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ABSTRACT The 4D trajectory is a multi-dimensional time series with plentiful spatial-temporal features and
has a high degree of complexity and uncertainty. Aiming at these features of aircraft flight trajectory and the
problem that it is difficult for existing trajectory prediction methods to extract spatial-temporal features from
the trajectory data at the same time, we propose a novel 4D trajectory prediction hybrid architecture based
on deep learning, which combined Convolutional Neural Network (CNN) and Long Short-Term Memory
(LSTM). An 1D convolution is used to extract the spatial dimension feature of the trajectory, and LSTM
is used to mine the temporal dimension feature of the trajectory. Hence the high-precision prediction of
the 4D trajectory is realized based on the sufficient fusion of the above features. We use real Automatic
Dependent Surveillance -Broadcast (ADS-B) historical trajectory data for experiments and compare the
proposed method with a single LSTM model and BP model on the same data set. The experimental results
show that the trajectory prediction accuracy of the CNN-LSTM hybrid model is superior to a single model.
The prediction error is reduced by an average of 21.62% compared to the LSTM model and by an average
of 52.45% compared to the BP model. It provides a certain reference for the trajectory prediction research
and Air Traffic Management decision-making.

INDEX TERMS 4D trajectory prediction, deep learning, CNN-LSTM model, spatial-temporal feature.

I. INTRODUCTION

Air Traffic Management (ATM) system is a dynamic, com-
plex, information-driven automation system [1]. It considers
the trajectory of the aircraft at all stages of flight and manages
these trajectories to avoid conflicts. With the smallest possi-
ble deviation from the flight plan, the optimized operation of
the entire system is achieved. With the vigorous development
of the air transport industry, the scale of the route network
has gradually expanded, and airspace resources have become
increasingly scarce. In order to meet the challenges brought
by the continuous increase in air traffic to the Air Traffic
Control (ATC) system, International Civil Aviation Organiza-
tion (ICAO) regards Trajectory Based Operation (TBO) as the
core operating concept of the next generation air navigation
system. TBO uses the flight trajectory of the aircraft as the
only reference and realizes the sharing of the flight trajec-
tory within the ATM system. All parties concerned make
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collaborative decisions to accurately manage and control the
operation of the aircraft [2], [3].

In addition, the United States has proposed the Next
Generation Air Transportation System (NextGen) [4], [5],
and the Eurocontrol has launched the Single European Sky
ATM Research (SESAR) program [6]. NextGen intends to
help controllers make reasonable decisions through trajec-
tory optimization and matching, flight conflict detection and
resolution, etc., so as to reduce flight delays, improve flight
operational efficiency, and ensure the safety of flights at the
same time. SESAR uniformly monitors the airspace of each
member state, so that the planning of airspace flow can be
free from national boundaries, thereby achieving a reasonable
allocation of airspace resources.

4D trajectory prediction is the process of calculating the
longitude, latitude, altitude, and time of the aircraft at future
moments. Accurate 4D trajectory prediction helps to improve
the level of automated decision-making in air traffic, thereby
reducing the participation of staff; on the other hand, it helps
to avoid potential flight conflicts and enhance air traffic
safety.
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In the process of rapid development of artificial intelli-
gence, deep learning has gradually been applied to various
fields. At present, great success has been achieved in image
classification, machine translation, natural language process-
ing, and human-machine games [7]-[10]. Inspired by this
phenomenon, deep learning methods have also been utilized
to process time series prediction, for instance, pedestrian
trajectory prediction, vehicle trajectory prediction, and traffic
flow prediction [11]-[13]. Since the aircraft trajectory can
be viewed as multi-dimensional time series, deep learning
can be used for processing the trajectory prediction problem.
The current flight trajectory prediction mostly uses LSTM
networks with memory function. It can better capture the
features of the trajectory in the time dimension, but it cannot
capture the spatial features of the trajectory well. CNN is
more suitable for extracting spatial features, and the com-
bination of CNN and LSTM has also been widely used
in classification tasks such as authorship classification of
paintings, deep sentiment representation and prediction tasks
such as traffic flow prediction, stock market index prediction,
etc. [14]-[17]. The above models often use two-dimensional
convolution to process image data or embed the convolution
into the LSTM modules. The difference is that this paper
first extracts the spatial correlation of the trajectory by one-
dimensional convolution, and then extracts the time dimen-
sion dependence of the trajectory by LSTM network, so as to
better integrate the temporal-spatial features of the trajectory.

The main contribution of our research is described below.

a) Anovel 4D trajectory prediction method based on com-
bined CNN-LSTM is presented. The 1D convolution
of CNN is used for extracting the spatial features of
the adjacent area of the trajectory, and the subsequent
LSTM module is used to mine the temporal features
of the trajectory data, so as to achieve the full fusion
of the temporal and spatial features of the prediction
point. This method solves the shortcomings of insuf-
ficient extraction of trajectory features. To the best of
our current knowledge, it is the first time to apply the
CNN-LSTM model for achieving the prediction of 4D
trajectory.

b) The scheme of single-step and multi-step prediction
of 4D trajectory based on the time window are intro-
duced. The future trajectory at one moment or multiple
moments is predicted by the historical trajectory infor-
mation within the time window, which guarantees the
real-time prediction of trajectory to a certain extent.

¢) We compared the constructed model with a single BP
and LSTM model, which greatly improved the predic-
tion accuracy compared to a single model.

The rest of this paper is organized as follows. Section II dis-
cusses the related works of trajectory prediction. Section III
analyzes the ADS-B trajectory. Section IV introduces the the-
ory of deep learning and presents the model of 4D trajectory
prediction. Section V shows the experimental simulation and
result analysis. Section VI summarizes the conclusions and
gives a future research plan.
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Il. RELATED WORKS

With the continuous updating of communication, navigation,
surveillance and airborne equipment, the requirements
for real-time and accuracy of trajectory prediction are
constantly increasing. And the prediction methods have
been continuously developed into the following categories.
(i) Aerodynamic-based or aircraft performance model-based
methods. (if) Mixed estimation theory-based methods.
(iif) Machine learning-based methods.

A. AERODYNAMIC-BASED OR AIRCRAFT PERFORMANCE
MODEL-BASED METHODS

The prediction method based on aerodynamics or aircraft
performance model is to divide the entire flight process of
the aircraft into several stages, establish a motion equation
for the flight trajectory of each stage, and define the start and
end conditions and motion equation parameters of each sub-
phase. Chao et al. [18] proposed a four-dimensional trajectory
prediction method based on the basic flight model. According
to the features in the flight phase, the basic flight model
was used to construct the aircraft’s horizontal profile, altitude
profile, and speed profile. Junfeng et al. [19] designed a
four-dimensional trajectory prediction model by statistically
analyzing the actual radar trajectory data of the aircraft, with
a combination of aircraft intent model and aircraft dynam-
ics and kinematics model. Zhou et al. [20] combined flight
motion model and gray theory to predict the trajectory, which
improved the prediction accuracy. Kaneshige et al. [21] pro-
posed a trajectory prediction method based on the basic
motion model, which can improve the reliability of the
trajectory prediction.

The above methods effectively utilize the characteristics of
aircraft flight phases to simplify modeling and is suitable for
trajectory prediction of complex operating states of aircraft
in the terminal area. However, the dynamic parameters of the
aircraft constantly change during flight, which is difficult to
accurately estimate in advance. As the division of stages is
too idealized, the actual flight trajectory may not meet the
division of these stages. Therefore, this type of aerodynamic
model has certain disadvantages, such as too many parame-
ters, and the prediction accuracy is not high.

B. MIXED ESTIMATION HEORY-BASED METHODS

The trajectory prediction can be regarded as a stochastic
linear hybrid system estimation problem. In view of this,
Yunxiang ef al. [22] used the hybrid system theory to con-
struct the parameter evolution model of the aircraft in the
flight segment and the state transition model during flight
segment switching. By adjusting the corresponding aircraft
parameters, a multi-aircraft conflict-free 4D trajectory is
planned. Li et al. [23] described the aircraft’s horizontal
motion model based on the hybrid system theory. They
proposed an interactive multi-model trajectory prediction
algorithm based on the diversity and uncertainty of aircraft
motion. Taobo and Baojun [24] proposed a Kalman filter
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algorithm for real-time trajectory improvement of system
noise in prediction models. In view of the multi-modal nature
of aircraft motion, the single-model approach is incapable.
Although multi-model estimation takes into account the
three-dimensional state of aircraft motion, it has the drawback
that the algorithm complexity increases exponentially with
the number of models. Interactive Multiple Models (IMM)
can solve this problem. Interactive multi-model (IMM) algo-
rithm can realize state estimation of hybrid system through
state estimation weighted summation, and then realize tra-
jectory prediction [25]. In addition, there are improved inter-
active multi-model estimation methods. A modal switching
update method is proposed in literature [26]. Literature [27]
proposed a hybrid estimation method which is related to the
state based on wind speed and direction, to realize the tra-
jectory prediction. However, the algorithm complexity of the
above methods is too large to meet the real-time requirements.

C. MACHINE LEARNING-BASED METHODS

The continuous rise of artificial intelligence has made
machine learning an emerging technology in terms of 4D tra-
jectory prediction. Kun and Wei [28] presented a regression
statistical model. This model mainly mines historical flight
time, finds out the factors that affect flight time, and predicts
the full flight time of the next flight. Then, the position of the
aircraft at the beginning of each sampling period is analyzed
from the historical position, to achieve a complete 4D tra-
jectory prediction. Song et al. [29] processed historical radar
trajectory data based on data mining technology to extract
a classic trajectory data set. Taobo and Baojun [30] used
fuzzy clustering to analyze the flight data of the approach-
ing aircraft’s 4D trajectory, thereby providing a basis for
the reasonable design of the approach and departure proce-
dures. Aiming at the target trajectory in the hotspot area,
Kui et al. [31] build a BP neural- network based model for
target trajectory prediction.

The above machine learning methods also have corre-
sponding problems. The cluster-based method has limited
prediction performance due to the limitation of input informa-
tion. The regression statistical model must model each flight
with massive trajectory data. The BP prediction model only
considers the two-dimensional position information of the
aircraft’s latitude and longitude, so the prediction dimension
is insufficient.

Since the LSTM network in deep learning is very expert in
processing long sequences, in the year of 2018, Shi et al. [32]
constructed a 4D trajectory prediction model using LSTM
neural network. At the same time, Zhang et al. [33] then
proposed an LSTM network optimized by the Ant Lion
Optimization (ALO) algorithm for trajectory prediction.
Han et al. [34] also proposed a short-term 4D trajectory pre-
diction model based on LSTM. Zhang and Mahadevan [35]
proposed a blended model combining DNN and LSTM for
trajectory prediction, in which the uncertainty of model
prediction is characterized by Bayesian approach, so as to
increase en-route flight safety. In addition, Yin and Tong [36]
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carried out the influence of GRIB data on the accuracy
of 4D trajectory prediction, which is an important research
direction. Pang et al. [37] proposed a novel network archi-
tecture, aiming at solving the problem of aircraft trajectory
prediction related to convective weather before takeoff. The
convolutional layer is embedded in the repeating modules
of the LSTM to extract useful features from weather cube.
Unlike the two-dimensional convolution in literature [37],
we use one-dimensional convolution to process trajectory
data, extracting the spatial correlation between the adjacent
areas of the trajectory.

In this paper, we propose a multi-layer CNN-LSTM hybrid
model that can fully extract the spatial-temporal features
of the trajectory. Since the traditional trajectory prediction
methods are not suitable for the situation with a large number
of trajectory samples, the model in this paper is compared
with the most commonly used BP neural network and the
latest LSTM network in the field of 4D trajectory prediction
to verify the prediction performance of the proposed model.

Ill. ANALYSIS OF ADS-B TRAJECTORY

ADS-B connects satellites, aircraft, and ground stations to
form a comprehensive system involving three levels of space,
air, and ground. It reports the current flight parameters of the
aircraft and the specific position information of the aircraft
by sending ADS-B messages to the outside.

A. FORMAT OF ADS-B TRAJECTORY
The trajectory data returned by ADS-B is discontinuous,
it consists of a series of discrete trajectory points [38].

Let T be the historical trajectory set, which includes N
historical trajectory, expressed as

T={T,T... Tk, ..., Ty} ey

where, T} is the kth trajectory in 7.
Suppose each trajectory contains n trajectory points,

s Min} (@)

where, my; is the i™ trajectory point in T}.
If each trajectory point contains p features,

-s Tkip} 3

where, ry;j is the jth feature of the point my;.
The features contained in each collected ADS-B historical
trajectory are shown in Table. 1.

Ty = {mk1, mga, ..., my, ..

my; = {Tkit, Tki2s - - 5 Thijs - -

B. PREPROCESSING OF ADS-B TRAJECTORY

Due to system errors, signal occlusion, etc., the real ADS-B
trajectory data has problems such as repeated trajectory
points and missing trajectory points. Repeated trajectory
points will affect the availability of data, and we have elim-
inated duplicate trajectory points. For trajectory with a large
number of missing trajectory points, it should be removed.
For trajectory with a relatively small number of missing
trajectory points, the problem can be solved by interpolation
methods.
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FIGURE 1. Example of trajectory interpolation.

TABLE 1. Features of one trajectory point.

Features Trajectory point
Time 2017-05-06 07:35:10

ICAO address code 780E59
Flight number XXX

Longitude /° 120.2188

Latitude /° 37.6415
Altitude /feet 25600

Velocity /knot 398.399
Heading /degree 49.071

According to the continuity and smoothness of the flight
trajectory, the missing points are supplemented by the cubic
spline interpolation algorithm. The specific method is to
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divide the trajectory into five components related to time ¢
such as longitude, latitude, altitude, velocity, and heading,
and obtain their interpolation results respectively.

Fig. 1 shows an example of interpolation of the longitude,
latitude, altitude, and velocity of the trajectory. It can be seen
from Fig. 1 that the trajectory becomes more complete, and
the longitude, latitude, altitude, and velocity features of the
trajectory also become more uniform after the processing of
cubic spline interpolation. Through cubic spline interpola-
tion, the missing trajectory points are well complemented,
and sufficient preparation is made for subsequent splitting of
trajectory sample.

IV. METHODOLOGY

In this section, the Convolutional Neural Network (CNN) and
Long Short-Term Memory (LSTM) are combined to propose
a hybrid model for 4D trajectory prediction, called hybrid
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FIGURE 2. Typical structure of CNN network.

CNN-LSTM. Before that, we introduced the basic theories
of deep learning that are indispensable for data modeling,
including CNN and LSTM.

A. CNN NETWORK

CNN is a feedforward neural network with a deep
structure, which is expert in processing image-related prob-
lems [39], [40]. The general structure of CNN is shown
in Fig. 2.

Fig. 2 indicates that CNN consists of four layers, which is
data matrix input, pooling, convolution, and fully connected
layer.

The core of the CNN is the convolution operation. The
biggest difference from the fully connected structure is that
the convolution operation takes full advantage of the infor-
mation in the adjacent areas of the data matrix. The size of
the parameter matrix is greatly reduced by sparse connections
and sharing weights. The pooling layer creates its own feature
map by getting the average value or the maximum value,
which achieves the compression of features and can avoid
overfitting to a certain extent. We can construct multi-layer
convolution and pooling operations in CNN. The deeper the
layer of the network structure, the more abstract the fea-
tures it extracts. The extracted abstract features are merged
through a fully connected layer, and finally the classification
problems and the regression problems can be solved through
softmax or sigmoid activation function [41]. We just use the
one-dimensional convolution in CNN to effectively extract
the spatial feature of the trajectory dat.

B. LSTM NETWORK

Recurrent Neural Network (RNN) is a neural-network with
short-term memory, which is suitable for processing time-
series related problems. In recent years, RNN has made
great success in the prediction of time series, but it has a
Long-Term Dependencies problem in the training process of
long series [42]. LSTM is improved to solve the Long-Term
Dependencies problem. Trajectory can be considered as
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multiple time series, so we can take advantage of LSTM to
process time series data and learn the Long-Term Dependen-
cies of 4D trajectory data.

Compared with standard RNN, the main improvement of
LSTM is the introduction of gating mechanism, namely input
gate, forget gate and output gate, so as to control the informa-
tion transmission in neural networks. The key to LSTM is
the cell state. The first is to determine what and how much
information we will discard from the cell state. This discard
action is done through the forget gate. The next step is to
determine what new information will be sent into the cell
state. This operation is done through the input gate. Finally,
the output gate determines what information is output. The
architecture of the LSTM unit is illustrated in Fig. 3.

FIGURE 3. Standard structure of LSTM unit.

On the basis of the original short-term memory unit /;, the
LSTM model adds a memory unit C; to maintain long-term
memory, that is, the state of the cell. As can be seen from
Fig. 3, an LSTM unit receives three inputs at each time step,
the input x, at the current moment, the state C,_; and the
output A, from the last moment. Among them, x; and /,_
are used as inputs of three gates at the same time. The update
process of the LSTM network is as follows.

fi = o(Wr - [he—1, %] + by) 4)

VOLUME 8, 2020
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FIGURE 4. The proposed CNN-LSTM hybrid model architecture.

iy =0(W;- [Ai—1, x] + bi) 4)
C; = tanh(W - [—1, x;] + be) (6)
Cr=fi x C1 +ir x Gy )
oy =o(W,- [hi—1, x: ] + bo) (8)
h; = o; x tanh(Cy) )

where, Wy, W;, W, W, are the coefficient matrix, by, b;,
b, b, are the bias matrix, o represents a sigmoid activation
function. f; represents forget gate and i; represents input gate.
At each moment, the forget gate controls how much memory
is forgotten at the last moment, and the input gate controls
how much new memory C; is written to the long-term mem-
ory. o; represents the output gate, which controls how short-
term memory is influenced by the long-term memory.

C. 4D TRAJECTORY PREDICTION MODEL BASED ON
CNN-LSTM

CNN is more suitable for spatial expansion and can extract
local spatial features very effectively [41], while LSTM has a
certain memory capacity and is mostly used for processing
time series data. Combining the advantages of CNN and
LSTM, we propose a 4D trajectory prediction model that
can effectively express the spatial-temporal features of the
trajectory. The overall architecture of the model is shown in
Fig. 4.

The model reflects the entire process of trajectory predic-
tion: input of trajectory data, training of trajectory data by the
model, and output of predicted trajectory. We will describe
the three parts in the following section.

The input to the model is ADS-B trajectory data. ADS-B
trajectory data is composed of a series of trajectory points
that change with time, which has rich spatial-temporal infor-
mation. Features of each trajectory at the time of # are defined

as
def
X (@) ={t, lon, lat, alt, vel, h} (10)

where t, lon, lat, alt, vel, h respectively refer to the time,
longitude, latitude, altitude, velocity, heading of the aircraft

VOLUME 8, 2020

at time . We need to perform preprocessing such as supple-
menting the missing trajectory point on the input data, and
we need to normalize it before sending it to the model. The
input data of a traditional neural network is a vector, while
the input data of CNN and LSTM is a tensor containing time
series, that is, the time_step dimension is added. In order to
facilitate CNN’s convolution operation, time_step is set to 6,
that is, the trajectory characteristic data of 6 consecutive time
is used to predict the trajectory data at the next time. So, each
of our samples is a 6 x 6 square matrix.

The core part of the model includes 1D CNN, LSTM and
a fully connected layer. We use one-dimensional convolution
to extract the spatial feature of the trajectory. The process is as
follows. The trajectory data first pass through a convolution
layer (convolution1D), the number of 1 x 3 convolution kernel
is 32, the activation function is Relu, and then through a max
pooling layer with a window size of 2. Then, the processed
data is sent to the LSTM module after repeating the same
convolution, activation, and pooling operations. We design
two layers of LSTMs to mine the temporal features, and the
output dimension of each layer of LSTM is 50, and each
layer of LSTM uses dropout to avoid overfitting. Dropout
randomly resets part of the weight or output of the hidden
layer to zero to reduce the interdependence between the nodes
of the neural network, so as to achieving the purpose of
avoiding overfitting. The first LSTM layer takes the output
at all moments, and the second LSTM layer takes the output
at the last moment of the hidden layer. Finally, the trajectory
data processed by CNN and LSTM will be sent to a fully
connected layer.

The output of the prediction model is the time, longitude,
latitude, and altitude information of the aircraft at future
moments.

V. EXPERIMENTS

In this section, we use real ADS-B historical trajectory data
from Qingdao to Beijing route for experiments. These tra-
jectories are time series of varying lengths. The model is
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implemented on the Keras deep learning platform based on
TensorFlow. The whole process of the experiment is shown

in Fig. 5.

( Begin )

A
Preprocessing of ADS-B
Trajectory data

A

Normalization of trajectory

v
Training of CNN-LSTM
network

v
Simulation of validation

set

Comparison of predicted
and actual trajectory

the error is less thair
the specified range

Simulation of test set

End

FIGURE 5. The Flow chart of experimental steps.

We first preprocess the ADS-B trajectory data, normalize
it and send it to the network for training. Then the vali-
dation set is simulated, and the predicted and actual tra-
jectories are compared. If the error is within the specified
range, the model is tested through the test set, otherwise
the model continues to be trained until the requirements are
met.

In order to be able to fully test the performance of
our proposed model, the prediction results of CNN-LSTM
are compared with a single LSTM network and BP net-
work respectively. In addition, we performed single-step and
multi-step prediction on trajectory respectively, in which
3 and 5 are selected as the step length in the multi-step
prediction. Therefore, we construct three data sets Dy, D>
and D3.The sample division of the three data sets is shown
in Table 2. As can be seen from Table 2, each data set is
divided into a training set and a test set, and 10% of the
training set for each data set is selected as the validation set
to verify and adjust of the model. Finally, the test set is used
to evaluate the performance of our model.
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TABLE 2. Sample division.

Data set Training set Test set
D, 340132 47647
D, 339852 47607
D; 339572 47567

A. DATA PREPARATION

We use the trajectory data collected and decoded by ADS-B
from February to May 2017. For reasons of privacy protec-
tion, flight numbers have been omitted.

1) CONSTRUCTION METHOD OF TRAJECTORY SAMPLES

4D trajectory prediction is a supervised learning problem, and
the trajectory data needs to be split into training samples and
labels. We take a single-step prediction as an example to give
the sample construction method, as shown in Fig. 6.

Feature: x Label: y

t lon | lat | alt | vel h t | loni lat | alt

=6

P

Sample;

time_ste]

Samples

FIGURE 6. lllustration of sample splitting.

In Fig. 6, the rows represent time steps and columns repre-
sent training features. We start from the first trajectory point
and go down in time sequence, selecting the time, longitude,
latitude, altitude, velocity and heading of the first 6 trajectory
points to predict the time, longitude, latitude and altitude of
the next trajectory point (y; in the figure). Then, starting from
the second trajectory point (to ensure the continuity of the
samples in time, the separation interval S is selected as 1),
the same method is used to select the training samples. The
constructed sample (Sample in Fig. 6), as described in Part C
of Section IV, is a 6 x 6 square matrix.

2) SAMPLE NORMALIZATION

The trajectory data needs to be normalized before entering
it into the model. We refer to the method of Dispersion
Normalization in literature [43], which is defined as

X — min
N=——— (11)
max — min
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where, X is the original sample data, max represents the
maximum value of the sample, min represents the minimum
value of the sample, and N is the normalized sample.

B. EVALUATION METRICS

Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE) are the
most commonly used evaluation indicators for regression
problems. RMSE is the expected value of the square of the
difference between the predicted result and the actual target,
and then takes the square root operation. MAE is the average
of the absolute errors between predicted and observed values.
MAPE is a process of comparing with the original data,
considering the ratio between the error and the actual value.
We use the above three indicators to evaluate the effectiveness
of CNN-LSTM model. The calculation formulas of the three
indicators are shown in equations (12) to (14).

1

RMSE = [% i (P; —Ri)2:| 2 (12)
i=1
MAE = %Xn:|P,’—R,’| (13)
i=1
MAPE = li PimRil  100% (14)
n i=1 Pi

where, P; represents the predicted trajectory at time i, and R;
represents the actual flight trajectory at time i . The smaller
the values of the three-error metrics, the closer the predicted
trajectory is to the actual trajectory, which also indicates that
the model’s prediction accuracy is higher.

C. COMPARATIVE ANALYSIS OF EXPERIMENTAL RESULTS
BP model, LSTM model and the proposed CNN-LSTM
hybrid model are used to carry out experimental simulation
on the same data set. Therefore, we compare and analyze
the models from the following three aspects: model structure
and parameters, 4D trajectory prediction curve, and the error
values of the predictive measures of different models.

1) COMPARISON OF MODEL SRTUCTURE AND PARAMETER

Fig. 7 shows the structure and parameters of the three models.
The BP model designed in this paper includes an input layer,
two hidden layers and a fully connected output layer. Since
time_step is set to 6, and the number of training features is 6,
the input is a vector of length 36, which corresponds to the
first six trajectory point. The number of nodes in each hidden
layer is 50, and a dropout layer is added behind it to prevent
overfitting. The number of output nodes is 4, corresponding
to the trajectory feature at the next moment. The LSTM
network model includes an input layer, two LSTM hidden
layers, and a fully connected layer. The time_step in the input
layer is selected as 6, which indicates that the scale of input
data for training and testing is a 6 x 6 matrix, which also
corresponds to the first six trajectory point. The number of
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nodes in each hidden layer of the LSTM is also set to 50.
Similarly, a dropout is added after each hidden layer. The
number of LSTM output nodes is 4, which corresponds to
the trajectory feature at the next moment.

The structure of the second half of the CNN-LSTM
network model is the same as the LSTM model. Before
the data enters the LSTM unit, the data is subjected to
one-dimensional convolution and pooling processing. Tak-
ing the CNN-LSTM model as an example, the dimensional
changes of the input and output data of each layer of the
model are described in detail. The input data is a three-
dimensional tensor (None, 6, 6), and None represents the
number of batch samples during model training. The data
first passes through a one-dimensional convolution layer
(conv1D) containing 1 x 3 convolution kernels, the number of
which is 32. Currently, the dimension of the tensor becomes
(None, 6, 32). Then after activated by Relu, passing a max
pooling layer (maxpoolinglD) with a window size of 2,
the tensor dimension becomes (None, 3, 32). Then after the
same round of processing as above, the tensor shape becomes
(None, 1, 32). After processing by CNN, the tensor passes
through the first LSTM layer with output dimension of 50
(take the output at all times), the shape becomes (None, 1,
50). After the first layer of dropout, the shape remains the
same. After passing the second layer of LSTM (take the
output of the last moment) and dropout, the tensor dimension
becomes (None, 50). Finally, the tensor passes through a
fully connected layer with 4 nodes, and the output dimension
becomes (None, 4).

2) COMPARISON OF PREDICTED AND ACTUAL TRAJECTORY
Taking into account two actual flights (the flight number is
replaced by A and B here) as examples to give the model’s
single-step prediction result, as illustrated in Fig. 8-Fig. 9.
Fig. 8 is the prediction result of flight A, and Fig. 9 is the
prediction result of flight B. Fig. 8 (a) is a two-dimensional
graph of the predicted and the actual trajectory in latitude and
longitude coordinates. Fig. 8 (b) is a three-dimensional dis-
play of the predicted and the actual trajectory. As can be seen
from Fig. 8 (a) that the longitude and latitude prediction of the
three models can keep the same trend with the actual trajec-
tory, but the prediction curve of the BP model deviates signif-
icantly from the actual trajectory compared with the other two
models. LSTM and CNN-LSTM models have smaller errors
for the prediction of latitude and longitude. We can also see
from the three-dimensional figure that the altitude prediction
error of the models is slightly larger than the latitude and
longitude. Compared with the actual altitude, the predicted
trajectory points of the BP model have large fluctuations at
each position. Although the altitude prediction error of the
LSTM model is within an acceptable range, it can still be seen
directly from Fig. 8 (b) that it has larger prediction error than
the CNN-LSTM model. It can also be seen from Fig. 9 that
the trajectory predicted by the proposed CNN-LSTM model
is closest to the actual trajectory, with the smallest error,
followed by LSTM and BP. The prediction error of BP model
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FIGURE 7. Structure and parameters of each model.

is greatest. So, in general, the prediction accuracy of the
models is ranked as CNN-LSTM> LSTM> BP.

3) COMPARISON OF METRICS ERROR VALUES

Based on the predicted and actual trajectory, the values of
the three-evaluation metrics of RMSE, MAE and MAPE
can be obtained. We conduct statistical analysis on the sin-
gle feature (time, longitude, latitude, and altitude) errors in
the single-step prediction, and the results are illustrated in
Fig. 10-Fig. 12. We can see from Fig. 10-Fig. 12 that the
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three-evaluation metrics of CNN-LSTM on a single feature
prediction of the trajectory is better both than LSTM and BP.
In addition, the three-evaluation metrics of the LSTM model
on a single feature are better than the BP model, indicating
that LSTM is more suitable for processing time series data
than BP.

We have also separately calculated the average error
of the predicted time, predicted longitude, predicted lati-
tude, and predicted altitude features of models in the case
of single-step and multi-step prediction, which are shown

VOLUME 8, 2020



L. Ma, S. Tian: Hybrid CNN-LSTM Model for Aircraft 4D Trajectory Prediction

IEEE Access

40.0 T T T
e—e Actual trajectory
+—a CNN-LSTM

39.5¢ =—a |STM
— BP

o 39.0t

@

ko]

2

-

© 38.5
38.0+

311365 117.0 1175 116.0 1165 119.0 1195 120.0 120.5
longitude/®

(a) Prediction of latitude and longitude

FIGURE 8. Prediction result of flight A.

40.0 T :
e—e Actual trajectory
#=—a CNN-LSTM
39.5} =—a |STM
= BP
. 39.0
@
T
2
+—
& 38.5
38.0

371365 117.0 1175 116.0 1185 119.0 1195 120.0 120.5
longitude/®

(a) Prediction of latitude and longitude

FIGURE 9. Prediction result of flight B.

in Table 3. By analyzing the contents of Table 3, we can
draw the following conclusions. The prediction error of the
CNN-LSTM model is much smaller than that of LSTM and
BP in the single-step prediction. While in the multi-step pre-
diction, as the number of selected prediction steps increases,
the prediction error of the LSTM model gradually approaches
the CNN-LSTM model. On the D3 dataset, although the
CNN-LSTM model is better than the LSTM on the RMSE
and MAE indicators, there is not much difference between
both of them. In addition, whether it is a single-step prediction
or a multi-step prediction, the prediction error of the BP
model is much larger than the CNN-LSTM model and LSTM
model. Based on the MAPE indicator, we can also see that the
accuracy (1-MAPE) of the CNN-LSTM model in the three
prediction tasks can reach as low as 91% and as high as 95%,
indicating that the prediction performance is relatively stable.
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While the prediction accuracy of the LSTM and BP models
decrease greatly with the increase of selected prediction steps.
The prediction accuracy of the BP model on the D3 dataset
has even dropped below 80%. Therefore, the prediction per-
formance of the CNN-LSTM model is superior to the LSTM
and BP models.

For further comparison, in the single-step prediction, the
prediction error of the CNN-LSTM model is 29.06% lower
than the LSTM model on average, and 59.72% lower than
the BP model on average. In the three-step prediction, the
prediction error of the CNN-LSTM model is reduced by
an average of 24.31% compared to the LSTM model and
is reduced by an average of 50.42% compared to the BP
model. In the five-step prediction, the prediction error of
the CNN-LSTM model is reduced by an average of 11.50%
compared to the LSTM model, and 47.20% compared to the

134677



IEEE Access

L. Ma, S. Tian: Hybrid CNN-LSTM Model for Aircraft 4D Trajectory Prediction

TABLE 3. Comparison of the Three Metrics for different models.

CNN-LSTM LSTM BP

Data
RMSE MAE MAPE/ % RMSE MAE MAPE/ % RMSE MAE MAPE/ %
D1 10.192 8.595 4.56 15.918 11.297 6.69 24.521 19.645 12.85
D2 18.043 15.270 6.31 23.318 18.918 9.15 31.960 28.078 16.65
D3 36.024 28.011 9.23 38.655 29.041 12.17 65.032 47.304 21.08
0.05
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FIGURE 10. RMSE metrics for single feature.
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FIGURE 11. MAE metrics for single features.

BP model. Based on the combined single-step prediction and
multi-step prediction, the prediction error of the CNN-LSTM
model is reduced by an average of 21.62% compared to the
single LSTM model, and is reduced by an average of 52.45%
compared to the single BP model. It can be seen from the
above analysis that compared with the single BP and LSTM
model, the prediction result of the CNN-LSTM hybrid model
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FIGURE 12. MAPE metrics for single features.

is more accurate and can better meet the requirements of
aircraft 4D trajectory tracking.

VI. CONCLUSION

This paper proposes a hybrid model for 4D trajectory pre-
diction of aircraft. We combined CNN and LSTM in deep
learning to effectively extract the spatial-temporal features of
the trajectory. The proposed method solves the problems of
low prediction accuracy, insufficient prediction dimensions,
and insufficient extraction of trajectory features in the exist-
ing trajectory prediction methods. We used RMSE, MAE,
and MAPE indicators to measure the model. Based on this,
we compared the proposed model with a single LSTM model
and BP model. Experimental results demonstrate that the
proposed CNN-LSTM model can more precisely predict the
4D trajectory of the aircraft, and the prediction accuracy is
much higher than that of a single model.

However, the method proposed in this paper also has the
following disadvantages: (i) The model’s prediction of the
4D trajectory is short-term, not long-term. (ii) The ADS-B
historical trajectory data used in our model is only on a single
route, which has a limited scope of application. (iii) The
trajectory of the aircraft is also affected by many other factors,
such as meteorological conditions and control orders. Due
to the limited trajectory information received by ADS-B,
the model does not consider the influence of such factors. 4D
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trajectory prediction in the airspace has a variety of situations,
and the influencing factors are also random. Corresponding
prediction models need to be established for different scenar-
ios. In the future, further research on 4D trajectory prediction
can be made from the above aspects.
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