lifetime of the memory blocks. The pro-
posed solution relies on reducing the number of unused pages
that are erased in merge operations, increasing the number
of invalid pages that are released in GC operations, reducing
the number of erased blocks and reducing the number of
pages copied during the merge operation. To evaluate the
proposed solution, we implemented it together with three
other FTLs in the FlashSim simulator; the used I/Os should
be real workloads if an accurate evaluation is intended. The
proposed FTL significantly improved each of the parameters
affecting the memory lifetime. The remarkable point is that
the focus is on random data, and we know that the highest cost
in memory blocks erosion is related to the merge of random
log blocks. It was attempted to use workloads with a greater
impact in order to challenge the proposed FTL because in the
section related to serial I/O operations, our FTL acts like other
FTLs. The value of association between the log blocks and
the data blocks for the FTLs that are based on this parameter,
such as our proposed FTL and RN-FTL, has been obtained by
repeated executions and various configurations in an optimal
state. As a suggestion for future works, it will be beneficial to

VOLUME 8, 2020

P. Forouhar, F. Safaei: Increasing the Lifetime of Flash Memory Based SSDs by Improving the Merge Operation in FTL

IEEE Access

present a relationship to calculate the exact optimum value of
associativity between log blocks and data blocks. In addition,
scanning update blocks to select the best victim block applies
a time overhead that can be improved as a goal by providing
a solution to this bad parameter.

REFERENCES

[1]
[2]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

R. Baker, NAND Flash Memory Technologies (IEEE Press Series on Micro-
electronic Systems). Hoboken, NJ, USA: Wiley, 2009.

G. Sun, Y. Joo, Y. Chen, Y. Chen, and Y. Xie, “A hybrid solid-state
storage architecture for the performance, energy consumption, lifetime
improvement,” in Proc. High-Perform. Comput. Archit., 2010, pp. 51-77.
J. Kim, J. M. Kim, S. H. Nog, S. L. Min, and Y. Cho, “A space-efficient
flash translation layer for compact flash systems,” IEEE Trans. Consum.
Electron., vol. 48, no. 2, pp. 366-375, May 2002.

M. Kang, W. Lee, and S. Kim, “Subpage-aware solid state drive for
improving lifetime and performance,” IEEE Trans. Comput., vol. 67,
no. 10, pp. 1492-1505, Oct. 2018.

P. Papavramidou and M. Nicolaidis, “Test algorithms for ECC-based
memory repair in ultimate CMOS and post-CMOS,” IEEE Trans. Comput.,
vol. 65, no. 7, pp. 2284-2298, Jul. 2016.

A. Grossi, L. Zuolo, F. Restuccia, C. Zambelli, and P. Olivo, “Quality-of-
Service implications of enhanced program algorithms for charge-trapping
NAND in future solid-state drives,” IEEE Trans. Device Mater. Rel.,
vol. 15, no. 3, pp. 363-369, Sep. 2015.

X. Y. Hu and R. Haas, “The fundamental limit of flash random write
performance: Understanding analysis and performance modeling,” Int.
Bus. Mach., Endicott, NY, USA, Tech. Rep. RZ 3771, 2010.

P. Forouhar and F. Safaei, “Improving utilization and life-span in paral-
lel aware MLC-based SSD using virtual blocks,” IEEE Access, vol. 8,
pp. 4821248225, Mar. 2020.

Z. Xu, R. Li, and C.-Z. Xu, “CAST: A page-level FTL with compact
address mapping and parallel data blocks,” in Proc. IEEE 31st Int. Per-
form. Comput. Commun. Conf. (IPCCC), Stockholm, Sweden, Dec. 2012,
pp. 142-151.

R. Chen, Z. Qin, Y. Wang, D. Liu, Z. Shao, and Y. Guan, “On-demand
block-level address mapping in large-scale NAND flash storage systems,”
IEEE Trans. Comput., vol. 64, no. 6, pp. 1729-1741, Jun. 2015.

D. Ma,J. Feng, and G. Li, “A survey of address translation technologies for
flash memories,” ACM Comput. Surv., vol. 46, no. 3, pp. 23-31, Jan. 2014.
Y. Guan, G. Wang, C. Ma, R. Chen, Y. Wang, and Z. Shao, ““A block-level
log-block management scheme for MLC NAND flash memory storage
systems,” IEEE Trans. Comput., vol. 66, no. 9, pp. 1464—1477, Sep. 2017.
H.-Y. Sung and C.-H. Wu, “Increasing multi-controller parallelism for
hybrid-mapped flash translation layers,” in Proc. IFIP Int. Conf. Netw.
Parallel Comput., Berlin, Germany, 2014, pp. 567-570.

D. Liu, K. Zhong, T. Wang, Y. Wang, Z. Shao, E. H.-M. Sha, and J. Xue,
“Durable address translation in PCM-based flash storage systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 2, pp. 475-490, Feb. 2017.

M. Lin and Z. Yao, “Dynamic garbage collection scheme based on past
update times for NAND flash-based consumer electronics,” IEEE Trans.
Consum. Electron., vol. 61, no. 4, pp. 478-483, Nov. 2015.

Y. L. Wang, K. T. Kim, B. Lee, and H. Y. Youn, “A novel buffer manage-
ment scheme based on particle swarm optimization for SSD,” J. Super-
comput., vol. 74, no. 1, pp. 141-159, Jan. 2018.

C. Feng, T. Luo, and X. D. Zhang, “CAFTL: A content-aware flash
translation layer enhancing the lifespan of flash memory based solid
state drives,” in Proc. USENIX FAST, San Jose, CA, USA, 2011,
pp. 6-13.

VOLUME 8, 2020

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]
(26]
(27]

(28]

J. Liao, F. Zhang, L. Li, and G. Xiao, “Adaptive wear-leveling in flash-
based memory,” IEEE Comput. Archit. Lett., vol. 14, no. 1, pp. 14,
Jan. 2015.

L.Zhu, Z. Chen, F. Liu, and N. Xiao, ‘““Wear leveling for non-volatile mem-
ory: A runtime system approach,” IEEE Access, vol. 6, pp. 60622-60634,
May 2018.

J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “A large-scale study of flash
memory failures in the field,” in Proc. ACM SIGMETRICS Int. Conf.
Meas. Modeling Comput. Syst. (SIGMETRICS), Portland, OR, USA, 2015,
pp. 177-190.

D.-J. Park, “FAST: An efficient flash translation layer for flash memory,”
in Emerging Directions in Embedded and Ubiquitous Computing. Berlin,
Germany: Springer-Verlag, 2006, pp. 879-887.

H. Cho, D. Shin, and Y. I. Eom, “KAST: K-associative sector translation
for NAND flash memory in real-time systems,” in Proc. Conf. Design,
Automat. Test (DATE), Nice, France, 2009, pp. 507-512.

D. Liu, Y. Wang, Z. Qin, Z. Shao, and Y. Guan, “A space reuse strategy
for flash translation layers in SLC NAND flash memory storage sys-
tems,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 6,
pp. 1094-1107, Jun. 2012.

P. Forouhar and F. Safaei, “DA-FTL: Dynamic associative flash translation
layer,” in Proc. 19th Int. Symp. Comput. Archit. Digit. Syst. (CADS), 2017,
pp. 1-5.

FlashSim. Accessed: Feb. 2020.
https://github.com/MatiasBjorling/flashsim
OLTP Trace From UMass Trace Repository. Accessed: Feb. 2020.
[Online]. Available: http://traces.cs.umass.edu/index.php/Storage/Storage
Blockl/OTraces. Accessed: ~ Feb. 2020. [Online]. Available:
https://iotta.snia.org/traces/list/BlocklO

Samsung K9G4GOSUOA (V1.0)-4GB MLC NAND Flash Data Sheet,
Samsung Electron., Suwon-si, South Korea, Sep. 2006.

[Online]. Available:

PEYMAN FOROUHAR (Graduate Student
Member, IEEE) received the B.Sc. degree in com-
puter hardware engineering and the M.Sc. degree
in computer architecture engineering from Azad
University, Arak, Iran, in 2008 and 2011, respec-
tively. He is currently pursuing the Ph.D. degree
in computer architecture engineering with the
Department of Computer Science and Engineer-
ing, Shahid Beheshti University, Tehran, Iran. His
current research interests include storage systems,
flash memory, and solid state-disk.

FARSHAD SAFAEI (Associate Member, IEEE)
received the B.Sc., M.Sc., and Ph.D. degrees in
computer engineering from the Iran University of
Science and Technology (IUST), in 1994, 1997,
and 2007, respectively. He is currently an Asso-
ciate Professor with the Department of Com-
puter Science and Engineering, Shahid Beheshti
University, Tehran, Iran. His research interests
include performance modeling/evaluation, inter-
connection networks, computer networks, and
high-performance computer systems.

134333

	INTRODUCTION
	RELATED WORKS
	THE PROPOSED FLASH TRANSLATION LAYER
	BASIC DEFINITIONS
	OPTIMIZED VICTIM SELECT ALGORITHM
	AN EXAMPLE

	EVALUATION
	CONCLUSION
	REFERENCES
	Biographies
	PEYMAN FOROUHAR
	FARSHAD SAFAEI

