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ABSTRACT This paper proposes an estimation of particle swarm distribution algorithm (EPSDA) to
solve the nonlinear bilevel programming problem (NBLP) by embedding the estimation distribution algo-
rithm (EDA) into the particle swarm optimization (PSO). One Gaussian function is selected to construct
the probability distribution for the superior candidate from the present population before executing the
velocity and position update rule at each iteration in PSO. Thus, some new individuals viewed as an
offspring population are generated from the probability distribution to replace some inferior particles in
the current population for making up a new population. Therefore, this proposed algorithm combines
PSO (the local search method) and EDA (the global search method) through updating the population to
enhance the efficiency of solving NBLP. In experiments, we select four representative examples for linear,
quadratic, nonlinear, high-dimensional nonlinear cases to carry out sensitivity analysis on parameters of
the proposed algorithm. The results reveal that linearly decreasing inertia weight and adaptive acceleration
coefficients are better than constant parameters. Furthermore, the multivariate Gaussian distribution can
achieve better performance compared with the normal distribution. These four examples are also used to
compare the performance of EPSDAwith ones of separate PSO and EDA by setting constant parameters. The
experiments show that EPSDA is better than separate PSO and EDA from both the quality of solution and the
computational efficiency. The results on four high-dimensional non-convex nonlinear examples demonstrate
feasibility and efficiency of EPSDA to solve the high-dimensional nonlinear bilevel programming from the
iteration number and computational time.

INDEX TERMS The estimation of particle swarm distribution algorithm (EPSDA), nonlinear bilevel pro-
gramming problem (NBLP), particle swarm optimization (PSO), estimation distribution algorithm (EDA).

I. INTRODUCTION
The bilevel programming (BLP) is an optimization prob-
lem with two hierarchical levels, e.g. the upper and lower
level decision maker (or the leader and follower). Recently,
Sinha et al. provided a comprehensive review on bilevel
optimization from the basic principles to solution strategies
(both classical and evolutionary) as well as a few potential
application problems [1]. BLP has also been applied in big
data fields [2]. Much intensive research has been done includ-
ing theories, methods and application of bilevel programming
problem because of its effectively modelling hierarchical
decision making (DM) problems [3], [4]. However, BLP is
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difficult due to its non-convexity and non-differentiability and
has been proved to be NP-Hard [5].

Considering independence on knowledge of the search
space and robustness to deal with real problems, many
meta-heuristic algorithms including genetic algorithm (GA),
particle swarm optimization (PSO), artificial neural net-
works (ANN), an estimation of distribution algorithm,
intuitionistic fuzzy method, evolutionary algorithm, fruit
fly optimization algorithm (FOA) have been proposed to
solve BLP compared with traditional mathematical algo-
rithms [6], [7]. PSO, as one of the metaheuristic algorithms,
has been proposed to solve BLP because its advantages
like low computational complexity [8], [9]. However, par-
ticles do not use its collective experience but depend on
their individual memory and peer influence to explore the
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search space, which leads to wasting computing power
due to re-exploration of already known bad regions in the
search space. Therefore, PSO is local-search intensive as a
weak-cooperative searchmethod due to itsmechanism,which
was demonstrated by Bergh and Engelbrecht [10] from the
view point of stochastic optimization.

Recently, EDA has received increasing interest because
of its advantages (e.g. a high convergent reliability and
low time consumption) for complex optimization prob-
lems [11]. Researchers hybrid PSO and EDA to make
best of their advantages and avoid their disadvantages.
Iqbal and Montes de Oca [12] presented a generic extension
to the PSO paradigm that allows a particle swarm to estimate
the distribution of promising regions and thus ‘‘learn’’ from
previous experience of the fitness landscape by exploiting
the information it gains during the optimization process.
The estimation of distribution improved particle approach,
proposed by Kulkarni and Venayagamoorthy [13], can push
the particle towards the estimated good regions in the search
space by using swarm’s collective memory. Wang [14]
proposed a novel discrete PSO based on EDA for com-
binatorial optimization problems. The proposed algorithm
combines the global statistical information collected from
local best solution information of all particles and the
global best solution information found in the whole swarm.
Liu et al. [15] hybridized PSO with EDA to enable the shar-
ing of information from the collective experience of the
swarm. These researches performed better than extant PSO
schemes because each particle may benefit from the global
statistic gathered from all the local best positions (i.e., solu-
tions) of a swarm. However, they have two limited factors,
which motivate Ahn et al. [16] to present a novel framework
of the estimation of particle swarm distribution algorithms for
using the PSO dynamics but only when this approach fails in
exploring the search space.

The above studies on the combination of EDA and PSO
have showed its efficiency to solve traditional single-level
problem because EDA enhances the global search capacity of
PSO. It is very imperative to construct an algorithm obtaining
a balance between the global search and local search abilities
because solving BLP is more complicated than the single
level problem. Therefore, we propose an estimation of parti-
cle swarm distribution algorithm (EPSDA) to solve nonlinear
BLP (NBLP). Moreover, the difference of our algorithm with
that in Ref. [16] is that a direct sampling of the probability
distribution is used only when this approach fails besides our
algorithm can solve BLP compared with single-level prob-
lems. In our algorithm, only the upper level decision variables
are chosen as the particles, of which the fitness values are
assigned as the upper level objective function values after
the lower level problem is solved by GA with returning its
solution to the upper level objective function at the given
upper level decision variable. Moreover, when the particles
are flying in line with the rules designed in the common PSO,
the EDA is embedded into the evolutionary process. That is,
before executing the velocity and position update rule at

each iteration, EPSDA selects one Gaussian function just
as EDA does to construct the probability distribution for
the superior candidate selected from the present population.
Thus, some new individuals viewed as an offspring popula-
tion are generated from the probability distribution to replace
some inferior particles in the current population. So, EDA is
incorporated into the common PSO, based on the replace-
ment. Eventually, the velocity and position of the particles
are updated to move the particles to the new position. Hence,
the difference between EPSDA and a canonical PSO is that
the selected Gaussian function is evaluated and sampled to
probabilistically update the present population s with new
generated particles before the execution of the velocity and
the position update rule.

Therefore, the main contribution of this paper is that an
EPSDA is proposed to solve NBLP by embedding EDA into
PSO. This hybrid algorithm has two distinctive character-
istics: one is that it can strike a balance of global search
and local search capacity by combining EDA’s capability of
learning dependencies between variables together with the
memory or directional sense of PSO, the other is that the
concept of elite strategy is adopted when selecting candidate
particles and incorporating the population.

The rest of this paper is organized as follows: The main
research findings about basic definitions and concepts for
NBLP are firstly provided. Then, we describe the frame-
work of EPSDA to solve NBLP after providing some back-
ground knowledge of PSO and EDA. The computational
experiments are presented to demonstrate the algorithm’s
performances with the sensitivity analysis on the parameters.
Finally, we conclude the paper with giving future research
directions.

II. THE GENERAL FORMULATION AND BASIC
CONCEPTS FOR NBLP
The general formulation of the nonlinear bilevel program-
ming problem can be stated [7]:

(NBLP) min
x∈X ,y∈Y

F(x, y) (1)

s.t.G(x, y) ≤ 0, (2)

where y is the solution to the following programming
problem:

min
y∈Y

f (x, y) (3)

s.t. g(x, y) ≤ 0, (4)

where F, f : Rm × Rn → R are the upper and lower level
objective functions, respectively. The vector-valued functions
G : Rm × Rn→ Rp and g : Rm × Rn→ Rq are the upper and
lower level constraints functions, respectively. x ∈ X ⊂ Rm

and y ∈ Y ⊂ Rn are the decision variables decided by the
upper and lower level decision makers, respectively. The sets
X and Y set additional restrictions for the involved variables.
Let S = {(x, y) ∈ X × Y : G(x, y) ≤ 0, g(x, y) ≤ 0}

denote the constraint region of NBLP. Here, S is supposed to
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be nonempty and compact to guarantee that NBLP is well
posed. S(X ) = {x ∈ X : ∃y ∈ Y , (x, y) ∈ S} denotes
the projection of S onto the leader’s decision space. For any
fixed x̂ ∈ S(X ), the lower level problem can be formulated as
follows:

P(x̂) = min
y∈S(x̂)

f̄ (x̂, y) (5)

where S(x̂) = {y ∈ Y : g(x̂, y) ≤ 0} denotes the feasible
solution set to the lower level problem for each fixed x̂. For
each x selected by the leader, we assume that the follower has
some responses, i.e., P(x) 6= ∅. Bard [17] used examples to
illustrate the difficulties that often arise when P(x) is multi-
valued and discontinuous. The readers can refer to [18] for
how to do when P(x) is multivalued. In this paper, we restrict
the situation that a unique solution to the lower level problem
exists for each fixed x ∈ S(X ). That is, P(x) is the point-
to-point map. Therefore, NBLP is to optimize F(x, y) over
the inducible region,

IR = {(x, y) ∈ X × Y : (x, y) ∈ S, y ∈ P(x)}.

Consequently, NBLP can be restated as

min
x,y
{F(x, y) : (x, y) ∈ IR}. (6)

Based on above notations, the feasible and optimal solution
to NBLP are defined as follows [7]:
Definition 1: (x̄, ȳ) ∈ S is named the feasible solution to

NBLP, if (x̄, ȳ) ∈ IR.
Definition 2: (x∗, y∗) ∈ IR is named the optimal solution

to NBLP, if F(x∗, y∗) ≤ F(x̄, ȳ)∀(x̄, ȳ) ∈ IR.

III. THE DEVELOPMENT OF THE ESTIMATION OF
PARTICLE SWARM DISTRIBUTION ALGORITHM
In this section, we propose the estimation of particle swarm
distribution algorithm in details with its steps after brief
introduction to PSO and EDA, separately.

A. THE BRIEF INTRODUCTION TO THE
PARTICLE SWARM OPTIMAIZATION
The particle swarm optimization is one of population-based
algorithms designed according to the animals’ social behav-
ior [19], [20]. PSO is a moving process that each particle flies
through the multidimensional search space while updating its
velocity and position according to both its own and the entire
swarm’s best knowledge.

Initially, a swarm of N possible particles (i.e., solutions)
are randomly generated in an D-dimensional search space.
Each particle then determines its movement through the
search space by combining some aspect of the history of its
own current and best locations with those of one or more
members of the swarm, with some random perturbations. The
next iteration takes place after all particles have been moved.
Eventually the swarm, like a flock of birds collectively for-
aging for food, is likely to move close to an optimum of the
fitness function.

A D-dimensional vector, X ki = (xki1, x
k
i2, · · · , x

k
iD) can

be used to represent the i-th particle of the swarm in
the k-th generation. Another D-dimensional vector V k

i =

(vki1, v
k
i2, · · · , v

k
iD) can be used to represent the velocity of this

particle in the k-th generation. pbestk = (pk1, p
k
2, · · · , p

k
D) can

denote the best previously visited position of the particles in
the k-th generation. gbest = (g1, g2, · · · , gD) can denote the
best previously visited position of the swarm. The steps of the
original form of particle swarm optimization are as follows:

Step 1(Initializing). Initialize random positions and veloc-
ities onD dimensions for particles, and set the iteration t = 0,
Step 2(Evaluating). Evaluate each the particle by comput-

ing its fitness function value,
Step 3(Updating). Compare current value of each parti-

cle’s fitness function with pbestk : If current value < pbest t

then pbest t = current value. Compare current value of each
particle’s fitness function with gbest: If current value< gbest
then gbest =current value,

Step 4(Generating). Update the velocity and position for
the i-th particle in the (t + 1)-th generation according to the
following equations:

V t+1
i =ωV t

i +c1r1(pbest
t
−X ti )+c2r2(gbest − X

t
i ) (7)

X t+1i = X ti + V
t+1
i (8)

where ω is the positive inertia weight, which determines the
influence of the particle’ past velocity on its present one; c1
and c2 are the cognitive and social learning factors, respec-
tively; They determine the effect of the local and global best
solutions’ velocity on the particle’s present one, respectively;
r1, r2 ∈ [0, 1] are two uniformly distributed random numbers.
Step 5(Stopping criterion). If a criterion is met, stop;

otherwise go to Step 2.
The constant Vmax was implemented to prevent the particle

from leaving out of the searching space. Equations (7) -(8)
reveal that each particle traverses the search space through
balancing its own and the social experiences [19]–[21].
Therefore, a particle is updated according to its previous
velocity, its own best information, and the whole swarm’s
global best knowledge. Thus, the values of inertia weight and
learning factor have influence on the computing efficiency.
More details about PSO with studies on the optimal inertia
weight and learning factors can be referred to [22]–[24].

B. THE BRIEF INTRODUCTION TO ESTIMATION OF
DISTRIBUTION ALGORITHMS
Estimation of distribution algorithm introduced by Müh-
lenbein and Paa β [11] as an optimization technique has
received much attention for the past few years, and success-
fully applied to optimization, engineering, cluster analysis,
machine learning and design problems [16], [25]. EDAs use
information from the optimization process to build proba-
bilistic models of the distribution of good regions in the
search space and use these models to generate new solutions.
In general, EDA will stop when satisfying the termination
criteria through iteration of the following steps:
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Step 1(Initializing). Initialize the population P(0), and set
the iteration t = 0,
Step 2(Selecting). Select population of promising S(t)

from P(t),
Step 3(Building). Build probabilistic model M (t) from

S(t),
Step 4(Sampling). SampleM (t) to generate new candidate

solutions O(t),
Step 5(Incorporating). Incorporate O(t) into P(t),

t = t + 1
Step 6(Stopping criterion). If a criterion is met, stop;

otherwise go to step 2.
Readers can also refer to [26], [27] for more details about

EDAs.

C. THE PROPOSED ESTIMATION OF PARTICLE SWARM
DISTRIBUTION ALGORITHM
In this subsection, we propose the estimation of particles
swarm distribution algorithm to solve the bilevel program-
ming problem (1)-(4). EPSDA works as a canonical PSO
described above but with some modifications which inte-
grate EDA into PSO, along the lines of the following
framework.

In the proposed EPSDA, the upper level decision variables
are chosen as the particles and the upper level objective
function value is assigned to be the fitness value of each
particle. For the evaluation on the particles, the fitness value
is calculated after the lower level problem is solved by GA at
the given upper level decision variable and the obtained lower
level solution is transferred to the upper level. Here, the lower
level problem is simplified to be a common nonlinear pro-
gramming problem, which can be solved by diverse methods
when the upper level decision variable is determined. Thus,
GA the Matlab optimization toolbox is chose as the approach
to solve the lower level problem because we code EPSDA in
Matlab.

In EPSDA, before executing the velocity and position
update rule shown in Equations (7) and (8), at each iteration
EPSDA selects one Gaussian function just as EDA does to
exploit the probability distribution for the promising region
of the superior candidate in the current population. And
then some new particles are generated from the probability
distribution to form an offspring population. Subsequently,
the population is replaced by incorporating the offspring and
parent populations. In addition, the concept of elite strategy
is adopted by selecting the better candidate particles from
the offspring population when incorporating the population.
Therefore, EDA is embedded into PSO based on the replace-
ment so that the presented algorithm can achieve a balance
between global search and local search ability. The velocity
and position of new population are updated by Equations (7)
and (8).

The detailed steps of the estimation of particle swarm
distribution algorithm are listed as follows:

Step 0(Setting). The population size (the number of par-
ticles) is set to be PopSize. The Maximal velocity, Vmax ,

the positive inertia weight ω, and two learning factors, c1 and
c2 are set. The maximum number of iterations is set as Tmax .
The counter of iteration is set to be t = 0. The velocity of
each particle V t

i in the initial population Pop(0) is randomly
generated in interval [0,Vmax].

Step 1(Initializing). The initial population Pop(0) is gen-
erated according to the following procedure: The particle
X ti = (x ti1, x

t
i2, · · · , x

t
im)

T is randomly selected in S(X ). For
the fixed X ti ∈ S(X ), the lower level problem (5) can be
solved by GA. If the optimal solution is obtained, denoted
by Y ti (X

t
i ) = (yti1, y

t
i2, · · · , y

t
in)

T , the point Z ti = (X ti ,Y
t
i )
T

is the feasible point of BLPP according to the definition 1.
X ti is called a feasible particle. After generating PopSize such
particles to make up the particle population Pop(0), go to
step 2.

Step 2(Evaluating). We compute the objective function
value of the problem (6) at the solution Z ti as its fitness value
of the particle X ti . Sort the particles in the population Pop(t)
as the ascending of the particles’ fitness values.

Step 3(Updating). Set the first particle’s position as the
pbest t . Compare the fitness value at the position pbest t with
the one at the global best position gbest . Choose the better
one as gbest .

Step 4(Selecting). Using the truncation selection with
threshold τ to select N (< PopSize) superior candidate solu-
tions from Pop(t) to form the parent population Parent(t)
based on the particles’ fitness function values.

Step 5(Building). Build the distribution of the selected
parent population Parent(t) to establish a probabilistic model
M (t).

The one-dimensional normal densities to factorize the joint
probability density function are as follows:

F(X ti |µ, σ )=
m−1∏
j=0

N (x tij;µj, σj)=
m−1∏
j=0

1
√
2πσj

e
−

1
2 (

xtij−µj
σj

)2
,

(9)

where m is the dimension of the vector, x tij denotes the j-
th component of the vector, µj and σj denote the mean
value and the standard deviation (SD) of the j-th component,
respectively. For each component, these two parameters are
estimated from the population, S(t), employing the following
two equations:

µj =
1
K

K−1∑
i=0

x tij, (10)

σj =

√√√√ 1
K − 1

K−1∑
i=0

(x tij − µj)
2, (11)

where K is the amount of samples.
In each generation, these parameters are estimated accord-

ing to the selected superior candidates, in such way as to
extract the global statistical information of the previous pop-
ulation. Hence, the parameters are updated adaptively and
accordingly in each iteration.
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Step 6(Sampling). Sample PopSize proper candidates to
be the offspring population Offspring(t) according to the
modelM (t).
Based on the probabilistic model built for the parent popu-

lation, the proposed algorithm takes samples to generate indi-
viduals randomly. To make these newly generated candidates
appropriate and to make the algorithm efficient, we set up
a regulation for them. In other words, the new particle can
be selected as a candidate solution, only when it is feasible.
Otherwise, the algorithm should abandon it and make another
sample operation. Repeat the generating and ‘‘check-up’’
procedures until PopSize new proper particles are generated.

Step 7(Incorporating). Choose (PopSize − N ) relatively
better candidates from the population Offspring(t) based on
their fitness values. The chosen best offspring candidates
and the parent population Parent(t) make up the population
Pop(t + 1).

Step 8(Generating). For all particles in the population
Pop(t + 1), the velocity of each particle in the population
Pop(t + 1) and its new position will be assigned according to
Equations (7) and (8). For each particle X t+1i , the lower level
problem (5) is solve to Y t+1i , which is the optimal solution.
The point Z t+1i = (X t+1i ,Y t+1i )T is the feasible point of
BLPP according to the definition 1.We compute the objective
function value of the problem (6) with the point Z t+1i as its
fitness value of the particle X t+1i .

Step 9(Stopping criterion). t = t + 1. The stopping
criterion is that the iteration number is bigger than Tmax or
the best fitness value doesn’t change in five iterations. Go to
Step 2, if the stopping criterion is not met.

Step 10(Outputting). Output the optimal particle, com-
pute and output the upper and lower levels’ objective function
values.

Note:We embed EDA into PSO through Step 4-7 regarded
as the replacement operation for the population. EDA can
reflect the distribution information of superior solutions by
constructing promising probabilistic models. Exploiting the
probabilistic models to traverse the search space, EDA effi-
ciently evolves the whole population towards the promising
regions of the global optimum. PSO can achieve local search-
ing for the solutions by combining its own best information
and the best knowledge of the entire swarm. The integration
of these two algorithms enables the proposed EPSDA to have
both the local searching ability of PSO and the global search
ability of EDA.

IV. NUMERICAL EXPERIMENTS
In this section, we illustrate the numerical experiments on
the selected examples from [28]–[30] to demonstrate EPSDA’
feasibility and performance. First, we use a small test exam-
ple to demonstrate the feasibility of EPSDA with constant
parameters. Second, we explain how to select test examples
to make further numerical experiments for verifying the per-
formances of the proposed algorithm. Third, we carry out
sensitivity analysis on parameters of the proposed algorithm

using Examples 1-4. Four, numerical experiments on these
4 examples are used to compare the computational efficiency
of EPSDA with PSO and EDA from aspects of the quality
of solution, iteration number and the computational time.
Finally, the high-dimensional cases are solved for further tests
on the performance of EPSDA. In each experiment exclude
Example 1, we execute the proposed EPSDA (as well as
PSO and EDA) with 20 independent runs on corresponding
examples. We record upper level objective function at the
corresponding solution, as well as the computational time
and iterative numbers. Then, we analyze descriptive statistics
values of the data such as the best, worst, mean and stan-
dard deviation (SD) to demonstrate the performance of the
proposed EPSDA. The best (or worst) means the minimal
(or maximal) upper level objective function value, iteration
number or computational time.

In all numerical experiments, a personal computer with
Intel Core 2 Duo 1.80 GHzCPU, 4.0 GBRAM, andWindows
XP operating system is used for all test examples. In addition,
Matlab with the version 9.2 (R2017a) is used for coding
the algorithm. For convenience, the lower level problem is
solved by GA in genetic arithmetic toolbox [55] to make
the presented algorithm competent for more problems and
to minimize the effect on the performance of the proposed
algorithm. As for GA employed in this paper, the parameter
setting is set as follows: Each individual is stochastically
initialized utilizing real-number encoding; the maximal num-
ber of iterations is 200 and the initial population size is 50;
roulette selection, scattered crossover, and uniform mutation
are implemented and the crossover fraction and mutation
fraction is 0.8 and 0.01, respectively. Each experiment is
terminated either when the maximal number of iterations is
exceeded or when the objective of every individual doesn’t
change in 10 iterations.

A. A TEST EXAMPLE
In this subsection, we use the following test example to
demonstrate the feasibility of this propose algorithm:
Example [28]:

min
x,y

F(x, y) = (x − 1)2 + (y− 1)2,

where y solves the following problem:

min
y
f (x, y) = 0.5y2 + 500y− 5xy

The parameters in the proposed EPSDA are all con-
stant. They are chose as follows: The population size is set
PopSize = 50, the positive inertia weight ω = 0.729, two
learning factors c1 = c2 = 2.05, the truncation selection with
threshold τ = 0.3 and the multivariate Gaussian probability
model is adopted. The maximal number of iterations is set
Tmax = 50.

We execute the proposed EPSDA on this problem. The
solution (x∗, y∗) = (10.0171, 0.8558) is obtained and the
corresponding upper and lower level objective function val-
ues are F∗(x∗, y∗) = 81.3292 and f ∗(x∗, yt ) = −0.3662,
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TABLE 1. Types of the test examples.

respectively. The upper level objective function value changes
as the iterative number as Figure 1:

FIGURE 1. The convergence procedure of the test example.

The above figure shows that the proposed algorithm is
convergent and feasible to solve the nonlinear bilvel pro-
gramming problem. In [28], the results computed by the
penalty function (a traditional method) for this test example
are (x∗, y∗) = (10.02, 0.82) as well as F∗(x∗, y∗) = 81.33.
The EPSDA algorithm can give comparable results to the
traditional method.

B. THE SELECTED EXAMPLES
Wang et al. [29] used 31 benchmark problems for simu-
lations on the proposed evolutionary algorithm based on
a new constraint-handling scheme for solving nonlinear
bilevel programming. Wan et al. [30] selected 16 exam-
ples including linear, quadratic, and other nonlinear cases
to test the proposed estimation of distribution algorithm
for solving nonlinear bilevel programming. All benchmark
problems are classified into linear, quadratic, nonlinear,
high-dimensional nonlinear case. Thus, we select eight test
examples (Appendix for details about test examples) from
references to make numerical experiments on the proposed
EPSDA and test its performances. Examples 1-4 are selected
from references as the representative examples for lin-
ear, quadratic, nonlinear, high-dimensional nonlinear case,

respectively. These four examples are used to carry out sen-
sitivity analysis of the parameters of the proposed algorithm.
Furthermore, they are also used to compare the performances
of the proposed EPSDA with those of PSO and EDA sepa-
rately. To further efficiency of the proposed algorithm, Exam-
ples 5-8, which are all high-dimensional non-convex and
non-differentiable nonlinear bilevel programming, are solved
by the proposed EPSDA. Table 1 lists the characteristics of
these examples as follows.

Some essential statements about the analysis result for
all examples are presented as follows. In our algorithm,
the fitness values of the particles are assigned as the upper
level objective function values, so the upper level objec-
tive values reflect the performance of our algorithm directly
and appropriately. For this reason, we analyze the descriptive
statistics values of the upper level to illustrate the perfor-
mance of our algorithm in subsection ‘‘Sensitivity analysis of
the parameters in EPSDA’’. Furthermore, the solution quality
is taken as a measure of the performance and efficiency of the
proposed algorithm, so subsection ‘‘Comparison of EPSDA
with PSO and EDA’’ and ‘‘The numerical experiments on the
high-dimensional case’’ present the upper and lower decision
variables (or the solutions) to compare the accuracy of the
solutions with the corresponding optimal results obtained in
the existing references. Meanwhile, three typical indicators,
i.e. the upper level solutions, the computational time and the
iterative numbers, are recorded in the following subsections
to evaluate the performance of the proposed algorithm and
compare it with separate EDA and PSO, as well as the
extant literatures from the aspects of the quality of solution
and efficiency. Here the upper level solutions represent the
solution quality in view of the accuracy while the other two
values denote the efficiency considering the convergent rate
and computational complexity. These three indicators are as
the performance measure.

C. SENSITIVITY ANALYSIS ON THE
PARAMETERS IN EPSDA
In this subsection, we carry on the sensitivity analysis (SA)
on the parameters in EPSDA including the population
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TABLE 2. Parameters for SA.

TABLE 3. The descriptive statistics values of the upper level objective function value with different population size.

size PopSize, inertia weight ω, learning factors c1, c2 and the
probabilistic model. We analyze sensitivity of each parameter
by varying it while other parameters are fixed. The schemes
of choosing parameters to carry out SA are listed in Table 2.

1) SENSITIVITY ANALYSIS OF THE POPULATION SIZE
Population size affects performance of the proposed EPSDA.
Too few particles prompt the algorithm to get trapped in
local optima, while too many particles slow down the algo-
rithm. There is no exact rule in literature for selecting appro-
priate population size suit for the instances because the
optimal size depends on the solved instance. We research
the sensitivity analysis of the population size by choosing
PopSize= 50, 100, 150, 200, 250, respectively. Table 3 lists
descriptive statistics values of the upper level objective func-
tion value for Examples 1-4 when executing 20 times running
by choosing different population sizes. Figures 2 and 3 illus-
trate the descriptive statistics values of the iteration number
and computational time, respectively.

Table 3 shows that the solutions are not sensitive to the
population size, however, the computational cost (iteration
number and computational time) are all increasing as the pop-
ulation size increases from Figures 2 and 3, which has been

reported in [22]. Thus, large population size will increase
computational efforts and may make slow convergence.

2) SENSITIVITY ANALYSIS OF INERTIA WEIGHT
The inertial weight can balance the global and local search
abilities. A larger inertia weight is better for global search,
and a smaller inertia weight is more suitable for local
search. Researchers advocated that the value of inertia weight
should be large in the exploration state and small in the
exploitation state [31]–[33]. Different procedures for set-
ting inertia weight are fixed inertia weight, fuzzy adaptive,
linearly decreasing, multi-stage linearly decreasing, linearly
increasing, non-linear, random, chaotic, exponential, Gaus-
sian, parallel and simulated annealing inertia weight [34].
A comparative study on different types of inertia weight
and linearly decreasing one achieves best performance [35].
We compare the performance of fixed (0.5,0.729 and 0.9), lin-
early and nonlinear decreasing inertia weight (LD and NLD).
Table 4 lists descriptive statistics values of the upper level
objective function value for Examples 1-4. Figures 4 and 5
illustrate descriptive statistics values of the iteration number
and computational time, respectively.

Table 4 shows that the linearly deceasing inertia weight can
obtain the better solution not only the best case but also the
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FIGURE 2. The descriptive statistics values of the iteration number when choosing different population size.

FIGURE 3. The descriptive statistics values of the computational time when choosing different population size.

worst case. Moreover, the mean and SD are the best of all
the situations. Similarly, the linearly decreasing inertia weight

can achieve the better performance on the iteration number
and computational time from Figures 4 and 5.
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TABLE 4. The descriptive statistics values of the upper level objective function value with different inertia weight.

FIGURE 4. The descriptive statistics values of iteration number when choosing different inertia weight.

3) SENSITIVITY ANALYSIS OF LEARNING FACTORS
Parameter c1 represents the self-cognition‘‘ that pulls the par-
ticle to its own historical best position, helping explore local
niches and maintaining the diversity of the swarm. Parameter
c2 represents the social influence’’ that pushes the swarm to
converge to the current globally best region, helping with
fast convergence [32], [36]. When c1 is larger, the current
particle is highly affected by its previous best particle. When
c2 is larger, the current particle is highly influenced by the
global best particle. These are two different learning mech-
anisms and should be given different treatments in different
evolutionary states [37]. Bao and Mao [38] pointed out that
a self-adaptive mechanism outperformed basic PSO variants
for most of test functions in terms of global optimality, con-
vergence speed and solution accuracy. We use five schemes
of choosing learning factors (See Row ‘‘SA3’’ in Table 2 for
details) to analyze their sensitivity on the results. Table 5 lists

the descriptive statistics values of the upper level objective
function value for Examples 1-4 when choosing different
schemes of learning factors. Figures 6 and 7 illustrate the
descriptive statistics values of the iteration number and com-
putational time, respectively.

Obviously, dynamically adjusting learning factors can
obtain better solutions than other schemes from Table 5.
Similarly, it also outperforms other schemes in term of the
iteration number and computational time for the test examples
from Figures 6 and 7.

4) SENSITIVITY ANALYSIS OF PROBABILISTIC MODEL
We compare the performance of two different probabilistic
models (normal distribution and multivariate Gaussian dis-
tribution) (See Row ‘‘SA4’’ in Table 2 for details) to analyze
the probabilistic model’s influence on the results. Table 6 lists
the descriptive statistics values of the upper level objective

VOLUME 8, 2020 137141



G. Wang, L. Ma: EPSDA With Sensitivity Analysis for Solving NBLPs

FIGURE 5. The descriptive statistics values of the computational time when choosing different inertia weight.

TABLE 5. The descriptive statistics values of the upper level objective function value with different learning factors.

function value for Examples 1-4 when choosing different
probabilistic model. Figures 8 and 9 illustrate the descriptive
statistics values of the iteration number and computational
time, respectively.

Compared with the normal distribution, the multivari-
ate Gaussian distribution can achieve better performance
from both accuracy of the solution and the computational
efficiency (iteration number and computational time) from
Table 6 and Figures 8 and 9.

D. COMPARISON OF EPSDA WITH PSO AND EDA
We compare the proposed algorithmwith PSO and EDA from
the following aspects such as the quality of the solution,
iteration number and computational time. First, we solve
Examples 1-4 by the proposed algorithm with the better
parameters as Row ‘‘SA5’’ in Table 2. We list descriptive

statistics values of the data in Tables 7-9. Second, we solve
Examples 1-4 by PSO and EDA. We execute both algorithms
for 20 independent runs on each problem. Parameters in PSO
and EDA are as those in EPSDA.

To make a comparison between the proposed EPSDA with
existing algorithms. We record the results by this proposed
EPSDA with ones by existing algorithms and list all the
results in Table 10. In addition, in Tables 7 and 10, Column
‘‘Ref.’’ sequentially lists the results obtained by Wang et al.
for Example 1 [29], Oduguwa and Roy for Example 2 [28]
and Wan et al. for Examples 3-4 [30].

Tables 7-9 show that the proposed algorithm can obtain
the solution efficiently in terms of accuracy and quality of
the solutions as well as the iteration number and computa-
tional time. We also observe that the iteration number and
the computational time increase as the scale and complexity
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FIGURE 6. The descriptive statistics values of iteration number when choosing different learning factors.

FIGURE 7. The descriptive statistics values of the computational time when choosing different learning factors.

of the problems increase. We also find it is time-consuming
to solve the lower level problem. Therefore, it will take

more time to address BLPP with high-dimensional decision
variable when we use GA for obtaining the solution to the
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TABLE 6. The descriptive statistics values of the upper level objective function value with different.

FIGURE 8. The descriptive statistics values of iteration number when choosing different probabilistic model.

lower level problem, although the iteration number is less
than 100.

Tables 7 reveals that the upper level objective function
values with their descriptive statistics by EPSDA are better
than those by PSO and EDA. Moreover, EPSDA has smaller
standard deviation than PSO and EDA separately, so, EPSDA
is a more stable method in terms of the solution quality. The
best upper level objective function values by EPSDA are as
good as or are very close to the best solutions by methods
in [28]–[30]. Even the worst upper level objective func-
tion values by EPSDA are also very near the best solutions
in [28]–[30]. So, EPSDA can find high-quality approximate
global solutions for Examples 1-4.

From Tables 10, we conclude that EPSDA can obtain
more accurate solutions compared with PSO and EDA.
As a result, EPSDA performs better than PSO and EDA
separately from the aspects of computation efficiency. Fur-
thermore, the solutions (both the best solutions and worst
solutions) by EPSDA are as good as ones by the com-
pared algorithms in the references. And some best solutions
are better than existing algorithms. For example, the solu-
tion is better than the one by [30] for Example 1 and
the solution is better than the one by [28] for Example 2.
Hence, it can be concluded that the solution by EPSDA
for Examples 1-4 are global solutions or close-to-optimal
solutions.
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FIGURE 9. The descriptive statistics values of the computational time when choosing different probabilistic
model.

TABLE 7. The upper level objective function values with their descriptive statistics analysis for the examples.

TABLE 8. The iteration numbers with their descriptive statistics analysis for the examples.

E. THE NUMERICAL EXPERIMENTS ON THE
HIGH-DIMENSIONAL CASES
To further test the performance of the proposed algo-
rithm, Examples 5-8 with high-dimensional decision variable

are solved. The parameters are also set as Row ‘‘SA5’’
in Table 2. Descriptive statistics values of the data are
computed and listed in TABLE 11 to show the solu-
tion quality and computational efficiency of EPSDA.
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TABLE 9. The computational time (second) with their descriptive statistics analysis for the examples.

TABLE 10. The comparison of the solutions by EPSDA and algorithm in References.

TABLE 11. The upper level objective function values with their descriptive statistics analysis for the examples.

The upper level objective function values are added com-
pare it with one by the proposed EPSDA. Furthermore,
the best and worst solutions by our algorithm, and the solu-
tions by Wang et al. [29] and Wan et al. [30] are listed
in TABLE 12.

The results in TABLS XI and XII demonstrate that
EPSDA is feasible and efficient to solve the nonlinear

bilevel programming even for the high-dimensional cases
from the iteration number and computational time. Fur-
thermore, EPSDA can obtain global solutions or close-
to-optimal solutions compared with the results in references
because the solutions (both the best solutions and worst
solutions) by EPSDA are as good as the ones by compared
algorithms.
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TABLE 12. The computational results for high-dimensional bilevel programming by EPSDA.

V. CONCLUSIONS AND FUTURE WORK
This paper proposes a hybrid PSO with EDA that enables
the ability of the particles to learn from the information
of the collective experience of the swarm and utilizes the
primitive intelligence to search the local area of solutions
to solve BLPP. This proposed algorithm combines PSO (the
local search method) and EDA (the global search method)
together to enhance the efficiency of solving problems. Only
the upper level decision variables are used as particles to
avoid handing unfeasible particles. In the numerical exper-
iments, 8 examples are selected to demonstrate the perfor-
mance of EPSDA, where Examples 1-4 are the representative
examples for linear, quadratic, nonlinear, high-dimensional
nonlinear case and Examples 5-8 are all high-dimensional
non-convex and non-differentiable cases. The first four exam-
ples are used to carry out sensitive analysis. The experiments
show that the linearly decreasing inertia weight and adaptive
acceleration coefficients are better than the constant parame-
ters when execute the proposed algorithm. Therefore, these
four examples are also used to compare the performance
of EPSDA with ones of separate PSO and EDA. The last
four examples by the EPSDA demonstrate the its efficiency.
The experiments illustrate that EPSDA are better than the
separate PSO and EDA. Moreover, it also can obtain global
solutions or close-to-optimal solutions compared with the
results in the references because the solutions (both the best
solutions and worst solutions) by this proposed EPSDA are
as good as the ones by the compared algorithms in the
references.
In the experiments, the process of dealing with the lower

level problem by GA toolbox in Matlab is very time-
consuming. Thus, the efficient algorithm for the lower
level problem will be one of our future work. The math-
ematical demonstration of the algorithm convergence with

computation complexity, the improvement on the probabilis-
tic model of the EDA operator and the further refinement of
the algorithm are also our future work.

APPENDIX
Ex. 1 [29]:

min
x,y

F(x, y) = −8x1 − 4x2 + 4y1 − 40y2 − 4y3,

s.t.x ≥ 0,

where y solves:

min
y
f (x, y) = x1 + 2x2 + y1 + y2 + 2y3,

s.t. − y1 + y2 + y3 ≤ 1, 2x1 − y1 + 2y2 − 0.5y3 ≤ 1,

2x2 + 2y1 − y2 − 0.5y3 ≤ 1, y ≥ 0.

Ex. 2 [28]:

min
x,y

F(x, y) = (x − 1)2 + (y− 1)2,

where y solves:

min
y
f (x, y) = 0.5y2 + 500y− 50xy.

Ex. 3 [30]:

min
x,y

F(x, y) = |2x1 + 2x2 − 3y1 − 3y2 − 60|,

s.t.x1 + x2 + y1 − 2y2 ≤ 40, 0 ≤ x ≤ 50,

where y solves:

min
y
f (x, y) = (y1 − x1 + 20)2 + (y2 − x2 + 20)2,

s.t.2y1 − x1 + 10 ≤ 0, 2y2 − x2 + 10 ≤ 0,

− 10 ≤ y ≤ 20.
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Ex. 4 [30]:

min
x,y

F(x, y) =
10∑
i=1

[|xi − 1| + |yi|],

where y solves:

min
y
f (x, y) = exp{[1+

10∑
i=1

(y2i /4000)

−

∏10

i=1
cos(yi/

√
i)]

10∑
i=1

x2i }

s.t. − π ≤ y ≤ π.

Ex. 5 [30]:

min
x,y

F(x, y) =
10∑
i=1

[|xi − 1| + |yi|],

where y solves:

min
y
f (x, y) = exp{[100+

10∑
i=1

(y2i

−10cos(2πyi))]
10∑
i=1

x2i },

s.t. − 3 ≤ y ≤ 3.

Ex. 6 [30]:

min
x,y

F(x, y) = |sin(
10∑
i=1

[|xi − 1| + |yi|])|,

where y solves:

min
y
f (x, y) = exp{[1+

10∑
i=1

(y2i /4000)

−

10∏
i=1

cos(yi/
√
i)]

10∑
i=1

x2i },

s.t. − π ≤ y ≤ π.

Ex. 7 [30]:

min
x,y

F(x, y) = |sin(
10∑
i=1

[|xi − 1| + |yi|])|,

where y solves:

min
y
f (x, y) = exp{[100+

10∑
i=1

(y2i

−10cos(2πyi))]
10∑
i=1

x2i },

s.t. − 3 ≤ y ≤ 3.

Ex. 8 [30]:

min
x,y

F(x, y) =
10∑
i=1

[|xi − 1| + |yi|],

where y solves:

min
y
f (x, y) = exp[1+

10∑
i=1

((xiyi)2/4000)

−

∏10

i=1
cos(xiyi/

√
i)]},

s.t. − π ≤ y ≤ π.
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