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ABSTRACT Many people suffer from scalp hair problems such as dandruff, folliculitis, hair loss, and
oily hair due to poor daily habits, imbalanced nutritional intake, high stress, and toxic substances in their
environment. To treat these scalp problems, dedicated services such as scalp hair physiotherapy have emerged
in recent years. This article proposes a deep learning-based intelligent scalp inspection and diagnosis system,
named ScalpEye, as an efficient inspection and diagnosis system for scalp hair physiotherapy as part of scalp
healthcare. The proposed ScalpEye system consists of a portable scalp hair imaging microscope, a mobile
device app, a cloud-based artificial intelligence (AI) training server, and a cloud-basedmanagement platform.
The ScalpEye system can detect and diagnose four common scalp hair symptoms (dandruff, folliculitis, hair
loss, and oily hair). In this study, we tested several popular object detection models and adopted a Faster
R-CNN with the Inception ResNet_v2_Atrous model in the ScalpEye system for image recognition when
inspecting and diagnosing scalp hair symptoms. The experimental results show that the ScalpEye system can
diagnose four common scalp hair symptomswith an average precision (AP) ranging from 97.41% to 99.09%.

INDEX TERMS Artificial intelligence over the Internet of Things (AIoT), deep learning, image processing,
image recognition, inspection, haircare, healthcare, scalp hair diagnosis.

I. INTRODUCTION
Many people suffer from scalp hair related problems such as
dandruff, folliculitis, hair loss, and oily hair for reasons that
include poor daily habits, imbalanced nutritional intake, high
stress, and toxic substances in their environments. At least
30% of these problems result in hair loss. Rajput [1] evaluated
the causes and clinical expressions of hair loss due to air
pollution.

The World Health Organization (WHO) reported [2] that
approximately 70% of adults have scalp hair problems. The
causes of scalp hair problems include endocrine, genetic,
disease, or other internal factors. Misery et al. [3] evaluated
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the severity of sensitive scalps and symptomatology by adopt-
ing a severity score of abnormal sensations. Misery et al. [4]
found that dandruff, scalp pruritus, and related symptoms
occur in the French population. Other related studies in chil-
dren conducted in the USA and Australia have shown that
dandruff is present in 18% of children. Therefore, both adults
and children can have scalp hair problems [5].

Hence, how to effectively prevent scalp hair-related prob-
lems and scalp hair maintenance are important. To process
such increasingly serious scalp problems, dedicated services,
including scalp hair physiotherapy, have emerged in recent
years.

Under the current most common processing procedures
in scalp hair physical therapy, the condition of the patient’s
scalp hair is determined bymanual inspection. However, such
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manual inspections are dependent on the skill level of the
physiotherapist; thus, they can lead to different results and
concerns regarding the scalp hair condition and the diagnosis.

Consequently, two key problems exist related to haircare
services in the current hairdressing industry, which are sum-
marized below.

1) THE EXTREMELY HIGH COST OF EDUCATION AND
TRAINING
In contrast to ordinary hairdressers, scalp hair physiothera-
pists must be able to determine the scalp hair health condition
of the customer’s scalp hair directly frommicroscopy images.
These images are acquired by a dedicated inspection instru-
ment and can reveal the current status of internal and exter-
nal factors affecting scalp hair health. Acquiring such skill
takes at least a half-year of education and training. Generally,
the training cost is 14,000 U.S. dollars for each new employee
in the hairdressing industry in Taiwan. However, the frequent
turnover of employees in the hairdressing industry has led to
companies investing considerable time and cost due to the
need to continuously cultivate physiotherapist skillsets.

2) THE INTERPRETATION OF SCALP HEALTH CONDITION
VARIES BETWEEN INDIVIDUALS
The interpretation of scalp hair microscopy images differs
among professional physiotherapists even when they have
received the same professional training. Such differences
in diagnostic result interpretation also occur due to lack of
experience. Confusion often occurs between customers and
hairdressing companies, highlighting the need for a scientific
and systematic quantitative benchmark.

To overcome the two abovementioned problems, we pro-
pose a deep learning-based intelligent scalp inspection and
diagnosis system, named ScalpEye, to inspect and diagnose
four common scalp hair symptoms in scalp healthcare: dan-
druff, folliculitis, hair loss, and oily hair.

The proposed ScalpEye system main provides the follow-
ing main contributions:
• It reduces the high cost and time of education and train-
ing for scalp hair physiotherapists.

• It reduces the mistakes and inconsistent judgments of
different human interpreters.

• It provides an automatic and highly accurate AI-based
recognition method whereby people can know their cur-
rent status of scalp hair health problems.

• The diagnosis result from each scalp hair inspection can
be sent to an online cloud-based management platform,
which can help related enterprises (such as scalp hair
therapy and beauty salons) track the progress of scalp
hair care, treatments, and customer therapies.

• It maintains cloud-based scalp hair records for cus-
tomers, helping scalp hair physiotherapist regularly
track and analyze the scalp hair health status their
customers.

• The proposed cloud-based management platform effi-
ciently manages customer memberships.

The remainder of this article is organized as follows.
Related works are reviewed in Section II. The proposed
ScalpEye system is described in Section III. Section IV
describes a prototype of the proposed ScalpEye system and
reports the experimental results. Finally, we conclude the
study in Section V.

II. RELATED WORKS
Some recent previous works [8]–[26] have been reported that
focus on detecting the status of skin or scalp hair. To the best
of our knowledge, most of these previous works have focused
on skin inspection or on diagnosing various conditions, such
as skin lesions, skin cancer, monitoring skin recovery, and
noninvasive diagnosis of skin burn injuries. However, studies
related to scalp hair issues are sparse to date. The related
literature [16]–[26] on scalp hair issues is reviewed and intro-
duced as follows.

Lacarrubba et al. [16] demonstrated that scalp hair der-
moscopy (also known as scalp image microscopy) is a useful
tool for monitoring symptoms of scalp hair and skin and
treating conditions. Rudnicka et al. [17] used trichoscopy,
which involves dermoscopy of both hair and scalp to diagnose
hair and scalp diseases such as tinea capitis, alopecia areata,
and trichotillomania. Kim et al. [18] evaluated hair and scalp
conditions based on microscopy image measurements and
analysis.

Shih [19], Shih and Lin [20] developed an automatic hair
segmentation and counting system based on unsupervised
learning that reduced the time required to assess scalp hair
compared with that required for a human inspection. Three
processing flows were designed to overcome three prob-
lems: double-counting of some hairs, nonstraight hair detec-
tion, and accurately locating all hairs. Benhabiles et al. [21]
adopted a deep learning-based matching method to predict
the level of hair loss. Thematchingmethod classifies hair loss
images using the Hamilton–Norwood scaling model.

Lee and Yang [22] proposed an intelligent hair and scalp
analysis system in which a web camera, a microscope image
sensor, and the Norwood–Hamilton scaling model were com-
bined to obtain the features and parameters of images to
assess the status of consumers’ scalp hair. This work was
implemented on the Nvidia Jetson TK1 development plat-
form, and it is capable of simple scalp hair self-diagnosis.

Wang et al. [23] evaluated several machine learning
and deep learning techniques for AI edge computing-based
intelligent scalp hair detection. In this study, the deep
learning-based ImageNet-VGG-f-model [24] and several
other machine learning-based classifiers were implemented
and compared. The study results showed that the accuracy
achieved by deep learning-based methods is considerably
higher than that achieved by machine learning-based meth-
ods. The adopted deep learning-based ImageNet-VGG-f-
model achieved an accuracy of 89.77%.

Su et al. [2] proposed a deep learning-based intelligent
scalp hair inspection and diagnosis system that adopted a
VGG-net model to inspect and diagnose scalp hair problems.
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The proposed system was able to evaluate five scalp hair
problems, including dandruff, hair loss, bacteria, grease, and
allergies. System recognition accuracy reached 90.9%.

Huang et al. [25] proposed a cloud-based intelligent skin
and scalp hair analysis system that used various image pro-
cessing techniques to detect and analyze the conditions and
symptoms of the skin and scalp hair. This analysis system
is capable of scalp hair sensitivity analysis, scalp hair oil
analysis, scalp hair pore analysis, hair volume analysis, skin
tone analysis, etc.

Chang et al. [26] designed and implemented a smartphone-
based intelligent scalp hair diagnosis system that adopted
deep learning techniques for the core image recognition
tasks. This work used a portable 200× magnification imag-
ing microscope with an adjustable focus connected to a
smartphone. In addition, this system allowed novice users to
inspect and diagnose their scalp hair health status to promote
scalp hair healthcare at home.

III. THE PROPOSED SCALPEYE SYSTEM
A. SYSTEM CONSTRUCTION
Fig. 1 shows the architecture of the proposed ScalpEye
system, which is composed of a portable scalp hair imag-
ing microscope, a mobile device application, a cloud-based
AI training server, and a cloud-based management platform.

FIGURE 1. Architecture of the proposed ScalpEye system.

To evaluate ScalpEye, more than 2,000 scalp hair
microscopic images that included four common scalp hair
symptoms were obtained from cooperating hairdressing com-
panies in Taiwan. The professional physiotherapists from
these cooperating hairdressing companies assisted in labeling
the training images of these four common scalp hair symp-
toms for use in the cloud-based AI deep learning training
server. The specifications of the cloud-based AI deep learning
training server adopted in this work are shown in Table 1.

The portable scalp hair imaging microscope supports
20-50× and 200× magnification with an adjustable focus
and supports two connection interfaces: USB 2.0 and Wi-Fi
wireless communication. The image sensor on the imaging
microscope is a VGA sensor (640×480 pixels). In this study,

TABLE 1. Specifications of the cloud-based AI deep learning training
server.

the imaging microscope is used to capture scalp hair images
at 200× magnification.
When a scalp hair image of a user is captured at 200×

magnification, the captured scalp hair image is simultane-
ously transmitted to the mobile device application and to
the proposed cloud-based AI training server though a Wi-Fi
wireless network.

The captured scalp hair image is evaluated for four com-
mon scalp hair symptoms (folliculitis, hair loss, dandruff,
and oily hair) by the cloud-based AI training server. The
symptom severity scores determined are transmitted to the
mobile device app via Wi-Fi.

The proposed cloud-based management platform can also
be used for member (user) management and to record and
track symptom scores. The diagnostic results related to the
symptoms can be uploaded to the proposed cloud-based man-
agement platform from the mobile device app via Wi-Fi.

B. SEVERITY SCORES FOR THE FOUR COMMON SCALP
HAIR SYMPTOMS
The four common scalp hair symptoms are scored according
to the severity of the symptoms. Table 2 shows the severity
scoring for the four tested symptoms. The severity is divided
into four levels: minor, normal, middle, and high. The severity
is determined based on the symptoms; the symptom percent-
age is the ratio of the symptom area to the area of the captured
image.

TABLE 2. Severity scoring for the four common scalp hair symptoms.

The scores are defined to reflect different severities of scalp
hair symptoms. Examples of the captured 200× magnifica-
tion scalp images for the four common symptoms are shown
in Figs. 2–5.

Next, we describe how the severity of scalp hair symptoms
are scored in this work. First, we assume a labeled symptom
A1 whose coordinates are [x1min, y1min, x1max , y1max]. Next,
we calculate the size of the symptom area. This area passes
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FIGURE 2. Dandruff symptoms: (a) Normal; (b) Middle; (c) High.

FIGURE 3. Folliculitis symptoms: (a) Normal; (b) Middle; (c) High.

FIGURE 4. Hair loss symptoms: (a) Normal; (b) Middle; (c) High.

FIGURE 5. Oily hair symptoms: (a) Normal; (b) Middle; (c) High.

through the image area, and the classification interval deter-
mines the severity.

When symptoms overlap (as shown in Fig. 6), the second
labeled symptom is set to A2, and its coordinates are [x2min,
y2min, x2max , y2max]. Then, we calculate the overlapping
parts. Finally, we sum the areas for each symptom and sub-
tract the overlapping parts. The equations corresponding to

FIGURE 6. Overlapping symptoms.

this method are as follows:

width = min (x1max , x2max)− max(x1min, x2min),

height = min
(
y1max , y2max

)
− max(y1min, y2min),

A1area = (x1max − x1min) ∗
(
y1max − y1min

)
,

A2area = (x2max − x2min) ∗
(
y2max − y2min

)
,

Overarea = height ∗ length,

Truearea = Aarea + Barea − Overarea.

Note that A2area is the symptom area of area A2.Overarea =
height∗length is the area of overlap. Finally, the areas of
identical symptoms are subtracted, and then the overlap area
is subtracted to obtain the true range of symptoms, defined
as Truearea.

This method for computing symptom overlap is highly
suitable for determining the severity scores of scalp hair
symptoms in cases where two or more identical symptoms
overlap.

C. DEEP LEARNING MODEL SELECTION
To select a suitable deep learning model, we first refer to
a previous comparison study [27] regarding object detec-
tion models on the COCO dataset that reported the speed
and accuracy for possible candidate deep learning mod-
els. We also referred to our past works and related expe-
rience [28]–[30] to select several candidate deep learning
models [31]–[35] suitable for use in this study, as follows.

(1) Faster R-CNN Inception_v2
(2) SSD Inception_v2
(3) Faster R-CNN Inception_ResNet_v2_Atrous
The architecture and features of these candidate deep learn-

ing models are briefly introduced below.

1) FASTER R-CNN INCEPTION_V2
The Faster R-CNN Inception_v2 model is based on the
Faster R-CNN model [31] and uses the Inception v2 network
architecture. The first stage extracts features using candidate
regions. Certain intermediate features are selected to predict
regions that are not related to the target category. The second
stage uses these candidate regions to extract intermediate
features, and finally, it feeds the clipped features back to the

VOLUME 8, 2020 134829



W.-J. Chang et al.: ScalpEye: Deep Learning-Based Scalp Hair Inspection and Diagnosis System

feature extractor to predict the category of each candidate
region and optimize specific candidate regions.

In other words, in this architecture, the Faster RCNN fea-
ture involves the introduction of the region proposal network
(RPN). In the last layer of the initial CNN, a 3 × 3 sliding
window moves over the entire feature map and maps it to
a lower dimension (256D for visualizing and understanding
convolutional networks (ZF model) [36] and 512D for the
VGG-16 model [37]). In Fig. 7(a), multiple possible regions
are generated by k fixed anchor boxes at each sliding win-
dow position, as shown in Fig. 7(b). Each candidate region
is composed of the objectivity score of the region and the
four coordinates representing the candidate frame of the
region.

FIGURE 7. (a) Region proposal network (RPN); (b) Anchor boxes.

Fig. 8 shows the architecture of the Faster R-CNN model.
Note that the Inception_v2 module in the Faster R-CNN’s
Inception v2 architecture is the same as the Inception v2mod-
ule in the abovementioned SSD model. The orange partition
(proposal generator) in the figure indicates the RPN concept.
We can use these generated anchor boxes to detect objects
and refine them to a more accurate range. As shown in the
green partition (box classifier) of the figure, we can give these
objects an objectness score. The refined boxes are represen-
tative of the region classification.

FIGURE 8. Architecture of the Faster R-CNN model.

The output of the Inception_v2 network is input into a
batch normalization (BN) layer [32], which normalizes each

input value. Hence, the output range is a normal distribution
ofN (0,1). This output is then sent to the next layer of the neu-
ral network, which solves the problem of internal covariate
shift. Hence, the architecture efficiently reduces or eliminates
dropout to simplify the network structure and improve the
upper limit of accuracy when the model converges.

2) SSD INCEPTION_V2 MODEL
The SSD Inception_v2 model is a single-shot multi-box
object detector (SSD) [33] that adopts the Inception v2 net-
work architecture. SSD uses a feed-forward convolutional
network to directly predict classes and anchor offsets without
using candidate regions to extract features.

In other words, the SSD is based on a feed-forward convo-
lutional network and uses a box with a fixed size and position.
This box is similar to the anchor box of Faster R-CNN.
Multiple fixed anchor boxes are set in advance, as shown
in Fig. 9, and the objects in these boxes are processed, scored,
and then undergo non-maximum suppression to produce the
final object detection result.

FIGURE 9. SSD uses multiple boxes with preset sizes to detect objects.

Fig. 10 shows the architecture of the SSD Inception_2
model. Unlike Faster R-CNN, the candidate region is not
screened; instead, the detection result is generated directly
through the feature extractor. Moreover, the Inception_v2
network architecture in SSD is the same as the Inception_v2
architecture used in the Faster R-CNN model described
above.

FIGURE 10. Architecture of the SSD Inception_v2 model.

In summary, SSD does not require a region proposal pro-
cess; instead, it uses a fixed-size box to detect objects directly.
Thus, SSD is faster than Faster R-CNN, but Faster R-CNN
achieves better accuracy.

134830 VOLUME 8, 2020



W.-J. Chang et al.: ScalpEye: Deep Learning-Based Scalp Hair Inspection and Diagnosis System

3) FASTER R-CNN INCEPTION_RESNET_V2_ATROUS MODEL
We also adopt the Faster RCNN architecture but change
the Inception_v2 module to an Inception_ResNet_v2_Atrous
module [35]. Inception_ResNet [33] adds the concept
of a residual network based on the Inception network.
Fig. 11 shows the difference between plain layers and residual
block: Fig. 11(a) shows plain layers, while Fig. 11(b) shows
a residual block. When F(x) = 0, the input X is similar
to the output H (x), that is, H (x) = x, which helps prevent
the vanishing gradient problem and achieves the learning
of identity mapping, ensuring that the comparisons in the
subsequent layers will not result in an accuracy decline.

FIGURE 11. Difference between plain layers and residual block: (a) Plain
layers; (b) Residual block.

A parameter called the dilated rate is introduced into
the convolutional layer. This parameter defines the dis-
tance between the data processed by the convolution kernel,
as shown in Fig. 12, where Fig. 12(a) is the result of ordinary
pooling and Fig. 12(b) is the result of dense pooling.

FIGURE 12. Relationship between pooling and Atrous convolution.

In Fig. 12(a), the normal convolution is assumed to have
a kernel size of 3, thus the size of the receptive field will
be 7, while in the same action in Fig. 12(b), the corresponding
receptive field will become 5 if we use a setting of hole=2.

Atrous convolution is shown in Fig. 12(c), where the recep-
tive field is still 7. Hence, Atrous convolution can ensure that
the receptive field remains unchanged after pooling, and it
can be fine-tuned while also ensuring that the output results
are more refined.

The architecture of the Atrous convolutional layers is
shown in Fig. 13. In the Inception_ResNet_v2_Atrous mod-
ule, convolution layers based on the Atrous method are added
to the Inception_ResNet_v2 architecture. As a result, the lay-
ers within the Inception_ResNet_v2 architecture use Atrous
convolutions at different rates, turning the basic convolutional
network into an Atrous version.

FIGURE 13. Architecture of Inception_ResNet_v2_Atrous.

D. EXPERIMENTAL ENVIRONMENT SETUP
In this experiment, we used microscopy images of scalp hair
symptoms provided by experts in scalp hair care from a
cooperating hairdressing company in Taiwan. The scalp hair
images are 200× magnified microscope images captured by
the portable scalp hair imagemicroscope, as shown in Fig. 14.

These images are used as the deep learning training
dataset for four common scalp hair symptoms. The dataset
includes 615 images of dandruff symptoms, 312 images of
folliculitis symptoms, 859 images of hair loss symptoms,
and 412 images of oily hair symptoms. Over 2,000 micro-
scope images of scalp hair symptoms were used in total.
The experimental settings for training the AI deep learning
models are listed in Table 1.
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FIGURE 14. Training dataset for four common scalp hair symptoms.

Next, we used the labeling tool LabelImg to label the
microscope images of the four common scalp hair symptoms.
The format for the labeled microscopic images includes a
scalp hair microscope image file and an XML file. The
XML file content contains the tagged records for the scalp
hair image file, a defined name for the frame-selected object,
its coordinates, etc.
All the symptoms were labeled with assistance from scalp

hair physiotherapists from our cooperating hairdressing com-
pany. The feature related to the four common symptoms are
introduced as follows.

Dandruff is a state in which the white keratin on the
scalp has not fallen off. Folliculitis involves follicular pores,

inflammatory symptoms, and pustules on the hair cells. Hair
loss consists of hair follicle pores without hairs or where hair
growth is blocked by secretions. Oily hair shows excessive oil
secretion, which leads to clogged pores. The oil reflects light.

An example of the screens used for labeling the micro-
scopic images of scalp hair symptoms is shown in Fig. 15. The
case numbers for each symptom labeled in the original scalp
hair microscopic images are listed in Table 3, and include
1,235 cases of dandruff, 312 cases of folliculitis, 589 cases
of hair loss, and 412 cases of oily hair.

Two approaches are adopted to ensure consistent results.
(1) The imaging sample ratio is 9:1 (training to test). (2) Scalp
hair physiotherapists were employed to assist in randomly
checking whether the predicted outcome is correct.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTS
Table 4 describes the deep learning training process, during
which each microscope image is randomly flipped horizon-
tally to enhance the training dataset, known as data augmen-
tation preprocessing [23].

As shown in Table 4, the number of training steps was
set to 200,000. The final memory usage, training time, and
processing time required by each of the three tested deep
learning training models are shown in Table 4. The memory
usage ranges from 87% to 90%. The training times are 8 h
46 m 18 s for SSD Inception_v2, 17 h 56 m 45 s for Faster
R-CNN Inception_v2, and 32 h 36 m 34 s for Faster R-CNN
Inception_ResNet_v2_Atrous, respectively.

FIGURE 15. An example of the process of labeling the symptoms in the microscopic images. (a) Dandruff. (b) Folliculitis. (c) Hair loss. (d) Oily hair.
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FIGURE 16. Recognition results of hairy scalp symptoms. (a) Dandruff. (b) Folliculitis. (c) Hair loss. (d) Oily hair.

TABLE 3. Hair scalp symptom recognition results.

The processing time for a single scalp hair microscopic
image is less than 1 second; therefore, it is difficult to
measure the exact processing time. Hence, the processing
time listed in Table 4 is the period of time from the ini-
tiation of processing plus the average time required for
continuous processing of 100 scalp hair microscope images.
The processing times for 100 microscope images are

1,025 ms (SSD Inception_v2), 1,312 ms (Faster R-CNN
Inception_v2), and 5,125 ms (Faster R-CNN Incep-
tion_ResNet_v2_Atrous) for the three algorithms, respec-
tively. Among the tested deep learning training models,
the SSD Inception_v2 model achieved the fastest training
and processing time; both Faster R-CNN and the Incep-
tion_ResNet_v2_Atrous model were slower.
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FIGURE 17. Execution screenshots of the mobile device app of the proposed ScalpEye system.

TABLE 4. Deep learning training process.

Table 5 shows the average precision (AP) obtained when
diagnosing the four common scalp hair symptoms using the
three selected deep learning training models. The AP scores
for diagnosing the four common scalp hair symptoms by the

SSD Inception_v2model range between 86.44% and 91.34%,
while the Faster R-CNN Inception_v2model AP scores range
from 92.60% to 99.95% and those of the Faster R-CNN
Inception_ResNet_v2_Atrous model range from 97.41% to
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FIGURE 18. Scalp hair inspection and diagnosis for scalp healthcare in the hairdressing company.

TABLE 5. Average precision (AP) for diagnosing the four common scalp hair symptoms by three selected deep learning training modules.

TABLE 6. Mean average precision (mAP) for diagnosing the whole scalp hair symptoms by three selected deep learning training modules.

99.09%. As shown in Table 5, the Faster R-CNN Incep-
tion_ResNet_v2_Atrous model yields the best recognition
results; its AP scores can reach 97.41%.

Table 6 shows the mean average precision (mAP) when
the three selected deep learning training models are used
to diagnose all the scalp hair symptoms; both the overall
mAP and the mAP when using different intersection over
union (IoU) threshold settings (.50 and.75) are shown. The
Faster R-CNN_Inception_ResNet_2_Atrous model achieves
the best mAP.

According to the above experimental results, we ultimately
selected the faster R-CNN Inception_ResNet_v2_Atrous
model to perform the core scalp hair microscope image
recognition tasks in the proposed ScalpEye system.
The recognition results for the four scalp hair symptoms are
depicted in Fig. 16.

B. SYSTEM DEMONSTRATION
The proposed ScalpEye system was successfully applied to
scalp healthcare for scalp hair inspection and diagnosis by
two cooperating hairdressing companies (HairING Health
ChainGroup, Taiwan, andMilan FashionHair Group, Tainan,
Taiwan).

Fig. 17 shows some screenshots of themobile device app of
the proposed ScalpEye system. Fig. 17(a) shows the member

(customer) login screen. Fig. 17(b) shows the customer man-
agement list. Fig. 17(c) shows the real-time scalp hair micro-
scopic imaging capture screen; based on this view, the image
is captured by the portable scalp hair imagingmicroscope and
transmitted to the mobile device app. Fig. 17(d) shows the
scalp hair diagnosis process that performs severity scoring
for the four common scalp hair symptoms. Fig. 17(e) shows
the selected treatment before scalp hair care procedures.
Fig. 17(f) shows the appointment times after the scalp hair
care procedures.

Fig. 18 demonstrates a real application case of scalp hair
inspection and diagnosis. As shown, the proposed Scalp-
Eye system has been successfully adopted for scalp hair
healthcare in the hairdressing company in Taiwan. The pro-
posed ScalpEye system saves hairdressing companies consid-
erable time and costs compared to continuously training hair-
care workers. Furthermore, the scalp hair diagnosis results
are standardized for consistency and do not vary between
individuals.

V. CONCLUSION
In this article, a deep learning-based scalp hair inspection
and diagnosis system, named ScalpEye, is proposed for use
in scalp healthcare. The proposed system is composed of
a portable scalp hair imaging microscope, a mobile device
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app, a cloud-based AI training server, and a cloud-based
management platform.

The proposed ScalpEye currently supports the inspec-
tion and diagnosis of four common scalp hair symptoms
(dandruff, folliculitis, hair loss, and oily hair). We imple-
mented and compared three deep learning models. The
experimental results showed that the Faster R-CNN Incep-
tion_ResNet_v2_Atrous model yields better recognition
results in a reasonable processing time.

Based on the experimental evaluation, the Faster R-CNN
Inception_ResNet_v2_Atrousmodel was selected as the deep
learning training model and applied to inspect and diagnose
the four common scalp hair symptoms in the proposed Scalp-
Eye system. The average precision (AP) when diagnosing the
four common scalp hair symptoms with the proposed Scalp-
Eye system ranges from 97.41% to 99.09%. The proposed
ScalpEye systemwas evaluated by two cooperating hairdress-
ing companies (HairING Health Chain Group, Taiwan, and
Milan Fashion Hair Group, Tainan, Taiwan) to assist in scalp
hair inspection and diagnosis.

In future works, we plan to increase the number of samples
to enhance the accuracy of the deep learning techniques.
Moreover, we also plan to add more scalp hair symptoms to
the ScalpEye system.

ACKNOWLEDGMENT
The authors would like to thank the HairING Health Chain
Group, Taiwan, for providing the scalp photographs used as
training data in this work. This article was presented in part
at the IEEE GCCE, Nara, Japan, in 2018 [2], and in part at
the IEEE LifeTech, Kyoto, Japan, in 2020, published in the
IEEE Proceedings.

REFERENCES
[1] R. Rajput, ‘‘Understanding hair loss due to air pollution and the approach

to management,’’ Hair: Therapy Transplantation, vol. 5, no. 1, pp. 1–5,
2015.

[2] J.-P. Su, L.-B. Chen, C.-H. Hsu, W.-C. Wang, C.-C. Kuo, W.-J. Chang,
W.-W. Hu, and D.-H. Lee, ‘‘An intelligent scalp inspection and diagnosis
system for caring hairy scalp health,’’ in Proc. IEEE 7th Global Conf.
Consum. Electron. (GCCE), Nara, Japan, Oct. 2018, pp. 507–508.

[3] L. Misery, N. Rahhali, M. Ambonati, D. Black, C. Saint-Martory,
A.-M. Schmitt, and C. Taieb, ‘‘Evaluation of sensitive scalp severity and
symptomatology by using a new score,’’ J. Eur. Acad. Dermatol. Venereol.,
vol. 25, no. 11, pp. 1295–1298, Nov. 2011.

[4] L. Misery, N. Rahhali, A. Duhamel, and C. Taieb, ‘‘Epidemiology of dan-
druff, scalp pruritus and associated symptoms,’’ Acta Dermato Venereol.,
vol. 93, no. 1, pp. 80–81, 2013.

[5] H. B. Allen and P. J. Honig, ‘‘Scaling scalp diseases in children,’’ Clin.
Pediatrics, vol. 22, no. 5, pp. 374–377, May 1983.

[6] A. Gemmeke and U. Wollina, ‘‘Folliculitis decalvans of the scalp:
Response to triple therapy with isotretinoin, clindamycin, and pred-
nisolone,’’ Acta Dermatovenerol Alp Pannonica Adriat, vol. 15, no. 4,
pp. 184–186, Dec. 2006.

[7] Y. Takagi, H. Takatoku, H. Terazaki, T. Nakamura, K. Ishida, and
T. Kitahara, ‘‘The scalp has a lower stratum corneum function with a lower
sensory input than other areas of the skin evaluated by the electrical current
perception threshold,’’ Cosmetics, vol. 2, no. 4, pp. 384–393, Nov. 2015.

[8] P. Kharazmi, M. I. AlJasser, H. Lui, Z. J. Wang, and T. K. Lee, ‘‘Automated
detection and segmentation of vascular structures of skin lesions seen
in dermoscopy, with an application to basal cell carcinoma classifica-
tion,’’ IEEE J. Biomed. Health Informat., vol. 21, no. 6, pp. 1675–1684,
Nov. 2017.

[9] I. Gonzalez-Diaz, ‘‘DermaKNet: Incorporating the knowledge of derma-
tologists to convolutional neural networks for skin lesion diagnosis,’’ IEEE
J. Biomed. Health Informat., vol. 23, no. 2, pp. 547–559, Mar. 2019.

[10] Y. Gu, Z. Ge, C. P. Bonnington, and J. Zhou, ‘‘Progressive transfer learning
and adversarial domain adaptation for cross-domain skin disease classifi-
cation,’’ IEEE J. Biomed. Health Informat., vol. 24, no. 5, pp. 1379–1393,
May 2020.

[11] M. Q. Khan, A. Hussain, S. U. Rehman, U. Khan, M. Maqsood,
K. Mehmood, and M. A. Khan, ‘‘Classification of melanoma and nevus
in digital images for diagnosis of skin cancer,’’ IEEE Access, vol. 7,
pp. 90132–90144, 2019.

[12] Y. Gao and R. Zoughi, ‘‘Millimeter wave reflectometry and imaging for
noninvasive diagnosis of skin burn injuries,’’ IEEE Trans. Instrum. Meas.,
vol. 66, no. 1, pp. 77–84, Jan. 2017.

[13] F. Topfer, L. Emtestam, and J. Oberhammer, ‘‘Long-term monitoring
of skin recovery by micromachined microwave near-field probe,’’ IEEE
Microw. Wireless Compon. Lett., vol. 27, no. 6, pp. 605–607, Jun. 2017.

[14] F. Navarro, M. Escudero-Vinolo, and J. Bescos, ‘‘Accurate segmentation
and registration of skin lesion images to evaluate lesion change,’’ IEEE
J. Biomed. Health Informat., vol. 23, no. 2, pp. 501–508, Mar. 2019.

[15] W. Liu, D. Jia, J. Zhao, H. Zhang, T. Liu, Y. Zhang, and Y. Sun, ‘‘An optical
fiber-based data-driven method for human skin temperature 3-D map-
ping,’’ IEEE J. Biomed. Health Informat., vol. 23, no. 3, pp. 1141–1150,
May 2019.

[16] F. Lacarrubba, G. Micali, and A. Tosti, ‘‘Scalp dermoscopy or tri-
choscopy,’’ in Alopecias-Practical Evaluation and Management, Cur-
rent Problems Dermatology, vol. 47. Basel, Switzerland: Karger, 2015,
pp. 21–32.

[17] L. Rudnicka, A. Rakowska,M. Kurzeja, andM. Olszewska, ‘‘Hair shafts in
trichoscopy: Clues for diagnosis of hair and scalp diseases,’’Dermatologic
Clinics, vol. 31, no. 4, pp. 695–708, Oct. 2013.

[18] H. Kim, W. Kim, J. Rew, S. Rho, J. Park, and E. Hwang, ‘‘Evaluation
of hair and scalp condition based on microscopy image analysis,’’ in
Proc. Int. Conf. Platform Technol. Service (PlatCon), Busan, South Korea,
Feb. 2017, pp. 1–4.

[19] H.-C. Shih, ‘‘An unsupervised hair segmentation and counting system
in microscopy images,’’ IEEE Sensors J., vol. 15, no. 6, pp. 3565–3572,
Jun. 2015.

[20] H.-C. Shih and B.-S. Lin, ‘‘Hair segmentation and counting algorithms in
microscopy image,’’ in Proc. IEEE Int. Conf. Consum. Electron. (ICCE),
Las Vegas, NV, USA, Jan. 2015, pp. 612–613.

[21] H. Benhabiles, K. Hammoudi, Z. Yang, F. Windal, M. Melkemi,
F. Dornaika, and I. Arganda-Carreras, ‘‘Deep learning based detection of
hair loss levels from facial images,’’ in Proc. 9th Int. Conf. Image Process.
Theory, Tools Appl. (IPTA), Istanbul, Turkey, Nov. 2019, pp. 1–6.

[22] S.-H. Lee and C.-S. Yang, ‘‘An intelligent hair and scalp analysis system
using camera sensors and norwood-hamilton model,’’ Int. J. Innov. Com-
put. Inf. Control, vol. 14, no. 2, pp. 503–518, 2018.

[23] W.-C. Wang, L.-B. Chen, andW.-J. Chang, ‘‘Development and experimen-
tal evaluation of machine-learning techniques for an intelligent hairy scalp
detection system,’’ Appl. Sci., vol. 8, no. 6, p. 853, May 2018.

[24] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, ‘‘Return of the
devil in the details: Delving deep into convolutional nets,’’ in Proc. Brit.
Mach. Vis. Conf., Nottingham, U.K., 2014, pp. 1–12.

[25] W.-S. Huang, B.-K. Hong, W.-H. Cheng, S.-W. Sun, and K.-L. Hua, ‘‘A
cloud-based intelligent skin and scalp analysis system,’’ in Proc. IEEE Vis.
Commun. Image Process. (VCIP), Taichung, Taiwan, Dec. 2018, pp. 1–5.

[26] W.-J. Chang, M.-C. Chen, L.-B. Chen, Y.-C. Chiu, C.-H. Hsu, Y.-K. Ou,
and Q. Chen, ‘‘A mobile device-based hairy scalp diagnosis system using
deep learning techniques,’’ in Proc. IEEE 2nd Global Conf. Life Sci.
Technol. (LifeTech), Mar. 2020, pp. 145–146.

[27] Pkulzc, V. Rathod, andN.Wu. TensorflowDetectionModel Zoo. Accessed:
Jun. 26, 2019. [Online]. Available: https://github.com/tensorflow/models/
blob/master/research/object_detection/g3doc/detection_model_zoo.md

[28] W.-J. Chang, L.-B. Chen, C.-H. Hsu, C.-P. Lin, and T.-C. Yang, ‘‘A
deep learning-based intelligent medicine recognition system for chronic
patients,’’ IEEE Access, vol. 7, pp. 44441–44458, 2019.

[29] W.-J. Chang, L.-B. Chen, and K.-Y. Su, ‘‘DeepCrash: A deep learning-
based Internet of Vehicles system for head-on and single-vehicle acci-
dent detection with emergency notification,’’ IEEE Access, vol. 7,
pp. 148163–148175, 2019.

[30] W.-J. Chang, L.-B. Chen, C.-H. Hsu, J.-H. Chen, T.-C. Yang, and
C.-P. Lin, ‘‘MedGlasses: A wearable Smart-Glasses-Based drug pill recog-
nition system using deep learning for visually impaired chronic patients,’’
IEEE Access, vol. 8, pp. 17013–17024, 2020.

134836 VOLUME 8, 2020



W.-J. Chang et al.: ScalpEye: Deep Learning-Based Scalp Hair Inspection and Diagnosis System

[31] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-
time object detection with region proposal networks,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.

[32] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ in Proc. Int. Conf. Mach.
Learn., vol. 37. Jul. 2015, pp. 448–456.

[33] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, ‘‘SSD: Single shot multibox detector,’’ in Proc. Eur. Conf.
Comput. Vis. (ECCV), Sep. 2016, pp. 21–37.

[34] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, ‘‘Inception-v4,
inception-resnet and the impact of residual connections on learning,’’ in
Proc. 31st AAAI Conf. Artif. Intell. (AAAI), Feb. 2017, pp. 4278–4284.

[35] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
‘‘DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2018.

[36] D. Zeiler and R. Fergus, ‘‘Visualizing and understanding convolutional
networks,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2014, pp. 818–833.

[37] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks
for large-scale image recognition,’’ in Proc. Int. Conf. Learn. Repre-
sent. (ICLR), 2015, pp. 1–14.

[38] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

WAN-JUNG CHANG (Member, IEEE) received
the B.S. degree in electronic engineering from the
Southern Taiwan University of Science and Tech-
nology, Tainan, Taiwan, in 2000, the M.S. degree
in computer science and information engineering
from the National Taipei University of Technol-
ogy, Taipei, Taiwan, in 2003, and the Ph.D. degree
in electrical engineering from National Cheng
Kung University, Tainan, in 2008. He is currently
an Associate Professor with the Department of

Electronic Engineering, Southern Taiwan University of Science and Tech-
nology, where he is also the Director of the Artificial Intelligence Over the
Internet of Things Applied Research Center (AIoT Center) and the Inter-
net of Things Laboratory (IoT Laboratory). His research interests include
cloud/IoT/AIoT systems and applications, protocols for heterogeneous net-
works, and WSN/high-speed network design and analysis. He received the
Best Paper Award from the IEEE ChinaCom, in 2009, the Best Paper Award
from ICCPE, in 2016, the First Prize of the Excellent Demo Award from
the IEEE GCCE, from 2016 to 2018, the First Prize Best Paper Award from
the IEEE ICASI, in 2017, and the Outstanding Paper Award from the IEEE
LifeTech, in 2020.

LIANG-BI CHEN (Senior Member, IEEE)
received the B.S. and M.S. degrees in electronic
engineering from the National Kaohsiung Uni-
versity of Applied Sciences, Kaohsiung, Taiwan,
in 2001 and 2003, respectively, the Ph.D. degree in
computer science and engineering from National
Sun Yat-sen University, Kaohsiung, in 2010, and
the Ph.D. degree in electronic engineering from
the Southern Taiwan University of Science and
Technology, Tainan, Taiwan, in 2019. In 2008,

he held an Internship with the Department of Computer Science, National
University of Singapore, Singapore. He was a Visiting Researcher with the
Department of Computer Science, University of California at Irvine, Irvine,
CA, USA, from 2008 to 2009. He was also with the Department of Computer
Science and Engineering,WasedaUniversity, Tokyo, Japan, in 2010. In 2012,
he joined BXB Electronics Company Ltd., Kaohsiung, as a Research and
Development Engineer, where he was an Executive Assistant to the Vice
President, from 2013 to 2016. In 2016, he joined the Southern Taiwan
University of Science and Technology, as an Assistant Research Fellow
and an Adjunct Assistant Professor. In 2020, he joined the Department of
Computer Science and Information Engineering, National PenghuUniversity

of Science and Technology, Penghu, Taiwan, as an Assistant Professor.
He is a member of IEICE and PMI. He was also a TPC Member, an IPC
Member, and a Reviewer of many the IEEE/ACM international confer-
ences and journals. He received the Honorable Mention Award from the
IEEE ICAAI, in 2016, the Second Prize Excellent Poster Award from the
IEEE GCCE, in 2016, the First Prize Excellent Demo Award from
the IEEE GCCE, from 2016 to 2018, the First Prize Best Paper Award from
the IEEE ICASI, in 2017, and the Outstanding Paper Award from the IEEE
LifeTech, in 2020. He was a recipient of the 2014 IEEE Education Society
Student Leadership Award, the Publons Peer Review Award, from 2018 to
2019, and the 2019 Young Scholar Potential Elite Award from the National
Central Library, Taiwan. Since 2019, he has serving as an Associate Editor
for IEEE ACCESS and a Guest Editor for Energies and Applied Sciences
Journals.

MING-CHE CHEN (Member, IEEE) received
the B.S. and M.S. degrees in computer sci-
ence from Tunghai University, Taichung,
Taiwan, in 2003 and 2006, respectively, and the
Ph.D. degree from the Institute of Computer
and Communication Engineering (CEE), National
Cheng Kung University (NCKU), Tainan, Taiwan,
in 2014. He was an Engineer conducting research
and development on the industrial Internet of
Things (IoT) with the Information and Commu-

nications Research Laboratories (ICRL), Industrial Technology Research
Institute (ITRI), Southern Taiwan Innovation and Research Park, Ministry
of Economic Affairs (MOEA), Taiwan, since 2014. In May 2018, he joined
the Department of Electronic Engineering, Southern Taiwan University of
Science and Technology (STUST), Tainan, as an Assistant Research Fellow
and an Adjunct Assistant Professor. His current research interests include
artificial intelligence over the Internet of Things (AIoT), the industrial
Internet of Things (IIoT), cloud-based application system design, wireless
sensor networks, and wireless networks. He received the Outstanding Paper
Award from the IEEE LifeTech, in 2020.

YI-CHAN CHIU received the B.S. degree in
electronic engineering from the Southern Taiwan
University of Science and Technology, Tainan,
Taiwan, in 2017, where he is currently pursuing
the M.S. degree in electronic engineering. He is
also an Exchange Graduate Student with the Elec-
trical Engineering and Electronics Program, Grad-
uate School of Engineering, Kogakuin University
of Technology and Engineering (KUTE), Tokyo,
Japan. His current research interests include the

IoT and deep learning applications for diagnosing scalp hair symptoms.
He received the Outstanding Paper Award from the IEEE LifeTech, in 2020.

JIAN-YU LIN received the B.S. degree in elec-
tronic engineering from the Southern Taiwan
University of Science and Technology, Tainan,
Taiwan, in 2018, where he is currently pursuing
the M.S. degree in electronic engineering. His
current research interests include the IoT-based
LP-WAN communications protocol design,
cloud-based management platform development,
web-based programming, and mobile device app
development.

VOLUME 8, 2020 134837


