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ABSTRACT Sinkholes can cause severe property damage and threaten public safety. Therefore, the early
prediction and detection of sinkholes are important measures for protecting both citizenry and infrastructure.
Although many studies have made significant progress on sinkhole detection, challenges remain, including
long-term data collection and the discovery of lightweight machine learning models that can be deployed
to analyze sinkhole images. In this paper, we propose a method that takes advantage of the recent success
of deep learning models to detect and track sinkholes via video streaming. Our system consists of two main
stages: sinkhole detection with a cascaded convolutional neural network and sinkhole tracking with a data
association algorithm. The experimental results show that a sinkhole can be tracked in real time using the
dataset [1]. Furthermore, we implement the system on a Jetson TX2 embedded board (weighing 85 grams),
which can operate at 13.2 FPS (frames per second). With an average IoU (intersection over union) score
of 88% for sinkhole tracking and an accuracy of 97,6% for sinkhole detection on a 45-minute dataset, this
study demonstrates the feasibility of sinkhole detection and tracking using IR images and their suitability
for practical applications.

INDEX TERMS Sinkhole detection, convolutional neural network, imagenet, embedded system, data

association.

I. INTRODUCTION

A sinkhole can be characterized as a depression or hole in
the ground caused by some form of surface layer degra-
dation. The majority of sinkholes are the consequence of
karst processes [2]. With the development of underground
revelation procedures, the four main sources of sinkholes
have been shown to be disintegration, cover-subsidence,
cover-collapse, and anthropogenic impacts. The occurrence
of human-induced sinkholes has been rapidly increasing
because of large amounts of construction in urban regions.
As recently reported in Vietnam, an increasing number of
human-induced sinkholes have been appearing in both Ha
Noi and Ho Chi Minh cities, two of the largest cities in Viet-
nam, causing a great loss of lives and wealth. In some cases,
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sinkholes have been used as disposal sites for various forms
of waste, which has led to serious groundwater pollution and
negative effects on the health and quality of life of local peo-
ple. Therefore, the early warning and detection of sinkholes
are emerging issues that must be addressed by governments
and social organizations to improve the quality of human life
where human-induced sinkholes occur frequently.

Although sinkholes can affect the quality of human life
and economic development, only a few studies have been
conducted on sinkhole prediction and management. In the
literature, sinkhole identification can be categorized into
two main groups: traditional non-camera-based methods and
camera-based methods. In the first group, these methods for
detecting sinkholes have utilized various kinds of special-
ized equipment, such as cone penetrometer testing (CPT),
ground penetrating radar (GPR), electrical resistivity tomog-
raphy (ERT), and airborne lasers (LiDAR). These methods
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can achieve high accuracy by using expensive specialized
equipment. However, the drawback of these methods is that
they are not able to monitor a large area, which is a manda-
tory requirement in a wide range of applications. The sec-
ond group takes advantage of camera systems to monitor
large areas and advanced image processing techniques to
detect sinkholes. The images captured from the cameras are
processed to obtain the results automatically without any
human operations. With the advancements in camera hard-
ware technology, building these surveillance systems has
become cheaper and more practical. In fact, sinkholes often
occur outside areas monitored by conventional camera sys-
tems. There is a highly effective alternative solution that uses
a camera on an unmanned aerial vehicle (UAV) device to
perform surveillance. The use of UAVs has several benefits,
including a flexible monitoring area, automatic operation,
and lower cost than fixed camera networks. Furthermore,
an image processing algorithm can be implemented in an
embedded board mounted on a UAV to obtain immediate
results to control the operation of the UAV. The sinkhole
positions and their respective images can be transferred to
a ground station and drawn on an online map. However,
traditional RGB cameras can experience difficulties in bad
weather and lightning conditions. A thermal camera can be
an additional source of information to traditional cameras.
The benefit of using thermal cameras is that they can work
in various kinds of weather and lightning conditions. In par-
ticular, thermal cameras can be useful when there is a high
temperature difference at the monitored object.

This paper proposes a method to process infrared images
from thermal cameras using a multilevel convolutional neural
network (CNN). The proposed method consists of two CNN
models and a rule-based filter in the middle. When a sinkhole
position is detected, a data association algorithm is imple-
mented to track the sinkhole object in real time. The remain-
der of this paper is organized as follows. Section 2 reviews
the related works. Section 3 describes the proposed system.
Section 4 reports on experimental results. Future research
directions and a discussion are provided in Section 5.

Il. RELATED WORK

A. NON-VISION BASED- METHODS

The most conventional approach for identifying a sinkhole
is to use blind drilling in areas where sinkholes may appear.
However, this naive method is usually ineffective; in addition,
there are risks of negatively impacting the environment and
exacerbating sinkhole development [3]. Another method for
identifying sinkholes uses cone penetrometer testing (CPT),
which utilizes the geotechnical engineering properties of
soils and delineates soil stratigraphy to predict a sinkhole.
In practice, CPT is relatively quick and simple to implement;
however, it could make the sinkhole even worse. Ground pen-
etrating radar (GPR) is currently the most common method
used to investigate potential sinkhole activity. GPR sends a
radar signal into the ground and analyzes the received signal.
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The drawback of this method is that the signal can be scat-
tered because of the extremely heterogeneous conditions of
the underground layers. Similar to the GPR-based approach,
seismic waves can also be used to analyze the probability
of a sinkhole appearing in a specific area, as reported in
[4]. Electrical resistivity tomography (ERT) and dynamic
penetration super-heavy (DPSH) measurements are also used
to determine the location of sinkholes in local municipality
areas [4].

Airborne laser scanning technology [5] is primarily per-
ceived as a way to collect detailed 3D information about a
surface and the objects located on it. The 3D data contain
information about surface features and sinkholes, which are
usually embedded in the terrain and form distinct shape tran-
sitions from their surroundings. The author of [6] developed
a LiDAR-based detection system to detect sinkholes. The
model first creates a digital elevation model (DEM), fills
the depressions in the DEM, extracts the depressions with
DEM differences, and converts the depressions to a poly-
gon shape file. The system in [7] utilized airborne LiDAR
data in combination with context information to improve
the accuracy of sinkhole detection. Reference [8] proposed
a conceptual framework for detecting sinkholes by airborne
LiDAR that consists of three steps: data prepossessing, pre-
liminary sinkhole map development, and final sinkhole map
development. Airborne LiDAR can provide a solution to
identify subsidence areas by using ground object temperature,
which cannot be determined using traditional photography.
However, to collect the data, flights over several locations are
required, which is time consuming and expensive. In addition,
the quality of the atmosphere also affects the results of this
method.

B. VISION BASED- METHODS

In recent years, deep learning [9] has led to breakthroughs in
a wide range of applications. There have been many kinds of
deep learning models, such as convolutional neural networks
(CNNs), deep belief networks (DBNs), and deep recurrent
networks (DRNs). The author of [10] reviewed these mod-
els applied to computer vision problems. CNN-based mod-
els show the best performance because of the suitability of
an image as input data. CNN architectures are designed to
account for the 2-dimensional structure of an input image,
which may be the main reason for the state-of-the-art perfor-
mance in this domain. Furthermore, CNN architectures have
a parameter sharing strategy and pooling layer to reduce the
training time. In contrast, a DBN architecture usually expe-
riences high computational cost associated with the training
process, and the further optimization of the network based on
maximum likelihood is unclear. More importantly, the DBN
architecture is not designed for a 2-dimensional structure,
which may lead to decreased network performance when
training with images. DRN architectures has been proposed to
solve different kinds of problems, such as language modeling,
machine translation, and time-series data. In the literature,
CNN-based architectures have been applied successfully in
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a wide range of computer vision applications, including gold
immune chromatographic strip (GICS) image segmentation
in the medical domain [11], [12], salient object detection
[13], [14], facial expression recognition [15]-[18], image
retrieval [19], [20] and video surveillance such as smoke [21],
[22] and fire [23] detection, anomaly detection [24], [25]
and activity recognition [26]. Among these video surveil-
lance system applications, anomaly detection methods have
attracted attention from the research community because of
their importance in high-security monitoring systems. How-
ever, anomaly detection and recognition using modern deep
learning have encountered difficulties in lacking training data
in anomalous situations. The authors of [24] proposed an
incremental spatiotemporal learner (ISTL) to address the
challenges and limitations of traditional anomaly detectors.
Their ISTL is an unsupervised deep learning model that
utilizes active learning with fuzzy aggregation. This approach
can help their model evolve when additional data are fed to
the model over time. In [25], the authors take advantage of
deep model transfer learning to train their model to recognize
anomalous situations with less training data.

Remote sensing images captured by satellites or UAVs
precisely meet the demands for gathering an overview of
ground object locations and situations; on the other hand,
because of overhead camera angles, the problems of object
size and object occlusion can be avoided. Furthermore, UAVs
can travel to monitor regions that are difficult for humans to
reach. This increases the efficiency of drone use in practical
applications. In the current literature, it is possible to find
many studies focusing on the applications of UAV's for mon-
itoring ground-based objects. To track and detect obstacles
for UAV navigation, the authors of [27] proposed a method
of real-time object localization and tracking from monocular
image sequences. Their method consists of two main stages:
a detection stage with a saliency map computed via back-
ground connectivity and the tracking stage with a Kalman
filter. The authors of [28] proposed a method to detect and
count ground vehicles in high-resolution aerial images. Their
method utilizes a convolutional neural network to regress a
vehicle spatial density map across aerial images. UAVs have
also been used to detect multiple objects. The authors of
[29] proposed an approach with a CNN and the Hungarian
algorithm (HA) to track multiple humans from drone images.
They implement a faster RCNN for object localization at the
first stage, after which they solve the data association problem
in visual tracking by the HA.

Another important use of drone images is monitoring land
use in smart agriculture applications. The authors of [30]
proposed a system to predict the harvest yield from low-
altitude UAV images. They implement an image processing
algorithm that combines K-means clustering with a graph
cut to segment rice grain areas. The graph cut algorithm
was applied to extract the foreground and background of the
images. Then, the foreground images were converted to the
LAB color space, and K-means clustering was used to label
the pixels based on color information. After that, the area
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of the rice grains in the images was calculated from the
clustered images. UAV-based hyperspectral image processing
was proposed to monitor land use in agricultural applications
in [31]. The proposed solution is based on a commercial DJI
Matrice 600 drone and a Specim FX10 hyperspectral camera.
Their system consists of an embedded board with advanced
processing capabilities that is mounted on the drone to control
its trajectory, manage the data acquisition, and allow on-board
processing, such as the evaluation of different vegetation
indices.

Among the abovementioned surveillance systems, UAVs
are equipped with a traditional imaging sensor platform that
can output an RGB image. This kind of image can suffer
from bad weather and illumination changes between day and
night. However, thermal images have a valuable advantage
over traditional RGB images. Thermal images do not depend
on illumination, and the output is the projection of thermal
sensors of the heat emissions of the objects. This unique
trait gives rise to effective object segmentation applications.
Ultimately, surveillance measurements using UAVs improve
significantly with thermal cameras. Reference [1] proposed
a system to take advantage of a thermal camera to detect
a sinkhole position from a UAV. Their system includes two
main parts. The first part detects the candidate regions by
analyzing the cold spots in the thermal images based on the
fact that a sinkhole usually has a lower temperature than
the surrounding area. The second part classifies the can-
didate region as a real sinkhole by applying a light CNN
and boosted random forest with handcrafted features. The
authors successfully applied the proposed ensemble method
to sinkhole data of various sizes and depths under different
environmental conditions. In our previous work [32], a deep
learning transfer approach was proposed to solve the sinkhole
detection problem. We used a simple thresholding algorithm
to segment an input image and Resnet transfer learning [33]
to classify the segmented sinkhole candidate. Although that
work did achieve promising results in detecting sinkholes
from infrared images, the results were not generalized due to
the fixed threshold value of the proposed algorithm. In addi-
tion, the processing speed did not fulfill the real-time require-
ments due to the complexity of the Resnet architecture.
In addition, a solution to the problem of UAV surveillance
systems is to use successful deep learning-based detectors
such as two-stage detectors [34] and single-stage detectors
[35]-[38]. However, the accuracy of a single-stage detector
cannot be guaranteed in detecting small object sizes, while
the processing speed of a two-stage detector cannot achieve
the real-time requirement of the UAV context. Therefore, it is
difficult to apply these detectors directly to the problem of
UAV surveillance, especially the sinkhole detection problem
that this paper is trying to solve.

IlIl. PROPOSED METHOD

Our proposed method consists of two main stages: sinkhole
detection with a multileve]l CNN model and sinkhole tracking
using data association, as shown in Fig. 1. Our system can
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FIGURE 1. Flowchart of proposed method.

track multiple sinkholes in a single frame. For example,
in Fig. 1, two sinkholes occur in the (f — 1) frame. The
first stage of our proposed method is to detect all sinkholes
appearing in the current frame, which results in a set of the
bounding boxes for the association the sinkholes such as
Sinkhole 0 and Sinkhole 1. We have a set of bounding boxes
for every frame. The locations of all bounding boxes are the
inputs of the sinkhole tracking algorithm by data association
[40]. The main purpose of data association is to assign the
bounding boxes of the current frame (i.e., the ™ frame) to
their exact trajectory from the previous (r — 1) frames.
The tracklet means the trajectory of each sinkhole, which
is a chronological sequence consisting of multidimensional
locations of the sinkhole’s center point. The final output of
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the proposed system is tracklets associated with real-sinkhole
locations in the current frame. In the experiment, the occur-
rence of the sinkhole appears to be flickering due to the drone
camera’s moving speed and the noisy input image. We have
adopted a direction voting technique to address this issue
while tracking for more stable results.

A. SINKHOLE DETECTION BY A MULTILEVEL CNN MODEL
In our multilevel CNN model, as shown in Fig. 2, there are
two CNN models stacked together and a rule-based filter
in the middle. The purpose of this model is twofold. The
first CNN model is a UNET based semantic segmentation
architecture [41], which is used as a weak but high-speed clas-
sifier to eliminate easy-to-remove noise. The second CNN
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model is the MobileNet v3 architecture, which serves as a
strong classifier to distinguish between real sinkholes and
sinkhole candidates. The outputs of the first CNN model and
the rule-based filter are the sinkhole area and the associated
bounding box (a rectangle). Thereafter, we crop the original
image with the position of the bounding box to obtain original
grayscale sinkhole images, which are used as the training
data for the second CNN model. The second CNN model
is used to distinguish the sinkhole objects from the non-
sinkhole objects that the first CNN model could not identify
due to the lack of information in the binarization image.
An example of training data for the second CNN model is
shown in Fig. 5, where the first row shows the real sinkhole
objects, and the second row shows the non-sinkhole objects.
The motivation for adopting multilevel CNN is to increase
efficiency. In the literature, the single end-to-end CNN object
detection models still include two main parts: region proposal
and region classification. If the number of proposed regions
is too high, the model’s total speed will be slow. Therefore,
we use a CNN model to segment sinkhole candidates based on
contextual information from infrared images. The CNN seg-
mentation model significantly reduces the number of regions
that need to be classified in the following CNN model, which
accounts for classification jobs.

1) CNN LEVEL 1 BY MODIFIED UNET ARCHITECTURE
The UNET semantic segmentation model transforms the
input image into the binary images with white pixels for

Input Infrared
Image

CNN Level 1

|

Rule-based Filter

|

CNN Level 2

|

Detected Sinkhole
Image

FIGURE 2. Sinkhole detection pipeline.
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the foreground and black pixels for the background. The
UNET model was first applied successfully to segment med-
ical images and then widely applied to other problems such
as aerial image segmentation, vehicle segmentation, and
agriculture image segmentation. The UNET model can learn
hierarchical features and has a particularly competitive pro-
cessing speed. We build the model with fewer layers and
a smaller input image size than the original UNET model.
Compared to the medical image segmentation problem in
the original paper, our segmentation dataset looks much less
detailed; therefore, a smaller model with a smaller input
image size is sufficient to obtain the expected binary image.
As mentioned earlier, this CNN model is used as a weak
but fast classifier; thus, the goal of this model is to segment
all objects with high sinkhole probability that may include
a noisy object. The noisy object is addressed with the rule-
based filter and the second CNN model. Fig. 1 shows a
flowchart of our proposed method. The benefit of using
CNN-based binarization segmentation rather than traditional
binarization segmentation algorithms used in [1] is that the
accuracy does not depend on a hard threshold, and the accu-
racy improves greatly if more annotated data are fitted to the
model.

The CNN model is shown in Fig. 4, where the input
image size is 256x336. The model architecture consists of
three sections: the contraction, bottleneck, and expansion
sections. The contraction section comprises three contrac-
tion blocks. Each block receives an input that applies two
3x3 convolution layers followed by a 2x2 max pooling. The
number of feature maps after each block doubles so that the
architecture can learn the complex structures effectively. The
bridge layer mediates between the contraction layer and the
expansion layer. It uses two 3x3 CNN layers followed by a
2x2 up-convolution layer. Similar to the contraction layer,
the expansion layer also consists of three expansion blocks.
Each block passes the input to two 3 x3 CNN layers followed
by a 2x2 up-convolution layer. After each block, the number
of feature maps used by the convolutional layer is halved to
maintain symmetry.

A A

IAl+IBI-1AMBI IAMBI

FIGURE 3. Set operation illustration.

The Jaccard loss is chosen to train the model. The Jac-
card loss is often referred to as the intersection-over-union
score, which is a measure score commonly used in segmen-
tation models. Let A represent the ground truth image of
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segmentation, in which the sinkhole regions are manually
identified, and let B represent a system-generated image. The
Jaccard score is defined as:
|A N B|
J(A,B) = (1)
|Al +|B| — AN B|

Equation 1 is constructed based on set theory, where N
is the intersection operator as shown in Fig. 3. The Jaccard
index approaches 1 when the intersection area approaches the
maximum value, while the Jaccard index approaches 0 when
the intersection area approaches 0. This behavior of the Jac-
card index is suitable for a loss function which is presented in
equation 3. This Jaccard score is then taken as an average over
the entire set of pixels producing a value between 0 and 1.
These set operations are, however, not differentiable. To apply
these set operations in their true form, the pixel values in
images A and B need to be absolute 1s and Os, respectively.
However, while the ground truth image (A) contains these
absolute values, the system-generated image (B) contains a
float value between O and 1 due to the activation function
in the final upsampling layer of the network. Therefore,
an approximation of the Jaccard score by the probabilities can
be used. Then, the intersection operator (N) is replaced by the
elementwise multiplication (*) of images A and B.

AxB
JAB) = ——mm—— 2)
A+B—-(AxB)

After reducing the Jaccard score from the set operations
to arithmetic operations, the formula is differentiable. As a
loss function, the error needs to approach 0 when the result
improves as mentioned earlier. To achieve this result, the loss
function is defined in terms of the Jaccard score as follows:

AxB
T A+ B—(AxB) &)
+B—(A*xB)

Let #;; € {0, 1} be the actual class of pixels at {7, j} with
t; j = 1 for sinkholes and #; ; = 0 for background. In addition,
i j represents an estimated posterior probability that the pixel
at {i, j} belongs to the sinkhole object. Therefore, #; ; accounts
for ground truth pixels, while p; ; accounts for the predicted
result of the pixels. The elementwise multiplication between
A and B can become the sum of #;; and p;; of each pixel.
We can rewrite the loss function as follows:

>_(tijpij)
l’./
1- 2 2
Z i+ ZP,’J - Z(ti,jpi,j)
ij ij ij

From this point, the loss function is differentiable. The
derivative of the loss function can be represented by the
following formula:

0 17+ Pt — Y tpi ]
oLy ij i.j ij
opi,j 6+ 207 — X pi )P
ij ij ij
2pij — P2 (i pij)]
ij

+
[+ P} — X pi )P
L] LJ LJ

Ly=1-JA,B)=1

Ly = “

&)
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These derivatives can be efficiently integrated into back-
propagation during the network training procedure.

Algorithm 1 Rule-Based Filter
Connected component initialization
while CC; € Connected Component Set do
if w; or h; < t; then
| remove CC;
end
if w; or h; > 1, then
| remove CC;
end
if Z_,l < t3 then
| remove CC;
end
if Z—; > 14 then
| remove CC;
end
if shape of CC; is not convex hull then
| remove CC;
end
if s5; < t5 then
| remove CC;
end
if s; > 1 then
| remove CC;
end
if the variance of pixel value in i
is larger than t7 then
| remove CC;
end

" connected component

end

2) RULE-BASED FILTER

As mentioned above, our proposed system is built based on a
cascade scheme, which stacks weak but fast filters during the
early stages. Therefore, the output of the UNET-like semantic
segmentation model also contains a large amount of noise
due to oversegmentation, where sinkhole-like objects are also
segmented to cover all real sinkhole objects in the image.
The rule-based filter is used as a post-processing step for
the model [43]. Without the rule-based filter, all connected
components from UNET-like models will be the input of
the second CNN model for classification, which causes abun-
dant computation. The rule-based filter is a lightweight filter
that effectively eliminates unwanted connected component
noises. As a result, only a few potential sinkhole candidates
are passed to the second CNN model, which reduces the clas-
sification computation. In the rule-based filter, morphological
operations such as opening, closing, dilating, and eroding,
are applied to remove the noise that occurs on the edges
of the segmented regions. After removing the noise with
morphological operations, we apply a connected component
analysis to remove the other sinkhole-like objects such as
trees, buildings, and cars. Each block of white pixels in the
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e

a2xa2

322

FIGURE 4. Modified UNET Architecture.

segmented image is considered to be connected components
that are passed through the rule-based filter. CC; denotes the
i connected component in the image, w; is the width of CC;,
h; is the height of CC;, and s; is the area of CC;, which is
the number of white pixels in the i connected component.
The rule-based filter is described by Algorithm 1. In addition,
the flicker energy classification [44] is also considered to
remove noise in the segmented images. The set of thresholds
that have been used in the heuristic filter are chosen empiri-
cally. These are (#1, 2, 3, ta, 15, 16, t7) = (5, 100, 0.2, 5, 75,
1000, 15).

3) SINKHOLE CLASSIFICATION BY CNN TRANSFER
LEARNING

With the recent developments in computational technology,
deep learning methods have exhibited state-of-the-art per-
formance in solving image classification problems. In this
paper, we have implemented a CNN classifier for distinguish-
ing real sinkholes from other objects. Image classification
using CNN transfer learning includes two phases: training
and prediction. In the training phase, the CNN model is
trained by using a known dataset of images labeled with their
corresponding types. Once the models are learned, they are
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Dropout, Conv 3x3, ReLU

128 128
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Copy
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used to predict the object types of new images. Because of
the numerous parameters, a large dataset and enormous com-
putational resources are required to train CNN models. This
leads to difficulties when training with a deficient dataset.
Instead, a pretrained model can be transferred to work on the
categories that do not belong to the original dataset. In this
paper, the transfer learning approach has been used to train a
CNN sinkhole classification model.

After the celebrated success of AlexNet [45] at the
LSVRC2012 classification contest [46], many CNN models
with increased accuracy for image classification have been
proposed. However, most of these models include hundreds
of millions of parameters, making their real-time application
in devices with limited resources difficult. Among these mod-
els, MobileNet [47] is a model with fewer parameters that still
maintains competitive accuracy compared to other state-of-
the-art models. The MobileNet model can run on a mobile
device in real time. We use the MobileNet v3 [48] model
that has been trained with the ImageNet dataset to perform
transfer learning. The use of this MobileNet v3 model ensures
that the entire sinkhole detection system can operate in real
time. The MobileNet-small model is used, which has one con-
volutional layer, 11 bottleneck layers, one convolutional layer
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FIGURE 5. MobileNet transfer learning scenario.

with a global pooling layer, and two fully connected layers.
For the purpose of classifying sinkhole regions, we replaced
the last 3 layers (one pooling layer, two fully connected lay-
ers) of the base model with several layers: one pooling layer,
two fully connected layers, and one softmax layer. These
layers are trained from scratch by using the back-propagation
fine-tuning approach with our dataset. The training scenario
and MobileNet v3 model are illustrated in Fig. 5.

B. SINKHOLE TRACKING BY HA ALGORITHM

After detecting and recognizing a sinkhole using the CNN
classifier, the challenge with tracking is to assign a sinkhole
to respective tracklets, which are the trajectories of objects in
consecutive frames. To overcome this challenge, we imple-
ment the Hungarian algorithm (HA) for data association,
which is detailed below. Assuming that we have N detected
sinkholes in a video frame, the challenge is how to identify the
tracklet to which each detected sinkhole belongs. In addition,
let s;; be the score between the i sinkhole and the data
distribution of the j* tracklet. The score is calculated by
using correlations between images of detected sinkholes and
images of sinkholes in the tracklet. It is obvious that the
correlation score is high, and thus, the probability that the
sinkhole belongs to the respective tracklet is high. To use the

HA to solve the problem, we obtain the distance d;; = 5
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In addition, x;; defines the relation of the i sinkhole and the
j™ tracklet, i.e., x;j = 1if and only if the i sinkhole is a part
of the j” tracklet; otherwise, x;j = 0. Therefore, Zjvzl xij =
1 or one detected sinkhole belongs to only one tracklet, where
i =1, N, and N is also the number of tracklets. The HA is one
method used for solving this kind of optimization problem.
It minimizes the total cost function, which is addressed in
(1). The total cost of the Hungarian algorithm assignment
problem is given in the following equation:

N N
d=Y"Y dyx;
i=1 j=1

The distance matrix of the assignment problem is given as
follows:

(6)

di  din  di3 din
dy  dn  dy dan

i ) ) @)
dvi  dy2  dy3 dnn

In the first step, the HA identifies the minimum distance
between each sinkhole and the tracklets; then, it subtracts all
the weights d;; from the respective minimum weight.

dij = dij — min{d;j},j =1, N )
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FIGURE 6. Segmented examples using UNET.

FIGURE 7. Examples of sinkholes (top) and non-sinkholes (bottom).

Similarly, the HA subtracts the smallest distance in each
column from all entries in the same column of the distance
matrix.

After these steps, the distance matrix D contains zero
values. In the third step, let n be the minimum number of
horizontal/vertical lines that cover all the zero entries of D.
If n = N, then the assignment x;; can be made based on the
zero values in the distance matrix D. Otherwise, we need to
repeat the second step and the third step until the condition in
the third step is satisfied.

The dataset that we collected is the video captured from the
drone. Therefore, the sinkhole and other objects are station-
ary; only the camera was moving, and the video was not sta-
ble. Sometimes, the segmentation and classification step fails
to detect the real sinkhole in the image. In that case, we use
the previous sinkhole location in the previous frame with a
small translating distance to place into the current frame. The
translation distance is then calculated based on the optical
flow algorithm. This translation correction is implemented
by assuming that all sinkholes in the video frame should be
moving in the same direction. This approach helps the system
overcome the problem of missing sinkholes in the detection
and recognition process.
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C. DATASETS

We use the video datasets provided by [1] for our experi-
ments. The videos are collected using a UAV-mounted camera
to capture artificial sinkholes on the ground. Sinkholes are
dug manually, and half of these artificial sinkholes are filled
with water to simulate real conditions. In addition, sinkholes
are formed at different depths from 0.5 m to 2 m with a diame-
ter of 1 m or less in 0.5 m increments. To find the optimal time
of day to detect sinkholes, we examined the intensive differ-
ence between the sinkholes and surrounding areas at different
times. The video dataset consists of 16 videos with sinkholes
captured at different distances at a resolution of 256 x336.

1) THE DATASET FOR UNET-LIKE MODEL

We create a dataset for training the UNET-like model by
extracting a separated frame from the video dataset. An indi-
vidual frame may contain only one sinkhole, a few sink-
holes, or even no sinkholes. These frames are annotated to set
the sinkhole as the foreground area. Every pixel that belongs
to a sinkhole has a value of 1, while the other pixels have
a value of 0. Examples of sinkhole annotation images are
shown in Fig. 6, and these examples are the same size as the
input frame: 256 x336. The total number of annotated images
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is 1236. The dataset is split into a training set that includes
1100 images and a validation set that includes 136 images.

2) THE DATASET FOR THE MobileNet TRANSFER LEARNING
MODEL

Our training dataset has 7000 sinkhole images and
7000 non-sinkhole images, while our evaluation dataset
has 1000 images for each class. Non-sinkhole images
could be regular objects in video frames, such as vehicles,
humans, or trees, that have surface temperatures similar
to those of real sinkholes; they can also simply be back-
ground images. Fig. 7 shows representative images from our
dataset. The total number of images in this training dataset
is larger than the number in the training dataset for the first
CNN model because this training dataset consists of small
images of sinkhole objects in the original full-size images
(256x336). One original full-size image may contain several
smaller images of a sinkhole object.

IV. EXPERIMENTAL RESULTS

A. EXPERIMENTAL SETTINGS

1) UNET-LIKE MODEL

We train our model from scratch with a data augmentation
technique to overcome the problem of a limited dataset.
We set the maximum number of epochs to 200 and the
learning rate to 0.001. The batch size of the training process
is 16, which is relatively small compared to other studies
of image classification and image segmentation. This batch
size setting is selected because our training dataset is less
detailed than other popular datasets such as ImageNet. The
detailed hyperparameter setting is given in Table 1. The train-
ing accuracy and loss of the training process are illustrated
in Fig. 8. The model converges after 94 epochs, with the
IoU loss decreasing to 0.0230 and the validation accuracy
increasing to 95.6%.

TABLE 1. Hyper-parameter setting for UNET model.

Parameter Value
Maximum Number of Epochs 200
Batch size 16
Initial Learning Rate 0.001
Optimizer RMSprop

2) MobileNet TRANSFER LEARNING MODEL

The training process of this transfer learning approach is
shown in Fig. 9. We started the transfer learning process
with a learning rate of 0.01 and dropped it by a factor of
ten every 5 epochs. The small learning rate is initially set as
the pretrained CNN weights were often good and they would
not be too fast distorted. The optimization process runs for a
maximum of 100 epochs, which results in an accuracy of over
99% for the trained CNN classifier. Furthermore, the batch
size of the training model is 32, which is commonly used in
the literature. The detailed hyperparameter setting is given
in Table 2. We set the maximum number of epochs as 100.
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In the actual training process, after 20 epochs, the model
seems to converge to the optimal status.

TABLE 2. Hyper-parameter setting for MobileNet transfer learning model.

Parameter Value
Maximum Number of Epochs 100
Batch size 32
Initial Learning Rate 0.01
Optimizer Adam
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FIGURE 9. Training the MobileNet transfer.

B. PERFORMANCE EVALUATION

1) SEMANTIC SEGMENTATION EVALUATION

We evaluate the UNET performance by using the IoU index,
as presented in equation (1). For sinkhole detection, the IoU
index is more suitable than the pixel accuracy index. Assess-
ing the model with the pixel accuracy index results in the
model predicting small noisy objects in the foreground. The
UNET performance is compared with other semantic seg-
mentation models, as shown in Table 3. The UNET models
with different contraction layers are also compared. Due to
the complexity of the segmentation problem and the small
training dataset, we compare UNET with a few contraction
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layers to avoid overfitting problems that may occur and thus
falsify the comparison. The accuracy of the UNET architec-
ture increases by approximately 4% from the 2-layer model to
the 3-layer model. The accuracy increases by only 0.2% when
the 4-layer model is used. This result proves that the 3-layer
UNET model is optimal for sinkhole detection. In comparison
with the Otsu method [49] and the fixed thresholding method,
the UNET model is superior, with an IoU index greater than
20%. Semantic segmentation is the first step in the entire
sinkhole detection process, and the accuracy of semantic
segmentation affects the final result. The goal of semantic
segmentation is to detect all sinkholes, including any noisy
object that will be eliminated by the filters at the next stage.
The results shown in Table 3 also illustrate the impact of
applying a rule-based filter as the next step in multilevel
CNN sinkhole detection. The IoU of the 3-layer UNET model
is increased by 2% after utilizing the rule-based filter to
segmented sinkhole images. As we have mentioned earlier in
this paper, our method has an advantage over the [1] method,
as our method does not need to set the predefined threshold to
segment the sinkhole image. These kinds of thresholds have
been learned inside the UNET model. However, we imple-
ment a rule-based filter to eliminate noise appearing after the
segmentation process. This filter has thresholds that are set
through data observation. Using this filter may increase the
accuracy of the system but may also encounter the thresh-
old problem of the method proposed in [1]. This rule-based
filter is optional because practical applications often require
threshold-free models. It is thus possible to remove the rule-
based filter to meet the requirement while the accuracy is
assuredly reasonable.

TABLE 3. Segmentation evaluation.

Model ToU Score | With Rule-based Filter
Unet-like 2 Blocks 0.902 0.912
Unet-like 3 Blocks 0.94 0.961
Unet-like 4 Blocks 0.942 0.962

Otsu Binarization 0.765 0.812
Fixed Thresholding 0.673 0.721

Among the proposed system’s stages, semantic segmen-
tation is the stage that takes the most processing time.
Therefore, we conducted an assessment of the resource con-
sumption of the proposed models. The evaluation details
are given in Table 4, which are suitable for application to
resource-constrained systems. The most common memory
consumption model is the 4-block CNN with 9.5 MB. This
model size is efficient enough compared to memory capacity
of modern embedded boards such as Jetson TX2.

TABLE 4. Resource consumption comparison of different Unet-like
models.

Model Model Parameter | Model Size (MB)
Unet-like 2 Blocks 466,529 39
Unet-like 3 Blocks 926,753 7.8
Unet-like 4 Blocks 1,127,777 9.5
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2) CLASSIFICATION EVALUATION

The accuracy of the classification model is assessed on the
validation set, which includes 2000 images of sinkholes and
non-sinkholes. We evaluate models such as 3-layer CNNs, 4-
layer CNNs, MobileNet transfer learning and HOG + SVM.
The results presented in Table 5 show that the transfer learn-
ing model that uses MobileNet as the base model achieves
a superior accuracy of 97.6%. The MobileNet model is also
a lightweight model that can help the system achieve high
accuracy but still ensure real-time operation. The MobileNet
model was originally proposed for deployment on a resource-
constrained mobile device. Therefore, its architecture was
optimized to be as lightweight as possible compared to other
state-of-the-art classification models. Although the use of
the MobileNet model can be slightly more complex than
the CNN model, the MobileNet’s accuracy is significantly
higher. Therefore, we utilized the MobileNet model to solve
this classification problem to balance accuracy and process-
ing time. Furthermore, the sinkhole objects in this sinkhole
image dataset have a simpler structure than the objects in
the ImageNet dataset, and the MobileNet architecture can
classify them efficiently. There are few failure cases of this
classification model due to sinkhole-like objects, which have
similar shapes and brightness, such as cars, roofs, and groups
of trees. We have also gathered sinkhole-like objects into
negative examples (non-sinkhole group). In addition, the real
sinkhole objects have various depths so that the color distri-
bution (calculated via the temperature of the object surface
by a thermal camera) of the training data is uneven, somehow
leading to the difficulty of the model convergence.

TABLE 5. Classification evaluation.

Model Accuracy
3 Layers CNN from Scratch 0.902
4 Layers CNN from Scratch 0.904
MobileNet Transfer Learning 0.976
HOG + SVM 0.88

3) OVERALL SINKHOLE DETECTION EVALUATION

The overall accuracy of the sinkhole detection method is
compared with that of the method in [1]. We use the 6 videos
in the dataset, which was mentioned earlier, to perform this
assessment. These videos are not used in the process of creat-
ing two sets of the dataset for the UNET segmentation model
and classification model training to objectively evaluate the
performance of the method. To compare the performance
of our proposed method with that of the method in [1],
we estimate the average detection precision and the average
detection recall with the following equations.

TP
AP = —— (10)
TP + FP
TP
AR = (11)
TP + FN

where TP is the number of true positives, FN is the number of
false negatives, and FP is the number of false positives in the
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dataset. Based on the overlapping threshold, we can identify
when a detected sinkhole is an FP, FN or TP. A detected object
(sinkhole or non-sinkhole) is an FP when it is classified as
a sinkhole but is not a real sinkhole. A detected object is
a TP when it is classified as a sinkhole, is a real sinkhole
and when the overlapping area between the detected sinkhole
and the ground truth is larger than an overlapping threshold.
A detected object is an FN when it is classified as a non-
sinkhole but is a real sinkhole. The higher overlapping thresh-
old may result in a decreasing TP ratio if the detected sinkhole
does not fit exactly with the ground truth. Setting an overlap-
ping threshold is necessary to evaluate the performance of
the system because the risk of sinkhole formation has to be
evaluated by using information on both the sinkhole location
and the sinkhole area in a timely manner. Our method imple-
ments a UNET model for the semantic segmentation problem,
and the correct detection rate of TPs is high even when the
overlapping threshold is set too high. In this evaluation, we set
the overlapping threshold to 0.6 to compare our method and
the method in [1] and two methods in [50], Where the author
compared two methods for object detection problem which
are Faster RCNN [34] based on VGG16 model [51] and
two stages architecture based on AlexNet [45] and Gaussian
Mixture Model (GMM) [52]. We estimate the F1 score, which
is obtained by the following equation to be the evaluation
metric of the comparison, which can then be described by the

equation for the overlapping threshold.

AR x AP
F1 Score =2 x ——— (12)
AR+ AP

The average F1 scores per video are described in Fig. 11.
Our method achieves the highest F1 score compared to the
other methods for all videos. Notably, our method outper-
forms the AlexNet+GMM and HOG+SVM+-SlidingWindow
detector by a large margin. This can be explained by the fact
that the AlexNet+GMM method utilizes GMM background
modeling for extracting the moving objects that are often
highly noisy in the case of complex background. In addition,
the background environment from the UAV image is not
stable, which leads to the performance of GMM not being
good for detecting the sinkholes. The performance of the
HOG+SVM+SlidingWindow method significantly depends
on the size of the sliding window and the size of the real sink-
holes. The Faster RCNN by VGG16, in contrast, can achieve
acomparable performance to our proposed method. However,
the processing speed of the Faster RCNN by VGGI16 is
languid, so this model cannot be applied for the real-time
sinkhole detection. A processing speed comparison is given
in detail in Table 8. The improvement of our proposed method
compared to other methods in accuracy and processing speed
is because of the use of the multilevel CNN model. The
UNET segmentation model helps the system overcome the
hard threshold that the traditional binary segmentation has to
set to obtain the binary image. Additionally, the rule-based
filter helps the system reduce false positive detection. Fur-
thermore, our proposed system can operate as an end-to-end
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system during training and testing time by using two CNN
models. The model is able to automatically adapt according
to the training data. We also plot an ROC curve [53]-[55] to
compare these mentioned methods in Fig. 10. ROC curves are
created by plotting the true positive rate and false positive rate
at various threshold settings (changing thresholds). In this
sinkhole detection scenario, the changing thresholds are the
set of overlapping thresholds (ranging from O to 1). The
higher the threshold is, the more difficult it is for a predicted
sinkhole to become a true positive sample. As shown in this
figure, the area under the curve of our proposed method is
the largest, which proves the discriminative ability of our
approach.
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FIGURE 10. ROC curve of sinkhole detection methods.

Conventionally, CPT (cone penetrometer testing) and GPR
(ground-penetrating radar) are operated in the field to detect
sinkholes. However, since CPT methods are destructive test
methods, the sinkhole may be worsened in some cases, and
the cost and time for detecting one sinkhole are more inef-
ficient than those of the method proposed in this paper.
In addition, GPR is a method of analyzing the reflected signal
by sending radar into the ground, and the accuracy of the
reflected signal may be greatly distorted due to a nonuniform
medium inside the ground. In addition, there are disadvan-
tages that are greatly affected by the detectable depth and
the resolution of the reflected radar signal depending on the
radar frequency. For example, the use of a low frequency
results in deep ground detection but low resolution, and a
high frequency decreases the transmittance, resulting in low
depth detection. Therefore, the method proposed in this paper
is more efficient than a traditional method in terms of cost and
time, and it is expected that the accuracy will be very high by
using deep learning.

4) SINKHOLE TRACKING EVALUATION

To evaluate sinkhole tracking by data association, we calcu-
lated the IoU score for 6 videos. Detailed results are described
in Table 6, with an average IoU of 0.88. The best video is
video 11, which has an IoU of 0.92, while the worst is video
1 with an IoU of 0.83. This result is also consistent with the
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FIGURE 11. Sinkhole detection comparison.

analysis given in this database. Video 1 was collected in the
spring when the temperature difference between the sinkhole
and the surrounding area was lower than the large difference
between the sinkhole and the surrounding area in the summer
when video 11 was captured. Using the tracking algorithm in
the context of detecting sinkholes presents several challenges.
The UAV can travel at different heights, resulting in a signif-
icant change in the size of the sink. In addition, high-speed
UAV movement can lead to blurred sinkhole images. These
situations present considerable challenges for the detection
algorithm; in some cases, the output videos are unstable and
unreliable. To address these issues, we apply the tracking
algorithm to minimize these weaknesses that make the output
detection results smoother. In reality, the number of sinkholes
appearing in the single monitoring frame is not too high.
Therefore, the implementation of the sinkhole tracking model
is lightweight and computationally efficient. The tracking
algorithm helps improve the accuracy of sinkhole detection
compared to that with the use of sinkhole detection only but
still assures the real-time requirement of the system. From an
application perspective, this improvement is mandatory when
the output of the system has to be exactly the same as the
number of sinkholes in the monitoring area.

5) PROCESSING TIME EVALUATION ON THE EMBEDDED
DEVICE

To evaluate the performance of the proposed method and
to confirm that the system is able to work in real-world
applications, we implement our proposed system in Jetson
TX2 by Nvidia, which is a processing board equipped with
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TABLE 6. Tracking evaluation.

Video Average IoU Score
Video 1 0.83
Video 2 0.87
Video 3 0.86
Video 9 0.91
Video 10 0.90
Video 11 0.92
Average 0.88

GPU cores. In reality, the drone can carry a Jetson TX2 board
to process images from the air, after which some important
information, such as the image of the sinkhole and the loca-
tion of the sinkhole by GPS coordinates of the drone, can be
transmitted to the ground station via other communication
protocols. The processing times for all stages are shown
in Table 7, where the modified UNET is the most demanding
stage, as it requires an average of 50 ms to process one image.
Our proposed system can process streaming video at 13.2 FPS
on an embedded board, which proves the feasibility and prac-
ticality of deploying this system in real-time applications. The
performance of the whole system can be greatly improved
by replacing the traditional CNN elements in UNET with
other efficient elements from the literature. Furthermore,
the development of artificial intelligence accelerators in mod-
ern processors makes the whole proposed system even lighter
in weight and ensures real-time processing. In future work,
we plan to make the processing board lighter to enhance the
operating time of the UAV.
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TABLE 7. Evaluation of the embedded system.

Processing Step Processing Time on Jetson TX?2 (ms)
Modified U-net 49
Rule-based Filter 1.2
MobileNet Transfer 24
Other Stage 1.3
Total 75.6

A comparison of our proposed method to the other methods
on the Jetson TX2 embedded board is described in Table 8.
One important thing worth noting in the comparison is that
the Jetson TX2 board contains GPU (graphics processing
unit) cores that support deep learning models. Therefore,
deep learning models that run on this board are greatly accel-
erated compared to classical object detectors. Our proposed
method achieves the highest performance of 13.2 FPS, while
the slowest method is Faster RCNN by VGG16 with 1.3 FPS.
The slow processing speed of Faster RCNN by VGG16 can
be explained by the fact that Faster RCNN has a region
proposal network to obtain all potential object locations,
which are then classified by a CNN-based classifier. The
classifier will classify these object locations into different
object types. The number of possible object locations is
enormous, which leads to the entire process being slow. The
HOG+SVM+-SlidingWindow object detector is quite fast
because of its lightweight model. However, the accuracy of
the model depends heavily on the size of the sliding window
and the size of the real sinkhole, which can be barriers to
applying the HOG+4-SVM+-SlidingWindow object detector in
practice.

TABLE 8. Processing time comparison of different methods on Jetson
TX2.

Method Processing speed (FPS)
CNN + Random Forest [1] 5.3
Faster RCNN by VGG16 [50] 1.3
GMM + AlexNet [50] 4.7
SVM + HOG + Sliding Window 114
Our proposed method 13.2

V. DISCUSSION

Sinkholes that appear in residential areas cause great damage
to infrastructure and great harm to society. Unlike tradi-
tional methods based on CPT, GPR, ERT, and GB-InSAR,
the method using thermal imaging on UAVs has the advan-
tage of monitoring large areas at a lower cost. Although the
method of using thermal imaging on artificial datasets shows
promise, sinkhole detection simulation still has many lim-
itations for evaluating performance comparatively because
a sinkhole can exist in various forms and can be affected
by soil and weather conditions. In addition, the size of the
sinkhole can vary from a few meters to several dozens of
meters. Furthermore, the method of using thermal imaging on
a drone to collect data and monitor sinkholes also has many
additional limitations, such as the following:
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- The limitation of the power supply does not allow the
drone to continuously operate for several hours, resulting in
a limited surveillance area that the drone can monitor.

- The limitation of computational resources does not allow
for the deployment of complex image processing algorithms
on the drone.

- Drone activities in residential areas may lead to dangerous
accidents. The drone may collide with trees and buildings.
If the drone falls, people can be harmed. Therefore, drone use
should be restricted in some areas.

- Extreme weather conditions also seriously affect drone
operations.

- The distance of the drone to the sinkhole might affect the
accuracy of the detection system, as the drone is not able to
capture the details of the sinkhole if the distance between the
drone and sinkholes is too great.

For future work, a thermal camera mounted on the roof of a
car is suggested as an alternative method to detect sinkholes
using thermal imaging in populated areas, on roads and on
pedestrian walkways. In addition, the camera should be able
to rotate around the vehicle at a 360-degree angle to expand
the view. The height of the camera should also be adjustable
to optimize the distance from the camera to the sinkhole. The
concept of utilizing a thermal camera mounted on a car will
have the following benefits:

- It ensures safe operation in residential areas. In addition,
a thermal camera-equipped car can travel flexibly, allowing
the system to monitor a wide range of areas.

- System performance is limited less by power supply.
Therefore, the system can operate for several days without
charging the battery.

- High-performance computers can be installed in the car
to allow the system to operate in real time with expected
accuracy.

- Available GPS in the car also allows the information of
detected sinkholes to be mapped in real time via the on-board
networking system.

- System performance is less affected by bad weather than
it is in a drone-based system.

The real size of a sinkhole is an important factor that a
monitoring system must determine. In this scenario, the size
of the sinkhole can be estimated with some calibration steps
and the assumption that the camera view is perpendicular
to the ground plane based on the simple formula of camera
optical geometry, which is shown in the following equation:

D S

- = — 13

F St (13)
where D is the distance from the sinkhole to the camera, F
is the focal length of the camera, Sr is the size of the real
sinkhole, and Si is the size of the sinkhole in the captured
image, as shown in Fig. 11. Then,

D xS!
F =
Sr

(14)
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FIGURE 12. Calculation of the real size of the sinkhole.

We obtain the following formula:
D xS i D> x Sé

S1 S5
where Dy and D, are the distances from the camera to the
sinkholes; S| and S} are the sizes of the real sinkhole; S{ and
S5 are the sizes of the sinkhole in the captured image at two
different times. The distance from the camera to the sinkhole
is extracted from the height of the drone (in meters). The size
of the sinkhole in the image is calculated in pixels. At the
calibration stage, this information (D1, S{, S f ) is extracted
as the reference value. Then, the real size of the detected
sinkhole with the height of drone D; and the sinkhole size

in image Sé is calculated as follows:
Dy x S§ x ST

Sy =—= 16
2 D]XSi (16)

15)

VI. CONCLUSION

In this paper, we propose an approach that combines a mul-
tilevel CNN model for sinkhole detection and HA data asso-
ciation to efficiently detect and track sinkholes in real time.
Our experiments show that the proposed method achieves
promising results compared to existing approaches. Our pro-
posed method has some weaknesses. For example, when the
input video is not stable, the segmentation step requires more
annotated data to fit the model, and the input of potential
candidates is missing from the training set. Despite some
weaknesses, our proposed method shows feasibility for sink-
hole detection using infrared cameras, with an accuracy as
high as 97,6% for sinkhole detection and an IoU of 88% for
sinkhole tracking, which is suitable for practical applications
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such as use in surveillance systems. Furthermore, the advan-
tages of our proposed models and system can be highlighted
as follows:

- The proposed model is threshold-free and therefore appli-
cable in various environmental conditions for detecting and
tracking sinkholes.

- The system is deployable on embedded boards while can
be processed in real time.

- The trained models can be utilized to perform trans-
fer learning to other similar applications such as [11], [12]
in medical image analysis and [15], [16] in facial emotion
recognition. These applications process the detection task
in 2 stages: image segmentation using UNET-like models and
image classification using a deep pretrained model.

In future work, the system can be expanded to control a
group of UAVs to monitor larger areas, and the detected sink-
holes with their respective GPS locations can be transferred to
the ground station to draw a real-time map of sinkholes. The
real-time map can be integrated to fire alarms to provide alerts
to the existence of sinkholes for public safety and facilities.
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