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ABSTRACT The Onion Router (Tor) is one of the major network systems that provide anonymous
communication and censorship circumvention. Tor enables its users to surf the Internet, chat, and send
messages anonymously; however, cyber attackers also exploit the system for circumventing criminal activity
detection. Recently, various approaches that prevent or mitigate abuse of Tor have been proposed in the
literature. This paper, which presents one of the approaches, addresses an IP traceback problem. In our
model, onion routers that voluntarily participate in attacker tracing detect attack packets (packets carrying
an attacker’s code or data) recorded in the log files by sharing necessary information with an attacked server
over an Ethereum blockchain network. The detection algorithm in this paper uses the statistics of packet travel
and relay times and outputs attack-packet candidates. The proposed method attaches a reliability degree to
each candidate, which is based on the upper bounds of its Type I and II error rates. A smart contract running
on the blockchain network ranks the detection results from onion routers according to the reliability degrees.

INDEX TERMS Ethereum, IP traceback, log analysis, network security, Tor.

I. INTRODUCTION
The Onion Router (Tor) [1] is a widely used overlay net-
work that provides low-latency anonymous communication
for transmission control protocol (TCP) applications and
helps circumvent various censorship measures. According to
Tor Metrics [2], the Tor network currently consists of more
than 6,000 onion routers, has millions of directly connecting
users, and carries hundreds of Gbit/s. Tor, however, has been
abused by illegal services [3], [4], such as the infamous
Silk Road [5] and the CryptoLocker ransomware command
and control (C&C) servers [6]. It was reported in [7] that
some onion routers are malicious and perform man-in-the-
middle (MITM), structured query language (SQL) injection,
and cross-site scripting (XSS) attacks.

Recently, various approaches to maintain the health of
the Tor network have been discussed in the literature
[7]–[11]. Previous studies were focused on blocking traffic,
routers, or hidden servers that are considered to be malicious.
This paper, in contrast, considers an Internet protocol (IP)
traceback problem over the Tor network to search for the
criminals who triggered an attack. In our model, volunteer
onion routers investigate the IP address of the attacker’s
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machine in conjunction with the attacked servers. We expect
that successful investigations enabled by our scheme will
be a strong deterrent to attacks even if it is only partially
deployed in the Tor network. IP traceback problems have
been intensively studied, in particular for countering denial-
of-service (DoS) and distributed denial-of-service (DDoS)
attacks [12]. However, to the best of our knowledge, in no
papers, has a means of detecting the actual attack source in
the Tor network been discussed.

According to [13], the majority of Tor research has been
devoted to deanonymization, the design of a breaching strat-
egy. Deanonymization based on traffic analysis is somewhat
similar to our approach. From the perspective of attackers, the
objective of deanonymization is to maximize the success rate
of linking a source and a destination of any communication.
Based on the perspective of a criminal investigation, our
approach logically narrows down the candidates for attack
packets, packets carrying the attacker’s code or data, based
on the evidence remaining on the victim server. Thus, our
approach may not detect a single candidate but it does sig-
nificantly decrease the detection error rates. The premise of
our approach is different from that of traffic analysis-based
deanonymization in that:

1) The approach is focused on a specified communica-
tion, where a partner of the communication is a victim
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server, whereas adversaries in general attack commu-
nications indiscriminately.

2) To minimize the effect on the Tor system and users, the
approach modifies neither the Tor software nor the Tor
protocol, whereas adversaries may do so.

3) The approach can receive support from the victim
server, whereas adversaries would never obtain this
support.

4) The approach considers the privacy of Tor users,
whereas adversaries do not.

In our model, attacked servers and routers form an
Ethereum blockchain network [14], in which a smart con-
tract, called attacker tracing (AT), acts as an attacker tracing
manager that receives incident reports from attacked servers
and detection reports from routers. Each detection result
includes a reliability degree, which is based on the upper
bounds of Type I and II error rates. We employ blockchain
technologies, which check for log data forgery and maintain
the tracing processes in their entirety to ensure no leakage
of Tor users’ private information occurs. The process of trac-
ing attackers consists of two phases: learning and detection.
Routers collect samples of packet travel and relay times in
the learning phase. The samples are then employed in the
detection phase to identify attack packets in the router’s
log file.

The paper is organized as follows. Section II provides the
background of the study and Section III presents relatedwork.
Section IV describes the AT model, and Section V details the
approach for detecting the attacker’s IP address. Section VI
shows the experimental environment and results. Section VII
analyzes the experimental data to derive the reliability of the
detection results. Section VIII discusses the implications of
the findings, and Section IX concludes the paper.

II. BACKGROUND
A. TOR
Tor is a low-latency anonymity network based on a concept
called onion routing, which operates as follows. A client who
installs an onion proxy, an interface between a client and
the Tor network, downloads onion router information from
a directory server and chooses three routers to establish a
circuit. The first, second, and third routers are known as the
entry, middle, and exit routers, respectively. Packets from the
client to a server pass through the circuit.

The client sends packets that are encrypted with multi-
ple layers of encryption using keys negotiated between the
client and each router. As packets travel along the circuit,
each router strips off one layer of encryption. This layered
encryption ensures that each router knows the identities only
of routers that are directly connected in the circuit. According
to [15], to counter traffic correlation attacks, no two routers
are chosen from the same family group to create a circuit.
Sometimes, a bridge is introduced as a hidden entry router to
resist censorship further.

B. ETHEREUM
Ethereum is the second-largest cryptocurrency platform on
which users broadcast transactions (data packets signed with
their private keys). Ethereum and Bitcoin [16] are similar in
that peer-to-peer (P2P) technology maintains a blockchain,
a growing list of transaction records that are linked using
cryptography, through the competition of solving compu-
tationally intensive problems. While Bitcoin blockchains
are concerned only with transactions between user wallets,
Ethereum blockchains present decentralized computing envi-
ronments called Ethereum Virtual Machines (EVMs), on
which smart contracts (stateful decentralized applications)
can run. Two types of accounts exist in Ethereum: user
accounts controlled by users and contract accounts controlled
by smart contracts. Smart contracts behave in the same man-
ner as autonomous agents.

III. RELATED WORK
Since the inception of the Tor system, many deanonymization
approaches based on traffic analysis have been developed.
Traffic-analysis attack methods can be classified into two
groups: passive and active. In the active (passive) method,
attackers (do not) alter traffic patterns. There exist two well-
known passive traffic-analysis attacks. First, the Website fin-
gerprinting attacks [17], [18] infer which Webpage a client is
visiting by identifying traffic patterns that are unique to the
Webpage. This method is considered effective when .onion
sites are distinguished from regular sites [17]. In this paper, it
was not assumed that the attacked servers generate character-
istic traffic. Second, the end-to-end confirmation (or traffic
correlation) attacks [19]–[22] correlate the traffic of a flow
over an input link with that over an output link. The approach
presented in this paper detects two packets, a request and a
response, that are specific (i.e., they are used for an attack),
not a flow of unspecified many packets. An additional attack
exists called deep packet inspection [23], which inspects in
detail the data being sent to characterize the traffic, protocol,
and application. Our approach also inspects packet fields,
such as the TCP push flag and time-stamps (TS) option [24],
to narrow down the attack-packet candidates.

Meanwhile, approaches exist that prevent or mitigate abuse
of Tor. In [8], the author discussed the countermeasures that
prevent attempts to reach the .onion addresses of C&C
servers, such as that of mevade running as a Tor onion ser-
vice. The authors of [9] proposed a system called TorWard,
which was designed to discover and classify malicious traffic
over Tor using an intrusion detection system (IDS). In [7],
the effectiveness of honey onions (HOnions) servers, which
detect and identify misbehaving and snooping hidden service
directories, was reported. Torpolice, a privacy-preserving
access control framework, enables service providers to define
access policies against requests coming from Tor [10]. Meek
is a pluggable transport that allows Tor traffic to be hid-
den in the background traffic. To enhance the possibility of
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FIGURE 1. The client makes an XSS attack against the server through the Tor network. The aim of the study was to
detect packets pkt1, pkt2, pkt3, and pkt4 that carry the XSS-req or XSS-res data by removing unrelated packets pkt5,
pkt6, pkt7, and pkt8 from the candidates.

monitoring illegal activities over Tor, a meek-based traffic
identification method was proposed in [11]. These preven-
tion or mitigation approaches are focused on detecting mali-
cious traffic or Tor components, whereas this paper considers
the problem of tracing back attack packets to their origins.

The IP traceback problem is defined as identifying the
actual source of any packet transmitted across the Inter-
net [25]. Various approaches have been proposed [26], [27],
and recent studies were focused especially on DDoS attacks
using Internet of Things (IoT) devices [12]. Currently, there
are six main categories of IP traceback methods [27]: link
testing [28], messaging [29], marking [30], logging [31],
overlay [32], and pattern analysis [33]. None of these can be
applied to the model in this paper for three reasons. First,
because messages in the Tor network are encrypted with
multiple layers of encryption, it is impossible to associate
packet contents observed at onion routers with those observed
at the destination host. Accordingly, marking, messaging, and
logging approaches that use packet contents for identification
are useless. Second, Tor is not a network managed by one
organization, and thus approaches that assume cooperation
between many routers, such as link testing and overlay, can-
not be employed. Third, approaches requiring many attack
packets, such as link testing and pattern analysis, are not
available. Ourmodel assumes attackers send onemessage and
receive one response.

IV. ATTACKER TRACING MODEL
A. PROPOSED MODEL
Fig. 1 illustrates the proposed model. The client makes an
XSS attack against the server through the Tor network. The
server receives an XSS-req and sends an XSS-res, where

an XSS-req (XSS-res) means an HTTP request (response)
message used by the XSS attack. Note that, except for XSS-
req and XSS-res, the TCP payloads of all the packets in Fig. 1
are encrypted. Packets pkt1 and pkt2 (pkt3 and pkt4) carry
information of the XSS-req (XSS-res), and therefore, pkt1,
pkt2, pkt3, and pkt4 are attack packets. This section describes
a model for the case of an XSS attack, but the descriptions
of other attack cases, such as SQL injection and cross-site
request forgeries (CSRF), are very similar.

Hereinafter, we use the term cooperators to indicate routers
that participate in detecting the source of the XSS-req. The
detection is easy if all three routers (entry, middle, and exit)
in Fig. 1 are cooperators. The detection of the attacker’s
address requires that at least the entry router is a cooperator
(the attacker’s address is the source IP address of pkt1). This
paper considers the case where only the entry router is a
cooperator. Thus, the objective of this study was to find attack
packets (pkt1, pkt2, pkt3, pkt4) in the entry’s log file in coop-
eration with the attacked server, and we call this cooperative
action attacker tracing.
Fig. 1 shows all the log data required in our approach.

Throughout this paper, the following notations are
used.
• Ts(p) (Tr (p)): time when packet p is sent (received).
• dIP(p) (sIP(p)): destination (source) IP address of
packet p.

• dPrt(p) (sPrt(p)): destination (source) TCP port number
of packet p.

• TSval(p) (TSecr(p)): time-stamp value (echo reply) of
packet p.

• Psh(p): TCP push flag of packet p.
• Size(p): IP packet length of packet p.
• IP(m): IP address of machine m.
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• SN (p) (CT (p)): sequence number (current time) of
packet p.

• sn (ct): sequence number (current time) inserted in an
HTTP message by the client (server).

Four times T1, T2, T3, and T4 in Fig. 1 are defined as

T1 := Ts(pkt1), (1)

T2 := Tr (XSS-req), (2)

T3 := Ts(XSS-res), (3)

T4 := Tr (pkt4). (4)

The entry router and server store the timestamp and
a part of the content of every incoming and outgoing
packet. As shown in Fig. 1, the amount of data in the
entry is not large. The log data of the client are out-
puts of the shell script (that executes XSS attacks) and
Python codestream_circuit_logger.py in the txtor-
con library [34], which provides live state information about
Tor circuits and routers. The client’s log data are used to
obtain correct attack packets (pkt1,pkt2,pkt3,pkt4).

FIGURE 2. Cooperators, clients, and servers periodically send hashes of
log files to attacker tracing (AT). AT receives TX-register reporting
attack information, TX-detect reporting the evidence of detection, and
TX-verify reporting the verification result of the evidence.

B. SMART CONTRACT
Assume that all cooperators and attacked servers belong
to an Ethereum network, in which a smart contract called
attacker tracing (AT) is working. Fig. 2 shows the interactions
among Ethereum nodes. Every certain period of time, every
Ethereum node makes a log file shown in Fig. 1 and issues
a TX-hash transaction that contains the uniform resource
identifier (URI) and the hash value of the log file. To avoid
privacy violations, the IP addresses in the log file must be
replaced with dummy addresses (e.g., the hashed values).
After an attack has occurred, as shown in Fig. 2, the victim
server publishes a TX-register that carries the URI and
the hash value of the attack information file, which includes
T2, T3, and a TCP port number of the server for sampling.
Each cooperator then selects a client that generates HTTP
packets to the TCP port to sample travel times etc. To prevent
log file forgery, the client must send TX-hash transactions
during the sampling period.

After calculating attack-packet candidates, each coopera-
tor publishes a TX-detect that includes the URI and the
hash value of the evidence, which consists of four timestamps
Tr (pkt1), Ts(pkt2), Tr (pkt3), and Ts(pkt4) (which represent
an attack-packet candidate) and reliability degrees of all
candidates. The attacked server and cooperators can verify
the evidence and send TX-verify transactions, including
the URIs and the hash values of their verification results.
The most reliable candidates should be verified first. In the
verification process, using log data that each cooperator or the
server locally possesses, it is checked that the evidence is
not logically inconsistent. To avoid false positive and false
negative errors, the evidence must be carefully verified from
many different viewpoints.

The following explicates why the Ethereum technologies
are used.

1) They automatically verify and maintain the integrity
of share data (the log files, attack information, evi-
dence, and verification results). When AT receives a
transaction, it always verifies the hash values in the
transaction.

2) They help prevent a server from forging a cyberat-
tack incident. Contract AT checks two signatures in
a TX-register: the digital signature of the server
and the signature of a third party who guarantees the
correctness of the attack information.

3) They allow all cooperators to reexamine at any time the
tracing processes of all past incidents in their entirety.
Cooperators can always check whether privacy viola-
tions occurred.

V. DETECTION PROCESS
A. LEARNING PHASE
The detection process starts after a TX-register enters an
Ethereum block. It consists of learning and detection phases.
In the learning phase, statistical features related to attack
packets are estimated. To this end, a client selected by a
cooperator performs simulated attacks such that the client
periodically transmits XSS-req (to the TCP port number in
the TX-register) using the cooperator as his/her entry
router. The XSS-req and XSS-res messages should be identi-
cal to those used by the attacker. After the simulated attacks,
the entry router (i.e., the cooperator) gathers log data of the
server and client, all of which are depicted in Fig. 1, using
URIs in TX-hash transactions.
Next, the entry router solves the following problem for

each attack, i.e., for each 4-tuple (T1,T2,T3,T4).
Problem 1: Find all 4-tuples (pkt1,pkt2,pkt3,pkt4) in the

entry’s log file that satisfy the following conditions:

1. T1 < Tr (pkt1) < Ts(pkt2) < T2
< T3 < Tr (pkt3) < Ts(pkt4) < T4.

2. Size(XSS-req) ≤ Size(pkt1),
Size(XSS-req) ≤ Size(pkt2),
Size(XSS-res) ≤ Size(pkt3),
Size(XSS-res) ≤ Size(pkt4).
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3. sIP(pkt1) = dIP(pkt4) = IP(client),
dIP(pkt2) = sIP(pkt3) = IP(middle).

4. sPrt(pkt1) = dPrt(pkt4),
sPrt(pkt2) = dPrt(pkt3).

5. TSval(pkt1) = TSecr(pkt4),
TSval(pkt2) = TSecr(pkt3).

6. Psh(pkt1) = Psh(pkt2) = Psh(pkt3) = Psh(pkt4) = 1.
The following explains the conditions in Problem 1.

All of them are necessary conditions that attack packets must
satisfy. It is clear in Fig. 1 that attack packets pkt1-pkt4 satisfy
Condition 1 and packets pkt5-pkt8 marked with red crosses
are excluded by Condition 1. Condition 2 holds according
to the Tor protocol specification [35]. Condition 3 implies
that attack packets pass through a circuit to reach the server.
Condition 4 compares the TCP port numbers. We do
not check dPrt(pkt1) = sPrt(pkt4) and dPrt(pkt2) =
sPrt(pkt3), because the port numbers of the entry and middle
routers are typically fixed at 443. Condition 5 checks the
TCP TS option to connect pkt1 with pkt4 and pkt2 with pkt3.
Fig. 10 in Appendix A exemplifies the values of the option
field. The TS option was originally used for round-trip time
measurement [24]. Condition 6 requires that the TCP push
flag be set in ‘‘HTTP GET’’ and ‘‘HTTP/1.1 200 OK’’
packets [36].

B. PROGRAM P1
ProgramP1, which solves Problem 1, first removes abnormal
communication from the log file, which corresponds to the
case where the client (server) received (sent) an HTTP status
code that is not 200. The program then determines T1, T2,
T3, T4, and IP(middle) for each attack. Address IP(middle)
associated with T1 is entered in the client’s log file (see
Fig. 1). A pair of (T1,T4) in the client’s log file is linked with
a pair of (T2,T3) in the server’s log file by examining whether
sequence number sn uniquely assigned to each attack satisfies

SN (XSS-req) = SN (XSS-res) = sn. (5)

The program also checks whether current time ct inserted by
the server satisfies

CT (XSS-res) = ct, (6)

which connects T3 and T4. Appendix A exemplifies (5)
and (6) by showing samples of SN (XSS-req), SN (XSS-res),
CT (XSS-res), sn, and ct obtained in the experiment.
Cases occur where more than one XSS-req or XSS-res

packets satisfy (5) or (6) because of TCP retransmission. In
these cases, the program checks whether the relation

T1 < T2 < T3 < T4 (7)

holds. For each attack, there may exist multiple 4-tuples
(T1,T2,T3,T4) that satisfy (5)–(7). In this case, P1 calcu-
lates solutions for all 4-tuples (T1,T2,T3,T4). Let u1 be the
number of solutions for an attack. ‘‘u1 = 1’’ indicates that
the attack packets are successfully detected. Only unique
solutions (u1 = 1) are used to calculate statistics.

C. STATISTICS
Unique solutions (pkt1,pkt2,pkt3,pkt4) in the learning phase
are used to obtain travel times (Treq and Tres) and relay times
(T12 and T34) defined by

Treq := T2 − Ts(pkt2), (8)
Tres := Tr (pkt3)− T3, (9)
T12 := Ts(pkt2)− Tr (pkt1), (10)
T34 := Ts(pkt4)− Tr (pkt3). (11)

Note in Fig. 1 that Treq is the packet travel time from the entry
router to the server. The entry router then calculates themeans
(standard deviations) of Treq, Tres, T12, and T34, which are
denoted by mreq, mres, m12, and m34 (sreq, sres, s12, and s34),
respectively.
The entry router also calculates the linear regression

parameters for samples {(Treq,Tres)}. If Treq and Tres are
considered x and y coordinate values, we have two least-
squares regression lines given by

y = aresx + bres, (12)
x = areqy+ breq, (13)

where ares and bres (areq and breq) are regression coefficients
for predicting Tres (Treq). If line (12) (line (13)) provides a
good prediction, then eres (ereq), the square root of the mean
square errors for predicting Tres (Treq), is small. In other
words, Treq (Tres) is close to T̃req (T̃res), where

T̃res := ares(T2 − Ts(pkt2))+ bres, (14)

T̃req := areq(Tr (pkt3)− T3)+ breq. (15)

D. DETECTION PHASE
This phase does not allow cooperators to access the infor-
mation of the client (the adversary’s machine) but does
allow them to utilize the statistics described in Section V-C.
A cooperator detects attack packets that correspond to
(T2,T3) in TX-register by solving the following prob-
lem.
Problem 2: Given α1, α2, and α3, find all 4-tuples

(pkt1,pkt2,pkt3,pkt4) in the cooperator’s log file that satisfy
the following conditions:
1. T ′1 < Tr (pkt1) < Ts(pkt2) < T2
< T3 < Tr (pkt3) < Ts(pkt4) < T ′4, where

T ′1 = T2 − (mreq + m12)− α1(sreq + s12), (16)

T ′4 = T3 + (mres + m34)+ α1(sres + s34). (17)

2. Size(XSS-req) ≤ Size(pkt1),
Size(XSS-req) ≤ Size(pkt2),
Size(XSS-res) ≤ Size(pkt3),
Size(XSS-res) ≤ Size(pkt4).

3. sIP(pkt1) = dIP(pkt4),
dIP(pkt2) = sIP(pkt3).

4. sPrt(pkt1) = dPrt(pkt4),
sPrt(pkt2) = dPrt(pkt3).

5. TSval(pkt1) = TSecr(pkt4),
TSval(pkt2) = TSecr(pkt3).
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6. Psh(pkt1) = Psh(pkt2) = Psh(pkt3)
= Psh(pkt4) = 1.

7. −α2 ereq < (T2 − Ts(pkt2))− T̃req < α2 ereq.
8. −α2 eres < (Tr (pkt3)− T3)− T̃res < α2 eres.
9. −α3 s12 < (Ts(pkt2)− Tr (pkt1))− m12 < α3 s12.
10. −α3 s34 < (Ts(pkt4)− Tr (pkt3))− m34 < α3 s34.

Note that T̃req and T̃res in Conditions 7 and 8 are defined
in (14) and (15). Conditions 1–6 are the same as those in
Problem 1, except that T1 and T2 are replaced with T ′1 and
T ′2, respectively, and IP(client) and IP(middle) do not appear
in Condition 3 (because they are in the client’s log file). The
calculated statistics are used in Conditions 1 and 7–10.

In Condition 1, (16) and (17) calculate T ′1 and T ′2 using
the means and standard deviations of travel and relay times.
Positive real number α1 in (16) and (17) controls the range in
which the correct solution (the attack packets) should exist.
A too small (large) α1 results in u2 = 0 (u2 ≥ 2), where u2

is the number of solutions to Problem 2. Similarly, positive
real number α2 (α3) in Conditions 7 and 8 (9 and 10) controls
the distance from the least-squares lines (the mean relay time)
that the correct solution should satisfy. Conditions 7–10 are
optional.

E. PROGRAM P2
Program P2, which solves Problem 2, operates according
to Algorithm 1. In the algorithm, R(T ′1,T

′

4) (S(T
′

1,T
′

4)) is a
set of all packets p that are received (sent) by the cooper-
ator between the times T ′1 and T ′4 and satisfy Psh(p) = 1,
where T ′1 and T ′4 are given in (16) and (17). Let B1, B2, B3,
and B4 be the candidate sets of attack packets pkt1, pkt2,
pkt3, and pkt4, respectively. They are created in lines 2–19
by verifying Condition 2 and consulting cache Aonionoo that
contains onion routers’ IP addresses. Aonionoo is maintained
by sending a request to the Onionoo server [37] and is used
to determine whether a packet came from an onion router.
Note that program P1 does not require the cache, because
P1 needs to consider only packets from/to the client and the
middle router, and their addresses IP(client) and IP(middle)
are given.

Lines 20–39 create B14 and B23, which are the candidate
sets of attack packet pairs (pkt1,pkt4) and (pkt2,pkt3), respec-
tively, by checking Conditions 3–5, 7, and 8. B1 × B4 in line
20 denotes Cartesian product {(p, q)|p ∈ B1, q ∈ B4}. Finally,
lines 40–48 create B1234, which is the set of solutions to
Problem 2, by finding two pairs (p, q) ∈ B14 and (u, v) ∈ B23
that satisfy Conditions 1, 9, and 10.

VI. EXPERIMENTS
A. EXPERIMENTAL ENVIRONMENT
Fig. 3 illustrates the experimental system, in which Client i,
i = 1, 2, . . . , 5, communicates with Server i via a bridge
(a private entry router). A bridge is used for control-
ling the volume of traffic passing through an entry router.
The bridge, Client 1, and Server 1 execute the network

Algorithm 1 Solving Problem 2
Input: R(T ′1,T

′

4), S(T
′

1,T
′

4)
1: B1 = B2 = B3 = B4 = B14 = B23 = B1234 = ∅
2: for all p ∈ R(T ′1,T

′

4) do
3: if sIP(p) ∈ Aonionoo then
4: if Size(XSS-res) ≤ Size(p) then B3← B3 ∪ {p}
5: end if
6: else
7: if Size(XSS-req) ≤ Size(p) then B1← B1 ∪ {p}
8: end if
9: end if
10: end for
11: for all q ∈ S(T ′1,T

′

4) do
12: if dIP(q) ∈ Aonionoo then
13: if Size(XSS-req) ≤ Size(q) then B2← B2 ∪ {q}
14: end if
15: else
16: if Size(XSS-res) ≤ Size(q) then B4← B4 ∪ {q}
17: end if
18: end if
19: end for
20: for all (p, q) ∈ B1 × B4 do
21: if TSval(p) = TSecr(q) then
22: if sIP(p) = dIP(q) and sPrt(p) = dPrt(q) then
23: B14← B14 ∪ {(p, q)}
24: end if
25: end if
26: end for
27: for all (u, v) ∈ B2 × B3 do
28: if TSval(u) = TSecr(v) then
29: if dIP(u) = sIP(v) and sPrt(u) = dPrt(v) then
30: x̃ ← areq(Tr (v)− T3)+ breq
31: if T2 − Ts(u)− x̃ ∈ (−α2 ereq, α2 ereq) then
32: ỹ← ares(T2 − Ts(u))+ bres
33: if Tr (v)−T3−ỹ ∈ (−α2 eres, α2 eres) then
34: B23← B23 ∪ {(u, v)}
35: end if
36: end if
37: end if
38: end if
39: end for
40: for all ((p, q), (u, v)) ∈ B14 × B23 do
41: if Tr (p) < Ts(u) < T2 < T3 < Tr (v) < Ts(q) then
42: if Ts(u)− Tr (p)− m12 ∈ (−α3 s12, α3 s12) then
43: if Ts(q) − Tr (v) − m34 ∈ (−α3 s34, α3 s34)

then
44: B1234← B1234 ∪ {(p, u, v, q)}
45: end if
46: end if
47: end if
48: end for
Output: B1234

time protocol (NTP) [38] for clock synchronization and
tcpdump [39] for recording the timestamps and contents of
packets.
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FIGURE 3. Client i , i = 1,2, . . . ,5, communicates with Server i via the
bridge that detects packets exchanged between Client 1 and Server 1.
Clients 2–5 generate traffic that introduces noise into the bridge’s log file.

We conducted three experiments and for each experiment,
we obtained two datasets: L and E . L and E both contain log
data of Client 1, Server 1, and the bridge for the sampling
period of approximately five hours. Dataset L was used for
calculating the statistics of travel and relay times, and E was
used for evaluating our approach. To allow a fair evaluation,
learning and evaluation datasets are different.

TABLE 1. Server i , i = 1, . . . ,5, the TCP payload length (bytes) of the
HTTP response from Server 1, and the client access intervals (in seconds).
Symbol ‘‘-’’ denotes the server is not used.

Table 1 shows the system configurations of the three exper-
iments. Client 1 asks Server 1 for the current time every
10 s during the five-hour sampling period. (The shell script
executed in Client 1 is shown in Fig. 11 in Appendix A). The
other clients generate background traffic. Clients 2–4 request
Web pages, and Client 5 requests weather data in JavaScript
Object Notation (JSON) format. The HTTP response pay-
load length in Experiment 2 is about five times greater than
that in Experiment 1. The number of packets generated by
Clients 2–5 in Experiment 3 is about five times greater than
those in Experiments 1 and 2.

Client 1 sends HTTP packets that are not used for XSS
attacks. Performing the attacks is not necessary to evaluate
our approach because our approach does not inspect contents
in the HTTP frame and the travel and relay times are inde-
pendent of XSS attacks. We examined the effect of the HTTP
frame length by comparing the results of Experiments 1 and 2.

B. EVALUATION CRITERIA
The following procedure calculates five evaluation criteria
from learning dataset L and evaluation dataset E :

1) Calculate L1 and E1, which are the sets of ‘‘unique
solutions’’ to Problem 1 derived from datasetsL and E ,

respectively. (As discussed later, not all unique solu-
tions are included in L1).

2) Calculate 14 quantities (mreq, mres, m12, m34, sreq, sres,
s12, s34, ares, bres, eres, areq, breq, ereq) from solution
set L1.

3) Calculate E2, which is the set of ‘‘solution sets’’ to
Problem 2 derived from E and the above 14 quantities.

4) Calculate the five criteria defined by

Rc :=
|{pk ∈ E1|u2k = 1, pk = q1k}|

|E1|
, (18)

Rc2 :=
|{pk ∈ E1|u2k ≥ 2, ∃1≤j≤u2k pk = qjk}|

|E1|
, (19)

Ri :=
|{pk ∈ E1|u2k = 1, pk 6= q1k}|

|E1|
, (20)

Ri2 :=
|{pk ∈ E1|u2k ≥ 2,∀1≤j≤u2k pk 6= qjk}|

|E1|
, (21)

R0 :=
|{pk ∈ E1|u2k = 0}|

|E1|
, (22)

where pk ∈ E1 and {q1k , q
2
k , . . .} ∈ E2 are the unique

solution and the solution set for the k-th attack in E ,
respectively, and u2k = |{q

1
k , q

2
k , . . .}|.

Because E1 is the set of correct solutions, Rc (Rc2) denotes
the probability thatP2 outputs the correct solution (more than
one solution amongwhich the correct solution exists).Ri (Ri2)
is the probability that P2 outputs an incorrect solution (more
than one solution among which the correct solution does not
exist). R0 is the probability thatP2 outputs no solutions. Note
that

Rc + Rc2 + Ri + Ri2 + R0 = 1. (23)

Let us now define two error rates. The Type II error rate
(E2) is defined as the probability that P2 does not output a
solution set that includes the correct solution, although attack
packets (pkt1,pkt2,pkt3,pk4) exist in the bridge’s log file (we
use ‘‘correct solution’’ and ‘‘attack packets’’ interchange-
ably); therefore,

E2 = Ri + Ri2 + R0. (24)

The type I error rate (E1) is defined as the probability thatP2
outputs a non-empty solution set, although the bridge’s log
file does not contain attack packets. Without executing P2
one more time after removing all attack packets from dataset
E , E1 can be derived as

E1 = Ri + Ri2 + Rc2, (25)

because, from (18)–(22),

R−i + R
−

i2 = Ri + Ri2 + Rc2, (26)

R−0 = R0 + Rc, (27)

where R−i , R
−

i2, and R
−

0 respectively denote Ri, Ri2, and R0
after the removal of all attack packets.
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FIGURE 4. Scatter plots of (xi , yi ) and least-squares lines obtained from
(a) 774 samples and (b) 754 samples satisfying (28). For the 754 samples,
areq = 0.74, breq = 0.070, ereq = 0.024, ares = 0.81, bres = 0.055,
eres = 0.026.

C. STATISTICS
Program P1 calculated 774 unique solutions from dataset L
in Experiment 1. Let (xi, yi) be the i-th sample of (Treq,Tres)
derived from the solutions. We define L1 as the set of all
unique solutions satisfying

max(xi, yi)
min(xi, yi)

< 1.3, (28)

which requires that Treq and Tres are not widely different.
Tor establishes a circuit between the client and server before
data transmission; therefore, HTTP request and response
messages use the same circuit. Fig. 4(a) shows the scatter
plot of all 774 (xi, yi) samples and Fig. 4(b) shows that of
754 (xi, yi) samples that satisfy (28). As shown in the figures,
(28) removes 20 samples (xi, yi) and their xi or yi values
are considerably large. This phenomenon occurs because
of TCP retransmissions. The figure also indicates that the
least-squares regression lines are very sensitive to these
outliers. The coefficient of determination R2 indicates how
well the observed outcomes are replicated by the regression
model. After the removal, R2res (R2req), which denotes R2

for the prediction of Tres (Treq), increases from 0.35 (0.32)
to 0.61 (0.59).

During the five-hour sampling period, 42 circuits were
established between Client 1 and Server 1, 31 of which were
the main ones used. Thus, the circuit was replaced roughly
every 10 m. Because onion routers are installed worldwide,
travel times Treq and Tres depend on established circuits. Note
that the entry router (i.e., the bridge) does not change even if
the circuit changes. As shown in Fig. 4, there exist at least two
circuit groups; one group has a travel time of around 0.2 s and
the second one of around 0.3 s.

Fig. 5 shows histograms of the travel and relay times.
It can be seen that the shapes of the Treq and Tres histograms
are similar and that there exist a small number of T12 and
T34 samples that are considerably larger or smaller than
their means. These samples require a large α3 value to meet
Conditions 9 and 10 in Problem 2. Table 2 compares the
statistics in the three experiments. It can be seen that the
experimental conditions do not significantly affect the statis-
tics, except for the standard deviations of packet relay
times s12 and s34.

FIGURE 5. Histograms of (a) Treq, (b) Tres, (c) T12 and T34 derived from
|L1|(= 754) samples. mreq = 0.28, sreq = 0.040, mres = 0.28,
sres = 0.039, m12 = 8.5× 10−3, s12 = 2.8× 10−4, m34 = 5.8× 10−4, and
s34 = 1.1× 10−3 s.

TABLE 2. Statistics obtained in the three experiments (in seconds).
Sample sizes |L1| in Experiments 1, 2, and 3 were 754, 947, and 619,
respectively.

D. EXPERIMENTAL RESULTS
We consider the following four calculation options to
understand the effectiveness of optional conditions 7–10 in
Problem 2.
• Option 1. Conditions 1–6 are used.
• Option 2. Conditions 1–8 are used.
• Option 3. Conditions 1–6, 9, and 10 are used.
• Option 4. Conditions 1–10 are used.

In the calculation, the values of parameters α1, α2, and
α3 in program P2 are the same as long as they are used.
We introduce variable n to indicate that

n = α1 = α2 = α3. (29)

Fig. 6 shows five evaluation criteria Rc, Rc2, Ri, Ri2, and R0
as functions of n for all the experiment and option pairs. It can
be seen that the values of Ri and Ri2 are both small; therefore,
E2(=Ri+Ri2+R0) ≈ R0 andE1(=Ri+Ri2+Rc2) ≈ Rc2. The
figure also indicates that R0 (Rc2) tends to decrease (increase)
with n. (We explain the reason in Section VII-B). Thus, to
minimize max(E1,E2), a value of n that satisfies R0 = Rc2,
which represents the intersection point of R0 and Rc2 curves,
should be used. Let us define n∗err as

{n∗err } = argmin(max(E1,E2)). (30)
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FIGURE 6. Rc , Rc2, Ri , Ri2, and R0 for the three experiments and four options. The intersection point of R0 and Rc2 curves in each graph
approximately agrees with the point where max(E1,E2) has the smallest value. |E1| is equal to 1064, 760, and 641 for Experiments 1, 2, and 3,
respectively. Both axes are log scale.

Furthermore, it is interesting that for all graphs in Fig. 6,

R∗c ≈ Rc(n∗err ), (31)

where R∗c and Rc(n
∗
err ) are the maximum of Rc and Rc at n =

n∗err , respectively.
Table 3 shows the E1 and E2 rates for different n values.

In the table, it can be seen that Option 4 at n = [n∗err ]
consistently provided small E1 and E2 values and large Rc
values in all the experiments, where [n∗err ] denotes integer n
thatminimizesmax(E1,E2). Thus, a good strategy is to apply
Option 4 and n = [n∗err ], which we call the min-max strategy;
it was subsequently used as a baseline. In Table 3, it can be
seen that this strategy yielded max(E1,E2) ≤ 7.6% in all the
experiments. However, the strategy is somewhat sensitive to

the settings of Experiments 1–3 in that [n∗err ] varies between
4 and 10 depending on the experiment (see Table 3 and
Figs. 6(d), (h), and (l)).

An additional finding that can be observed in Fig. 6, which
leads us to a different strategy development, is that Option 1
(Option 4) significantly reduces the value of R0 (Rc2) at
large (small) values of n. Table 3 numerically supports this
observation. The table indicates that in all the experiments,
Option 1 (Option 4) provided the widest range of n satisfying
E2 ≤ δi (E1 ≤ δi), i = 1, 2, where δ1 = 1/641(/ 0.0016)
and δ2 = 0.005. (The reason is explained in Section VII-B).
We should also mention that Experiment 3 yielded larger
E1 and E2 values than the other experiments in most
cases.
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TABLE 3. E1, E2, and Rc (%) at n = [n∗err ] and E1 (E2) (%) at the smallest (largest) n that satisfies E2 ≤ δi (E1 ≤ δi ), where i = 1,2 and
δ1 = 1/641(/ 0.16%) and δ2 = 0.5%. An n value attached to ‘‘≥’’ (‘‘≤’’) indicates the smallest (largest) n. ‘‘-’’ denotes there are no n values in (0,100]
satisfying the constraint.

FIGURE 7. Means of |{u2
k |u

2
k > 1, ∃

1≤j≤u2
k

pk = qj
k }|. Error bars denote

standard deviations. (a): Experiment 1 and Option 4. (b): Experiment 3
and Option 4.

Fig. 7 shows the mean sizes of the solution sets when the
sets include the correct solution and their size is more than
one. The figure demonstrates that the mean sizes are small.
We found that, regardless of the options, Experiments 1 and 2
always showed means close to 2.0 and small standard devi-
ations, whereas Experiment 3 yielded slightly larger means
and standard deviations. These results imply that Rc2 can be
regarded as the rate of solution sets that contain one correct
solution and only one or two incorrect solutions inmost cases.

VII. DATA ANALYSIS
A. BOUNDS OF ERROR RATES
This section presents the idea of obtaining more than one
solution set having different low error rates. The idea cre-
ates the notion of the reliability of solution sets and helps
adequately grade the detection results obtained from many
cooperators. Fig. 8 shows our approach for reducing the error
rates. In the figure, q1, q2, and q3 are solution sets obtained
using Option 1 and n = n1 satisfying

E2 = δ1, (32)

Option 4 and n = n2 satisfying

E1 = δ2, (33)

and Option 4 and integer n = n3 satisfying

{n3} = arg min
n∈{1,2,...}

(max(E1,E2)), (34)

FIGURE 8. The procedure performed by cooperators, in which n1 = 57,
n2 = 1.1, and n3 = 4. The upper left-hand table shows the error rates in
Experiment 3. ‘‘1− E2 > 99.8%’’ and ‘‘Ri + Ri2 < 0.16%’’ are equivalent
to Ri = Ri2 = R0 = 0 and Ri = Ri2 = 0, respectively.

respectively. Table 3 shows that n1 = 57, n2 = 1.1, and
n3 = 4 for Experiment 3. We use these n1, n2, and n3 values
tuned to Experiment 3 because the detection in this case is the
most difficult. Note that in Experiment 3

q3 = q([n∗err ]), (35)

where q([n∗err ]) is the solution set obtained by the min-max
strategy.

Let us calculate the error rates of q1 ∩ q2. Because q1 (q2)
has a low E2 (E1) rate, the intersection of q1 and q2 is
expected to render both the E1 and E2 rates low. To verify
this, we first calculate the E2 rates. Assume that attack pack-
ets exist in the cooperator’s log file. In this case, we introduce
three events:

Ak := {qk has the correct solution}, (36)

Āk := {qk exists and does not have the correct solution},

(37)
¯̄Ak := {qk does not have the correct solution}. (38)

We use ‘‘qk exists’’ and ‘‘qk 6= ∅’’ interchangeably. Then,

P(Ak ) = 1− E2, (39)

P(Āk ) = Ri + Ri2. (40)

VOLUME 8, 2020 133199



Y. Pei, K. Oida: Tracing Website Attackers by Analyzing Onion Routers’ Log Files

According to Appendix B, the probability that q1 ∩ q2 causes
a Type II error when q1 ∩ q2 exists, i.e., the probability that
all solutions in q1 ∩ q2 are incorrect when it exists, satisfies

P( ¯̄A1 ∪ ¯̄A2|q1 ∩ q2 6= ∅) ≤
P(Ā1)+ P(Ā2)

P(A1)+ P(A2)− 1
. (41)

The upper left-hand table in Fig. 8 shows the error rates in
Experiment 3. According to the table and (39)–(40), (41) is
given as

P(Ā1)+ P(Ā2)
P(A1)+ P(A2)− 1

<
0.0016+ 0.0016
0.998+ 0.607− 1

< 0.0052. (42)

Similarly, the upper bound of the probability that q1∩q3(6= ∅)
causes a Type II error is

P( ¯̄A1 ∪ ¯̄A3|q1 ∩ q3 6= ∅) < 0.0131. (43)

Thus, if q1∩ q2 and q1∩ q3 exist, they show very low Type II
error rates. From (39), (60) in Appendix B, and the table
in Fig. 8, the lower bounds of their existence probabilities are

P(q1 ∩ q2 6= ∅) ≥ P(A1)+ P(A2)− 1 > 0.605, (44)

P(q1 ∩ q3 6= ∅) > 0.957. (45)

We next consider the case where attack packets do not exist
in the log file. In this case,

P(qk 6= ∅) = E1. (46)

From (46) and Fig. 8, the upper bounds of probabilities that
q1 ∩ q2 and q1 ∩ q3 yield Type I errors are given by

P(q1 ∩ q2 6= ∅) ≤ min(P(q1 6= ∅),P(q2 6= ∅)) = 0.005,

(47)

P(q1 ∩ q3 6= ∅) ≤ 0.076, (48)

respectively.

TABLE 4. Upper bounds of Type I and II errors (%) of non-empty sets
q1 ∩ q2 and q1 ∩ q3 (lower bounds of their existence rate (%) are in
parentheses) and E1 and E2 (%) of q3 and q([n∗err ]). The procedure
in Fig. 8 calculates q1, q2, and q3 with n1 = 57, n2 = 1.1, and n3 = 4,
respectively.

Table 4 summarizes the calculation results of (42)–(48).
The table also shows the results of Experiments 1 and 2 that
are derived using the same n1, n2, and n3 values. These n
values are tuned to Experiment 3, and thus, (32)–(35) do not
hold in Experiments 1 and 2. For comparison, the error rates
of q([n∗err ]) are included. Note that q([n∗err ]) is ideal in that
the best n value is selected for each experiment. The table
demonstrates the following:

FIGURE 9. State transition diagrams of two Markov chains and lumped
states G0, G1, G2, and G−1. (a): {(Xk ,Yk )}. (b): {(X ′j ,Y ′j )}.

• q1∩q2 ( 6= ∅) is the most reliable solution. Its Type I (II)
error rate is less than one-fifth (one-seventh) of that of
q([n∗err ]) for all the experiments. Its existence bounds
(60.5–67.2%), however, are not large.

• q1 ∩ q3 (6= ∅) is slightly less reliable (it is still superior
to q([n∗err ])) and its existence bounds are 91.3–95.7%.

• If q1∩q2 = q1∩q3 = ∅, the min-max strategy q([n∗err ])
should be used (therefore, its approximation q3 is sent to
AT, as shown in Fig. 8).

Let us define the reliability degree, for example, by the
maximum of the upper bounds of Type I and II error rates.
Smart contract AT receives TX-detect transactions includ-
ing (q1 ∩ q2, q1 ∩ q3, q3) and their reliability degrees
from cooperators, and ranks the solution sets based on the
degrees. Note that different cooperators yield different relia-
bility degrees of q1 ∩ q2(6= ∅).

B. MARKOVIAN PERSPECTIVE
Let us discuss the condition that the values of E1 and E2
become small. Regardless of whether attack packets exist in
the cooperator’s log file, each solution q is associated with a
unique n value, n+, such that program P2 outputs a solution
set containing q if n ≥ n+; otherwise it does not. Let n+k be
the k-th smallest n+; i.e.,

0 < n+1 < n+2 < · · · . (49)

Let Xk (Yk ) be the number of correct (incorrect) solutions
at n = n+k . We can constitute a two-dimensional discrete
Markov chain {(Xk ,Yk )}k≥0 such that X0 = Y0 = 0 and for
k ≥ 1,

Xk = Xk−1 + Ck , (50)

Yk = Yk−1 + Ik , (51)

where Ck = 1 and Ik = 0 if the correct solution is associated
with n+k ; otherwise, Ck = 0 and Ik = 1. Fig. 9 illustrates
the state transition diagram of {(Xk ,Yk )} and lumped states
defined by G0 := {(0, 0)}, G1 := {(1, 0)}, G2 := {(r, s)|
r = 1, s ≥ 1}, and G−1 := {(r, s)|r = 0, s ≥ 1}. Then,
from (18)–(22),

P((Xk ,Yk ) ∈ G0) ∼ R0, (52)

P((Xk ,Yk ) ∈ G1) ∼ Rc, (53)
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P((Xk ,Yk ) ∈ G2) ∼ Rc2, (54)

P((Xk ,Yk ) ∈ G−1) ∼ Ri + Ri2, (55)

where β ∼ b denotes b is an estimator of β.
In Fig. 9(a), G2 (G0) has only incoming (outgoing) links.

This finding agrees with the fact that the value of Rc2 (R0)
does not decrease (increase) with the value of n in all the
graphs in Fig. 6. According to Fig. 6, R0 somewhat linearly
decreases in the range of n > 100 on a log-log scale; i.e.,
R0 = c1 nc2 , c1 > 0 and c2 < 0, which represents a power-
law function. Although the value of R0 may not quickly
decrease, if Option 1 is used and attack packets exist in the log
file, we eventually have E2 = 0 at a large value of k because
there exist n+k values at which T ′1 ≤ T1 and T4 ≤ T

′

4 hold.
Let us next define another Markov chain. We introduce

a new parameter αj each time new optional conditions are
added to Problem 2 and revise (29) as

n = α1 = α2 = · · · = αj. (56)

Then, we obtain Markov chain {(X ′j ,Y
′
j )}j≥1, where X

′
j (Y

′
j )

denotes the number of correct (incorrect) solutions when j
parameters α1, α2, . . . , αj are used. Fig. 9(b) shows the state
transition diagram of {(X ′j ,Y

′
j )}, which is derived from the

principle that X ′j and Y
′
j do not increase with the number of

constraints j. In the figure,G2 (G0) has only outgoing (incom-
ing) links. This result explains why the value of Rc2 (R0) of
Option 4 is not greater (smaller) than that of any other options
at any n value in Fig. 6.
In short, two chains {(Xk ,Yk )} and {(X ′j ,Y

′
j )} indicate

E1 ↑ E2 ↓ as k ↑ or j ↓ (57)

if the value of Ri + Ri2 is sufficiently small. Based on the
relationship represented by (57), Fig. 8 shows the calculation
of q1, using Option 1 and a large n value to reduce E2, and
q2, using Option 4 and a small n value to reduce E1. The
intersection of q1 and q2 is then taken to make E1 and E2
both small.

VIII. DISCUSSION
In this paper, we proposed a packet detection approach,
in which an entry router’s log file is analyzed to deter-
mine the packets that correspond to a request and response
pair observed on the server. The application scope of
this approach may be enlarged and its detection accuracy
improved by adding, deleting, or changing the conditions
given in Problems 1 and 2. If the detection of only an HTTP
request message is required, the approach can be adapted
to this requirement by deleting all the conditions related to
packets pkt3 and pkt4 in the problems. If the HTTP response
consists of multiple IP packets, the approach is effective after
conditions that select one packet, e.g., the first packet, from
the packet group are added. This is rendered possible by
checking the TCP sequence numbers. Furthermore, accord-
ing to (57), the Type I error rate may be further reduced by
adding more conditions to Problem 2.

Our approach may not require many onion routers to be
cooperators. This is because the directory servers can provide
information to clients such that the clients select cooperators
as their entry routers with a high probability.

IX. CONCLUSIONS
We have thus far investigated means of identifying attackers’
packets that may be recorded in an onion router’s log file with
sufficiently low error rates and without compromising Tor
users’ privacy. Our approach was to minimize the detection
error rates rather than to maximize the detection success rate.
Thus, our approach may not output a single candidate. The
ideas presented in this paper were as follows. (1) Attacked
servers and cooperators, i.e., routers that voluntarily agree to
trace attackers, form an Ethereum network, in which open
and tamper-proof blockchain technologies prevent the coun-
terfeiting of evidence files and allow Ethereum participants to
monitor the tracing processes of all incidents in their entirety.
(2) Before performing attack-packet detection, cooperators
collect travel and relay time samples with the support of the
attacked server. (3) Each detection result includes a reliability
degree that is based on its error rates, and thus, smart contract
AT can rank the detection results reported by cooperators.

We performed three different experiments using a bridge
(a private entry router), which detects attack packets that
have been mixed with normal packets. We learned the fol-
lowing by analyzing the detection results: (1) The min-max
strategy, which minimizes the maximum of Type I and II
errors, achieves error rates of not more than 7.6%. (2) The
Type I and II errors of a non-empty solution set obtained by
our approach respectively become less than one-fifth and one-
seventh of those yielded by the min-max strategy. This error-
rate reduction approach is supported by two Markov chain
models introduced in this paper.

APPENDIX A
LOG FILES
Fig. 10 shows the tcpdump log data of the bridge and the
server. As shown in Fig. 10(a), there are two packets in
the bridge’s log file, and TS var in the first packet is
equal to TS ecr in the second. Therefore, they may be an
HTTP request and response pair. Meanwhile, the server’s
log file includes unencrypted packets, and thus, we can
check whether the HTTP request and responsemessages have
the same sequence number torclientid. The messages
in Figs. 10(b) and (c) have the same torclientid.

Fig. 11 shows the shell script on the client and a part of
its output data. As shown in Fig. 11(a), the script requests the
current time from the server every 10 s, and each request has a
unique sequence number (torclientid). The output data
in Fig. 11(b) are used for four purposes.

1) The HTTP status code in Fig. 11(b) is checked whether
it is 200.

2) endtime in Fig. 11(b) is used as T4 in Fig. 1.
3) Sequence number torclientid in Fig. 11(b) is

compared with those in HTTP messages in the server’s
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FIGURE 10. Tcpdump log data in the bridge (a) and in the server ((b) and
(c)). (a): TS val and ecr connect two packets. (b): Each HTTP request has
sequence number torclientid. (c): Each HTTP response has
torclientid and current time time.

FIGURE 11. (a): Shell script executed on the client. (b): Part of the output
data (getdate242.txt) of the shell script, which include sequence number
torclientid and current time time inserted in the response.

log file. In Figs. 10(b), 10(c), and 11(b), they are the
same.

4) Current time time in Fig. 11(b) is used to detect an
HTTP response that has the same time. Figs. 10(c)
and 11(b) illustrate the case where they are the same.

APPENDIX B
PROBABILITY CALCULATION
First,

{A1 ∩ A2} ⊂ {q1 ∩ q2 6= ∅}, (58)

{q1 ∩ q2 6= ∅} = {q1 6= ∅} ∩ {q1 ∩ q2 6= ∅}. (59)

Accordingly,

P(q1 ∩ q2 6=∅)≥ P(A1 ∩ A2)≥P(A1)+P(A2)− 1, (60)
¯̄A1 ∩ {q1 ∩ q2 6=∅}= ¯̄A1 ∩ {q1 6=∅} ∩ {q1 ∩ q2 6=∅} (61)

= Ā1 ∩ {q1 ∩ q2 6= ∅}. (62)

Using (60)–(62), we have

P( ¯̄A1 ∪ ¯̄A2|q1 ∩ q2 6= ∅)

=
P(( ¯̄A1 ∪ ¯̄A2) ∩ {q1 ∩ q2 6= ∅})

P(q1 ∩ q2 6= ∅)
(63)

=
P((Ā1 ∪ Ā2) ∩ {q1 ∩ q2 6= ∅})

P(q1 ∩ q2 6= ∅)
≤

P(Ā1 ∪ Ā2)
P(q1 ∩ q2 6= ∅)

(64)

≤
P(Ā1)+ P(Ā2)

P(A1)+ P(A2)− 1
. (65)
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