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ABSTRACT Frequent handover is a key challenge in 5G Ultra-Dense Networks (UDN). In this paper,
we show the significance of configuring Neighbor Cell List (NCL) in handover procedure. To cope with
the high dynamic of UDN, we propose an online-learning method, namely the Cost-aware Cascading
Bandits NCL configuration (CCB-NCL) algorithm, which applies the cascading model and Multi-Armed
Bandits (MAB) theory to configure the efficient Neighbor Cell List (eNCL) and improves the handover per-
formance by assisting the User Equipment (UE) to choose the optimal target Base Station (BS). We provide
rigorous proof of regret bound to show the asymptotic convergence of the proposed CCB-NCL algorithm.
The robustness and efficiency of the proposed algorithm are both demonstrated in different network
scenarios, where varies BS densities, BS dynamic and network heterogeneity are considered respectively.
In the simulation work, we reproduce two existing methods of configuring NCL in handover management,
named dynamic threshold based solution and received signal strength based solution. In comparison with the
existing solutions, the proposed algorithm can reduce the overlarge signaling cost and unnecessary delay in
the preparation phase of handover procedure by significantly shortening the length of NCLs and reducing the
number of scanned BSs. Extensive simulations are conducted in different scenarios to validate the robustness
of the proposed algorithm and the results show that the proposed CCB-NCL algorithm is a superior approach
to efficient handover management.

INDEX TERMS Cascading bandits, handover management, NCL configuration, user association,
ultra-dense networks.

I. INTRODUCTION
To meet the growing demand of high data rate, low latency
and high energy-efficiency in wireless networks, many new
technologies have been proposed and applied in the fifth
generation wireless communication (5G) [1]. Most of them
focused on the 5GNewRadio (NR) aspect, as well as theNext
Generation Core (NGC) architecture [2]. To provide higher
data rate with lower cost in wireless networks, the deploy-
ment of Small Base Stations (SBS) becomes one of the
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most promising technologies. For User Equipments (UE),
higher data rates are always desired in modern wireless
applications, such as Virtual Reality (VR), Augmented Real-
ity (AR), real-time and streamed multimedia, etc. [3], [4].
Therefore, the small cell related technologies become more
wildly applied recently, due to the distinct features of SBS
networks.

Moreover, the advantages of SBS promote high density
deployment of femtocells in Ultra-Dense Networks (UDN).
Essentially, the deployment andmaintenance cost of SBSs are
much lower than that in macro cellular networks, while high
data rate can be provided by SBS [3]. From the perspective
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of the wireless operator, the deployment of a large number of
SBS will not only offload huge amounts of traffic frommacro
BSs to SBSs, but also will reduce maintenance and operation
costs, and enhance the reliability of cellular networks [5].
However, the large scale and dense deployment of SBSs in
wireless network brings several challenges, while handover
management is one of the most challenging issues.

Handover management promotes the continuity of the con-
nection between Base Stations (BS) and UEs during the
movement of UEs. In mobile-assisted handover protocols,
the pilot channel quality of neighboring BSs is measured
by mobile UEs and reported to the serving BS. In this set-
ting, handover may be triggered due to the deterioration of
signal quality of current serving BS, or the events that one
of the neighboring BSs can provide better signal quality.
To improve the handover performance, many works on han-
dover management have been conducted from the perspec-
tives of industry and academic fields. The Next Generation
Mobile Network (NGMN) association and the 3rd Genera-
tion Partnership Project (3GPP) have contributed a number
of standards in wireless networks. Specifically, the scheme
named Automatic Neighbor Relation (ANR) has been stan-
dardized in [6] and the handover procedure in NR system
has been introduced in [2]. These schemes were proposed
to improve operation and maintenance in wireless network,
as well as improve the handover performance. Based on ANR
and NCL, the handover target BS is determined by the BSs
designing policy and management policy of operators. The
target BS should be restricted to a specific neighbor BS
with good channel quality so as to prevent handover failure.
The NCL provides a specific set of neighboring BSs. In this
case, if the target neighbor BS is excluded from the NCL,
the handover performance will be degraded due to missing
neighbors. Moreover, [7] showed that missing target BS in
NCL has significant impacts on the mobility robustness and
load balancing in mobility management.

To improve handover performance in UDN, NCL configu-
ration is regarded as a significant task [8]. However, the dense
deployment of BSs in 5G networks results in that NCLs
include redundant BSs, which increase the signaling cost and
time consumption on scanning the candidate BSs. Intuitively,
removing the unnecessary BSs in NCL will improve the han-
dover performance by providing lower signal overhead, faster
handover, and lower energy consumption [9]. Since the NCL
is used to control the scale of cell measurements in handover
management, the mobile UE should receive the informa-
tion about the pilot channels from potential neighbor BSs
in NCL, rather than all potential BSs [10]. The NCL-based
solution consumes much less time to acquire necessary mea-
surements. More specifically, in a NCL-based solution, each
UE is presented with a NCL which only contains necessary
candidate BSs. Then, the mobile UE searches for the target
BS by monitoring only the pilot signal quality of the candi-
date BSs in NCL. From this perspective, the configuration
of NCL plays an important role in handover management.
A NCL should contain enough potential BSs to ensure that

at least one BS can satisfy all the handover requirements.
However, two facts make UE suffer from excessive latency
before finding the target neighboring BS. (1) the ultra dense
deployment of SBSs makes the scale of NCL over large; (2)
the measurement capacity of mobile UE is limited. And then
excessive latency will cause call drops, packets missing or
other degradation on handover performance.

A. RELATED WORKS
In some related works, NCLs were configured manually
by estimating the signal propagations at the beginning of
the network deployment with toolkit [11], [12]. Intuitively,
the configuration of NCL was simply selecting all cells
overlapping with the serving BS according to the network
topology. However, it is quite different in practice, where
the radio coverage will be influenced by the environment.
Consequently, obtaining accurate predictions of BS coverage
is very complex. The problems in configuration of NCL
includes dealing with missing neighbors, Physical Cell Iden-
tifier (PCI) confusion, ultra-distant neighbor cell, redundant
neighbor cell, etc. [13]. In the manual configuration of NCL,
static information, such as BS location, antenna pattern, and
received signal pattern, was used to predict cell coverage and
neighbor relations. For example, the authors in [13] assigned
different weighted factors to multiple static parameters of the
BSs, and manually configured the NCL with the descending
neighboring coefficients. Therefore, the handover procedure
was performed with high complexity [12], and the static pre-
dictions were always lack of accuracy and could not capture
the sensitivity and dynamics of radio propagation conditions
in real networks.

Someworks on configuration of NCL have been conducted
by using knowledge of real network parameters. Initially,
a BS needs to sense the spectrum and discover all BSs in
its neighborhood, and then the NCL for this BS is derived
automatically. The key problem in the sensing phase is deter-
miningwhether a neighbor cell should be added toNCL.Gen-
erally, the NCL should adapt to the changes of transmission
characteristics (e.g., transmitting power, distance between
BSs), and the cell radius also should be considered [8].
In some special cases, the neighbor BSs may be blocked by
building or other occlusions, this problem has been solved
in [5], [14]–[16]. To mitigate the impact of disappearing BS,
the authors in [17] proposed a NCL optimization method by
considering the fade duration outage probability. Considering
both the statistic of previously visited cells and the estimation
of distance between BSs, the authors in [16] proposed a prin-
ciple of obstructed paths to help UE discover the neighboring
BSs.

Once the NCL is initialized in UDN, it must be optimized
due to its overlarge size. In [18] and [19], the length of NCL
was reduced by detecting the BSswith low level of pilot chan-
nel and removing them from NCL. Taking the environmen-
tal changes into consideration in NCL optimization, authors
in [10] presented a newmethod including a self-configuration
phase and a self-optimization phase, where the measurements
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reported by UEwere used to optimize the NCL automatically.
In [20] and [21], the authors exploited the modification in
the scanning interval of individual cells, and proposed a
dynamic adaptation of NCL based on considering two criteri-
ons including the probability of handover to a specific cell and
Received Signal Strength (RSS) observed by the UE. In [22],
the measured RSS in the handover to femtocells was recorded
by its serving macrocell.

B. MOTIVATIONS
For mobile UEs in cellular networks, handover management
allows them to switch network access points, while guaran-
teeing the QoS and maintaining service continuity. However,
the high dynamic and heterogeneity of 5G UDN make the
handover management a critical challenge. In the handover
procedure proposed by 3GPP for 5G networks, there are still
several works to be done in some specific real-life scenarios
where ultra-dense deployment of BSs is considered [23]. It is
worth noting that the configuration of NCL plays an impor-
tant role in handover management, which is used to ensure
that the UE can be switched to the best target BS in an idle
state. Therefore, the adjustment and optimization of NCLs are
the key to guarantee the handover performance [13], [17].

NCL provides candidate BSs for handover, and the opti-
mization of existing list is critical which has not been
addressed thoroughly. Especially, the cell load information
has not been fully utilized. For instance, in some related
works [10], [18]–[21], the configuration of NCL was mainly
based on RSS from neighboring BSs. This information was
provided by the measurement reports from the correspond-
ing UE. However, these handover management schemes con-
sidered only RSS for making the handover decision, without
considering potential overloading of the target BSs, which
can be optimized in configuration of NCL to enhance the
handover performance [4]. Moreover, these works did not
take the long-term performance knowledge into considera-
tion, which means that the knowledge of previous handover
decision is omitted in configuration of NCLs.

Learning algorithm can utilize the statistic information of
previous handover results and provide an efficient solution
to optimize NCL. Motivated by this, in this paper, we adopt
the bandits algorithm in reinforcement learning theory to
make full use of long-term knowledge of previous handover
decisions, which can reflect the dynamic characteristics of
radio propagation conditions. Moreover, in our proposed
algorithm, the configuration of NCL is based on both RSS
and the remaining capacity of the candidate BSs. Compared
with the solutions proposed in previous works which only
considered the instant RSS, the solution proposed in this work
performs better in reducing the signaling cost and the latency
caused by scanning overloading BSs.

C. CONTRIBUTIONS AND STRUCTURE
In our work, we consider both RSS and cell load of potential
target BSs and use a learning method based on the long-term
performance to configure the optimal NCL, which can avoid

some unnecessary scans of BSs in NCL. More specifi-
cally, three main components are considered in the proposed
approach of efficient handover management. First, we pro-
pose building an efficient NCL (eNCL) for each BS from
a ground-set NCL. The eNCL provides UE with a list of
potential handover targets sorted according to their qualities,
and the size of the list is limited. The ground-set NCL is
the list of all potential BSs and its size can be significantly
larger than that of the eNCL. Second, we adopt a cascading
model [24] for the configuration of eNCL. In this model,
the UE is recommended with the eNCL from its serving
BS. UE examines the list from the top to the bottom, and
measures each candidate BS one-by-one. UE will settle on
the first ‘‘attractive’’ BS, whose measurement, including both
RSS and cell load, is above the handover threshold (pos-
sibly with some padded margin). Lastly, the configuration
of eNCL is done online, via iterations with UE handovers.
This naturally poses as a bandit problem, therefore we lever-
age the cost-aware cascading bandits [25] in the algorithm
design. However, unlike the simple cascading bandits setting
in [25], UDN based on small BSs (such as femto and pico),
often encounter delay or missing UEmeasurements, based on
which we havemodeled the features of reward and cost on the
proposed algorithm. The main contributions of this paper are
summarized below.

1) We propose the conception of eNCL, to handle the over
large size of NCL in UDN. Based on this novel con-
ception, we take the long-term performance knowledge
into consideration, and present a cascading bandits
framework for handover process.

2) We model the scanning latency as cost to the value
function in the online learning process, and thus force
the eNCL to reduce the latency in handover preparation
phase by avoiding unnecessary BS scans.

3) We propose the Cost-aware Cascading Bandits NCL
configuration (CCB-NCL) algorithm to dynamically
and resourcefully configure the eNCL with conver-
gence guarantee. Furthermore, finite-time analysis of
the proposed algorithm suggests a sublinear regret
behavior.

4) We conduct series of simulations of different net-
work scenarios to evaluate the proposed handover
scheme, and the results show the superiority of the pro-
posed CCB-NCL algorithm compared to the existing
methods.

5) Finally, we demonstrate the robustness and efficiency
of the proposed algorithm in different network scenar-
ios considering varies BS densities, BS dynamic, and
network heterogeneity, respectively.

The rest of the paper is organized as follows. The system
model is presented in Section II. In Section III, the han-
dover management problem is formulated with cascading
bandits theory. Section IV introduces the CCB-NCL algo-
rithm, along with a convergence analysis of the proposed
algorithm. The simulation results are presented in Section V.
Finally, Section VI concludes the paper.
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Through this paper, we use L to represent a NCL.
|L| denotes the number of BSs in L, and L(n) represents
the n-th BS in L. For the random variable P, its observation
and expectation value are represented as P̂ and P̄, respec-
tively. The notation 1{·} is used to denote the indicator func-
tion. Expectation operation is represented by E[·]. Finally,
the notation Pr{·} is used to denote the probability of some
events.

II. SYSTEM MODEL
In this paper, we consider an ultra dense cellular network,
which contains a set of BSs (the average BS density is in
the range of 128 to 512 BSs /km2) and a random number of
UEs distributed according to a homogeneous Poisson Point
Process (PPP) with intensity λP. For heterogeneous networks,
the set of BSs, N = {1, . . . ,N }, consists of macro BSs
and femto BSs with different coverage and capabilities. It is
assumed that each type of BS has the same transmit power,
ie. Pmacro or Pfemto. And the association regions for the
BSs can be assumed as a weighted voronoi tessellation [26].
Considering the random movements of UEs, we assume the
number of UEs in the coverage region of a specific BS follows
the Poisson distribution with mean N̄ = λPS, where S is the
area of the coverage region.

FIGURE 1. Example of user association in UDN.

With the depicted system model, we give an example
of user association in UDN as shown in Fig. 1, where
UE 1 moves within the cell coverage area of its serving BS.
UE 1 keeps monitoring the serving channels, and transmits
the measurement reports to its serving BS. Considering core
network functionalities, the cells are connected to the Evolved
Packet Core (EPC), more specifically to the Access Mobility
Function (AMF) and the Serving Gateway (S-GW). Further-
more, the BSs are interconnected via Xn interface, which
enables the BSs to directly communicate with each other
and perform functionalities such as handover [2]. Therefore,
the users in the network can handover among different cells.

The handover type considered in this paper is described
as the Xn based inter NG-RAN handover procedure in [2],
which starts with measurement reports from the UE to its
serving BS [27]. When the UE is triggered for handover,
both RSS and the cell load are used as criteria to select
the target BS. RSS observed by the UE is used to evaluate
the channel quality of a candidate BS, and we assume RSS
of the target BS should be higher than a fixed threshold
(i.e. −70dBm in this work) to provide stable channels [28].
Besides, we define the cell load as the ratio of the number
of connected UEs to the maximum number of UEs can be
served, and the cell load should not exceed 3/4 [4].

As it was mentioned in [2], the handover procedure con-
tains three phases: handover preparation, handover execution
and handover completion. This paper focus on the first phase,
where a NCL is generated for UE. Once the handover is
complete, the performance is evaluated using some indicators
such as signalling cost and handover latency caused by scan-
ning candidate BSs, and the operation repeats in the next slot.
The sequence of operations within each slot can be illustrated
in Fig. 2.

FIGURE 2. The handover operation for UE in slot t.

III. PROBLEM FORMULATION
A. CASCADING BANDITS MODEL
In this part, we adopt the cascading bandits model [24] to
formulate the NCL optimization problem. In this model,
we consider a K-armed stochastic bandit system, and all
BSs are represented by the arms in ground set K. Specif-
ically, the learning agent interacts with the environment,
where |K| BSs are distributed, and estimates the statistics
of the BSs. When UE is triggered for a handover process at
time t , the agent recommends an eNCL, denoted as Lt =
{Lt (1),Lt (2), . . . ,Lt (|Lt |)} ∈ 5|L|(K), from the ground
set K. Note that |L| can be much smaller than |K|. Then UE
examines the recommended list Lt sequentially. UE chooses
the first suitable candidate BS based on RSS and cell load.
Denote L̃t as the list of BSs that have been actually examined
in slot t , L̃t ⊆ Lt , and then we have that the target BS is
the last BS in L̃t . If the handover requirements could not be
satisfied by any BS in eNCL, the handover fails and the UE
suffers call drops. Then, the above procedure will repeated in
next time slot.

B. COST-AWARE CASCADING BANDITS
To improve the handover performance, it is very critical to
avoid unnecessary BSs scanning. Thus, we need to reduce the
length of NCL, and adjust the order of BSs in the presented
eNCL. To achieve more accurate evaluation of BSs, we take
both channel quality and cell capacity of BSs into consider-
ation in NCL optimization. In order to explicitly enforce the

134140 VOLUME 8, 2020



C. Wang et al.: NCL Optimization in Handover Management

constraint of delay in handover preparation phase, we have
modified the cost-aware cascading bandits framework pro-
posed in [25] and modelled the number of scanned BSs as a
random cost.

To evaluate the presented eNCL at each time slot t ,
we adopt the conception of reward in bandit theory. In han-
dover process, the straightforward reward that learning agent
received is relevant to the distributions of the RSS and cell
load of the target BS. Specifically, the reward depends on
the sample value of RSS and instantaneous available capacity
of the target BS at time slot t . Before finding the target BS,
the number of scanned BSs in the presented NCL is formu-
lated as the cost in this time slot. Combining the rewards and
costs, we hence have the evaluation of the presented NCL at
each time slot t . After several learning iterations, statistical
values can be used to approximately describe the unknown
RSS and cell load of BS, and the agent could finally present
UE with an eNCL.

For the UE triggered for handover, the received power from
the i-th BS is denoted as Pi,t , which is dependent on path loss
and small-scale fading at time slot t ,. In this work, we adopt
Rayleigh fading as small-scale fading between UE and BS.
At time slot t , Pi,t is a sample value from a given distribution.
Thus, the expected value of Pi,t can be expressed as

P̄i = lim
T→∞

1
T

T∑
t=1

Pi,t (1)

Similarly, we formulate the instantaneous cell load of the
i-th BS in the arbitrary time slot t as a sample value ηi,t ,
which is determined by the number of UEs associated to
the i-th BS. Due to the random distribution of mobile UE,
we use a homogeneous PPP to model the locations of UEs.
It is reasonable to assume that in the arbitrary time slot t
the number of UEs served by the i-th BS follows a Poisson
distribution with mean number equals to the average number
of UEs located in the coverage area of the i-th BS. Then
the linear correlation is adopted between the cell load and
the number of UEs associated to the BS. Therefore, we have
the expected cell load of i-th BS as

η̄i = lim
T→∞

1
T

T∑
t=1

ηi,t (2)

Definition 1: We use rt to represent the straightforward
reward received by the learning agent at time slot t. After
scanning |L̃t | BSs in the presented NCL, the target BSL(|L̃t |)
is chosen at time slot t. Considering the RSS and cell load of
the target BS, the straightforward reward is defined as

rt =
P
|L̃t |,t

η
|L̃t |,t

(3)

For a given NCL Lt , we use L̃t to denote the subset of
BSs scanned until finding the target BS. Then, the length
of L̃t , denoted as |L̃t |, is random and depends on the observed
Pi,t , ηi,t as well as the stopping condition (e.g., one scanned
BS satisfies all the requirements of handover).

Definition 2: The cost in the evaluation of the NCL at time
slot t is denoted as costt , and is set to be proportional to the
number of scanned BSs in Lt . It can be written as

costt = β|L̃t | (4)

where β represents a constant coefficient.
Considering the above definitions of reward and cost,

the net-reward received by the learning agent at time slot t
is defined as

rewardt =
P
|L̃t |,t

η
|L̃t |,t

− β|L̃t | (5)

and the per-step regret at time slot t can be defined as:

regt = reward∗ − rewardt (6)

where reward∗ denotes the optimal net-reward that could
be obtained with the optimal policy at time slot t . If the
statistics of Pi,t , ηi,t are known beforehand, the optimal NCL
L∗ is determined, also the optimal reward can be generated
according to the same stopping condition.

The optimal per-step reward reward∗ can be written as

reward∗ =
P̄i∗

η̄i∗
− β (7)

where the optimal NCL L∗ includes BSs with P̄i
η̄i
> τ , and

ranks the BSs in a descending order of P̄i
η̄i
. The optimal target

BS i∗ (sometimemay not be the handover target BS) is placed
at the fist position in L∗.

Without prior statistics of {Pi,t , ηi,t }, the learning process
of these two distributions can be viewed as a bandit prob-
lem. Specifically, taking the observation in learning steps
into consideration, we aim to configure Lt to minimize
the cumulative regret over time horizon T , which is given
by

R(T ) =
T∑
t=1

E[regt ] = T · reward∗ −
T∑
t=1

E[rewardt ] (8)

IV. NCL OPTIMIZATION ALGORITHM DESIGN
With the objective of overcoming the limitations of the
RSS-based handover management, this paper aims at design-
ing a more efficient NCL configuration algorithm in UDN,
and improving the handover performance. The main idea is
to provide UE with a sorted BSs list with limited length.
As mentioned in Section III-B, the handover management
problem formulated in a cascading bandits framework calls
for a direct application of the proposed cascading bandits
algorithm in [24]. However, such a straightforward appli-
cation ignores some practical constraints in user associa-
tion problem in UDN. In this section, we highlight several
limitations in UDN, and discuss how to design the eNCL
configuration algorithm to handle the NCL optimization
problem.
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A. CCB-NCL ALGORITHM
In this section, we address the user handover problem with
bandit theory. More specifically, we are interested in finding
a NCL configuration strategy, which can minimize signaling
cost and handover delay. Based on the formulation of the
cascading bandits model in Section III-B, we now have an
exploration versus exploitation dilemma which is a trade
off between exploring the environment to find advantageous
actions, and taking the empirically optimal action based on
current observations. Actually, this scenario can be viewed as
searching for a balance between presenting currently optimal
NCL with those most potential target BSs, and sampling on
those BSs with less estimation. Successive presentation of
NCL yields rewards, which are independent and identically
distributed according to the unknown distribution of RSS and
cell load. The most common ideas of bandit algorithms to
estimate unknown distribution come from Upper Confidence
Bound (UCB) policy. In the UCB policy, an upper confidence
index is associated to each item in the ground set. This index
represents a biassed evaluation of each item, and is generally
complex to calculate. For a specific item, the upper confi-
dence index depends on the entire sequence of rewards and
costs generated in the learning process. In each step, the pol-
icy uses it as an estimation for the corresponding reward
expectation, and picks the item with the current highest index
for the next play [29].

One critical limitation of applying the algorithm proposed
in [25] to handover management, is that handover delay could
not be taken into consideration. We are interested in finding
a NCL configuration algorithm that minimize signaling cost
and handover delay. It is worth noting that by including the
scanning cost costt = βL̃t in the learning process, the pro-
posed NCL configuration algorithm can balance the tradeoff
between exploitation and exploration of potential target BS,
while minimize the number of scanned BSs and the total
length of presented NCL.

In order to address the NCL configuration problem
in handover process, based on the UCB policy, we pro-
pose the Cost-aware Cascading Bandits NCL configuration
(CCB-NCL) algorithm, which consists of a initialization
phase and a iteration phase. During the initialization phase
of the learning process, UE arrivals at a specific location on
the edge of the coverage area of serving BS, and handover is
triggered. Here, UE is presented with the NCL that contains
all potential BSs. UE scans each BS in NCL sequentially,
until finding a BS that satisfies all handover requirements. For
the i-th scanned BS, UE measures the RSS Pi, and checks the
cell load ηi. After finding the target BS, these measurements
and other metrics such as the number of scanned BSs are
transmitted to MME (Mobility Management Entity).

In the t-th iteration, MME evaluates all potential BSs
based on the measurements recorded in the previous iteration.
Using theUCBpolicymentioned above, the upper confidence
indexes of all BSs are calculated. The eNCL Lt includes BSs
with upper confidence index no less than the threshold, and

ranks these BSs in a descending order of upper confidence
index. Then, UE scans the BSs sequentially until a handover
target BS is found. MME receives the sample values of RSS
and cell load of each scanned BS, and updates the estimations
of these two distributions of BSs iteratively. The reward
and cost corresponding to Lt are calculated according to (3)
and (4) respectively. Subsequently, in the (t + 1)-th iteration,
the handover is triggered again when a UEmoves to the same
location, and the learning process will repeat. The eNCL
obtained after T iterations can be regarded as the optimal
configuration of NCL associated with the specific location.
Then, any UE moved to this location could be presented with
the trained eNCL without any calculations.

The CCB-NCL is given with the pseudo code in
Algorithm 1. Here, the total times that the k-th BS has been
chosen byUE right before time t is tracked and represented by
the variable Nk,t . The sample values of Pk and ηk at time slot
t are denoted by P̂k,t and η̂k,t , respectively. In this algorithm,

we adopt uk,t =
√
α log t
Nk,t

as the UCB padding term on the
state of the k-th BS at time slot t , and the UCB parameter α
is a positive constant no less than 1.5 [29].

Algorithm 1 Cost-Aware Cascading Bandits NCL Con-
figuration Algorithm
Input: number of iterations T , UCB parameter α, UCB
threshold τ ;
Output: eNCL LT
Initialization: Select all BSs in K, and observe their
RSS and cell load;
Iteration: while t < T do

for k = 1, 2, . . . , |K| do
if P̂k,t+uk,t
η̂k,t+uk,t

> τ then
k → Lt

end
end
Rank BSs in Lt in the descending order of
P̂k,t+uk,t
η̂k,t+uk,t

> τ

for i = 1 : Lt do
Pull BS Lt (i) and observe PLt (i),t , ηLt (i),t ;
if BS in Lt is chosen then

break
end

end
Update Ni,t , P̂i,t , η̂i,t ;
Calculate the cost βL̃t and reward reward(t) at t .
t = t + 1

end

B. ALGORITHM ANALYSIS
In this section, we analyze the performance of Algorithm 1
in terms of the finite-time regret as a function of time.
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We present a regret bound of the optimal eNCL in the fol-
lowing theorem.
Theorem 1: Denote 12

i = (P̄i − ω̄i)2. When Algorithm 1
runs with UCB parameter α, and in a given time horizon T ,
the regret is upper bounded by

R(T ) ≤
∑

i∈K\L∗

(16Kα) log(T )

12
i

+ O(1). (9)

Proof: The complete proof is shown in Appendix . The
proof contains four main steps. First, we show that the regret
comes from the event that there exists a BS i whose sample
average of RSS or cell load lies outside the corresponding
confidence interval, and the event that the BSs in list Lt are
not ranked in correct order. Second, the regret at time t is
decomposed into three parts according to different events.
Third, we calculate the regret bound based on the number of
times that each suboptimal item is chosen in T steps. Finally,
we sum up the regret of all suboptimal items.

From Theorem 1, we can see that the extra cost associated
with scanned number have no effect on the order of the regret
upper bound. Intuitively, as bandit learning results gradually
converge to the optimal eNCL, the additional cost caused
by the unnecessary scanning of BSs diminishes and has no
impact on the scaling of regret with respect to T . This indi-
cates that the cost-aware cascading bandits model can be well
adopted in handover management.

V. SIMULATION AND PERFORMANCE ANALYSIS
A. SIMULATION ENVIRONMENT
In this section, we conduct several sets of simulations to illus-
trate the advantages of the proposed handover management
solution. We apply the proposed CCB-NCL algorithm in
different scenarios, and accomplish the performance compar-
isons between the proposed algorithm and the existing solu-
tions. Specifically, the performance of traditional RSS-based
solution is adopted as the benchmark. We consider the UDN
where the BSs are densely deployed in urban environment.
To account the irregularity of the real networks, we adopt
a Voronoi model rather than the ideal grid-based hexagonal
cells model. In simulations, BSs are randomly distributed and
the coverage regions of the BSs form a Voronoi tessellations.
Unless otherwise specified, all BSs are with fixed transmit
power. To simplify the simulation, we initialize the network
where each UE associates with one of these BSs based on the
RSS.

In this work, we simulate a 500meters by 500meters urban
area, where there are 64 femtocell BSs with a fixed transmit
power, i.e.Pfemto = 23 dBm. Besides, the UEs are distributed
according to a PPPwith intensity λ = 1/250 [20].We assume
that UEs in this areamove towards random directions, leaving
or entering the coverage of a specific BS. Without loss of
generality, we consider a generic UE (also referred to as the
UE of interest), who moves to the cell edge of its serving BS.
The statistic path loss model and the Rayleigh fading are used
to calculated the RSS at the UE of interest, and the cell load

of each BS is assumed to be linear to the number of UEs in
its coverage area.

As for the pathloss model, we adopt the configuration of
HetNet scenario in 3GPP specifications [30], and conduct
the system-level simulation with the 3GPP pathloss model in
small cells networks, which is given by

PL(d)[dB] = 15.3+ 37.6× log10(d)+ Low, d > d0. (10)

All the other parameters of the general urban explicitly
model are provided in Table 1.

TABLE 1. Simulation parameters.

In order to verify the adaptability of the proposed algo-
rithm, we simulate networks with different BS densities. Sim-
ilarly, the robustness of the CCB-NCL algorithm is verified
through simulations in the scenarios where dynamic BSs are
considered. When the dynamic presence of BS is considered,
it is assumed that the potential target BS e might be turned
off with off-probability pe. The off-probability of each BS
is generated randomly in each iteration and unknown to UE.
Moreover, we also verify the robustness of our proposed
algorithm in heterogeneous networks where macro BSs and
femto BSs are coexist and with different transmit power, i.e.
Pmacro = 35 dBm and Pfemto = 23 dBm, respectively [16].
The cell capacity of each macro BS is four times of that in
one femto BS. Unless otherwise specified, in all scenarios,
the learning process iterates 104 times and the location of UE
is regenerated for each simulation.

B. COMPETITIVE ALGORITHMS
We compare the proposed algorithm with two other NCL
configuration schemes: (1) self-optimizing algorithm with
dynamic threshold based on the previous handover informa-
tion [20], [21]; (2) RSS-based NCL configuration method in
the traditional handover management [6].

The first compared algorithm configures NCL based on
the dynamic threshold, and is denoted as ‘‘DT-based solu-
tion’’. In this solution, the probability of handover to each
BS and the SINR observed by the UE were used to select
the candidate BSs [20], [21]. Under this setting, BSs with
higher probability to be selected as the handover target, will
be scanned more frequent. In the simulations using the first
compared algorithm, the probability of handover to the given
cell is calculated by the statistic of 103 handover results.

The secondmethod is traditional "RSS-based solution" [6].
In this method, the potential BSs are chosen based on their
instantaneous performance without leveraging prior informa-
tion. The RSS-based NCL is configured with sample value of
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RSS, and it includes BSswhosemeasurement of RSS is above
the handover threshold. Once the UE moves to the cell edge
and the channel deteriorates below a threshold, the handover
procedure is triggered and the RSS-based NCL is presented
to the UE.

C. PERFORMANCE METRICS
In order to illustrate the enhancement on handover perfor-
mance using the proposed algorithm, we adopted four metrics
including the length of NCL presented to UE, the number of
scanned BSs before the handover target is chosen, the propor-
tion of wrong cells in NCL, and the probability of choosing
the optimal BS as handover target. The length of NCL is
in proportion to the signaling cost in handover process, and
the number of scanned BSs influences the handover delay in
preparation phase significantly. Moreover, a cell in NCL is
defined as a wrong cell if its RSS is lower than −70 dBm or
the cell load exceeds 3/4, and the optimal BS is defined as the
candidate BS with highest RSS and its cell load is less than
3/4 at the same time. Then the proportion of wrong cells and
the probability of choosing the optimal BS as the handover
target can reveal the performance of NCL configuration algo-
rithm. We select these four metrics to illustrate the advantage
of the proposed CCB-NCL algorithm on reducing signaling
cost and handover delay.

D. SIMULATION RESULTS
In this section, we present the results of five experiments
to reveal the superiority of the proposed algorithm in han-
dover management, and compare its performance with both
DT-based and RSS-based NCL configuration methods. In the
first experiment, we have studied the impacts of CCB-NCL
algorithm on the handover performance, in terms of the
length of NCLs, and the number of scanned BSs. In the sec-
ond experiment, we have analyzed the adaptability of the
proposed algorithm considering different BS densities. The
robustness of proposed algorithm is validated in the third
experiments, where the dynamic property of BSs in a real
networks is considered. Then, in order to evaluate the effi-
ciency of the proposed algorithm, we have compared the
performance of NCLs presented after different numbers of
iterations. Lastly, we apply the proposed algorithm in a het-
erogeneous network, and compare its performance with the
competitive solutions.

We first evaluate the performance of the proposed
CCB-NCL algorithm and compare it with two competitive
solutions. In Fig. 3, we plot the Cumulative Distribution
Function (CDF) of the length of NCLs in 500 independent tri-
als, using the proposed algorithm, DT-based and RSS-based
methods, respectively. As it can be observed from Fig. 3,
the length of NCL presented by the proposed algorithm is
smaller than that in competitive solutions. By calculating the
average length of NCLs obtained from three solutions, it can
be found that the proposed algorithm has reduced the length
of NCL by nearly 50% and 80%, respectively. This is caused
by several facts. The density deployment of femtocell BSs

FIGURE 3. Comparison of NCL length between the proposed algorithm
and competitive solutions.

results in large number of potential BSs that satisfy the RSS
requirement. However, most of them are not necessary to
be included in presented NCL, due to their limited physical
capacities. Moreover, the target BS of handover is selected
from several top-ranked BSs in the list, and there is no need
to examine all the potential BSs on the remaining NCL.
Thus, by excluding those potential BSs with high cell load,
the proposed algorithm reduces the length of NCL signifi-
cantly. Since the signaling cost is approximately proportional
to the scale of the NCL, the proposed CCB-NCL algorithm
outperforms both the DT-based and the RSS-based method in
reducing the signaling cost during the handover preparation
phase.

FIGURE 4. Comparison of the number of scanned BSs in NCLs obtained
from different solutions.

Scanning of unnecessary BSs in theNCL incurs extra delay
in the preparation phase of handover procedure. Thus, the dis-
tribution of the number of scanned BSs is exhibited in Fig. 4.
It shows that the proposed CCB-NCL algorithm outperforms
competitive solutions on the number of scanned BSs. Specif-
ically, more than 80% of UEs can find the target BS after
scanning the first BS in the eNCL, and most of them require
to scan no more than 3 BSs. However, given a NCL generated
by DT-based or RSS-based solution, only nearly 63% or 58%
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UEs can achieve that performance. This is due to the fact that
the proposed learning-based algorithm considers not only the
channel quality of each BS, but also the cell load, which leads
to amore accurate evaluation of the candidate BSs.Moreover,
the eNCL presents BSs with higher potential to UE. Intu-
itively, the excessively redundant elements in other solutions
consume unnecessary time and increase the length of NCL.
Thus, the scanning time for the UE to identify the target
BS in the preparation phase will increase. For the traditional
solution based on RSS, the instantaneous channel qualities
are used to rank the candidate BSs, which could not reflect
the long-term performance of BSs. Considering the numbers
of scanned BSs, the proposed CCB-NCL algorithm enhances
the efficiency of finding the target BS, and outperforms
the competitive solutions in reducing the delay in handover
preparation phase.

FIGURE 5. Comparison of the number of scanned BSs in NCLs obtained
with different BS densities: (a) number of BSs = 128; (b) number of
BSs = 32.

Secondly, we study the adaptability of the proposed algo-
rithm by considering different BS densities. The numbers of
BSs are set from 32 to 128 in different network sceneries,
and the intensities of PPP used to describe the corresponding
distribution of UEs are set from λ1 = 1/500 to λ2 =
1/125 [20]. It can be observed in Fig. 5, the average numbers

of scanned BSs for three solutions decrease with BS den-
sity. More specifically, in the network with high BS density,
the average numbers of scanned BSs has decreased from
3.2 to 1.5 using the proposed algorithm, while it decreases
from 2.3 to 1.1 in low BS density setting. Thus, regardless of
the changes of BS densities, the adaptability of the proposed
algorithm is guaranteed, and the performance improvement
of the proposed algorithm is more significant when the BS
density increases.

FIGURE 6. Impact of BS density on the average length of NCLs obtained
from different methods.

Fig. 6 shows the impact of BS density on the average
length of NCLs obtained from different methods. As it can
be seen, the average length of NCLs presented by three solu-
tions increases with BS density. Especially for the RSS-based
solution, the length of NCL increases linearly and is much
larger than those in other two solutions. This is due to the fact
that there are more redundant BSs in ground-set NCL when
the BS density increases. Even though the DT-based solution
reduces the scale of NCL and keeps it in a lower level, our
proposed algorithm provides more significant improvement.
Compared with the RSS-based solution, the proposed algo-
rithm reduced more than 60% of NCL length for different
BS densities. Also, approximately 20% of the average length
of NCL presented by DT-based solution can be reduced by
the proposed algorithm. This result shows that the proposed
algorithm is adaptive to the change of BS densities while
reducing the scale of NCL significantly.

Besides, we also show the impact of BS density on the
wrong cell proportion in NCLs in Fig. 7. It can be observed
from Fig.7 that, the proposed algorithm outperforms other
two solutions on the wrong cell proportion in all network
scenarios. Specially, compared with the RSS-based solution,
the proposed algorithm optimizes NCLs through reducing
the wrong cell proportion by approximately 90%. For the
DT-based solution, even though the wrong cell proportion
decreases with the increasing of BS density, it still exceed
that in the proposed algorithm for all network scenarios. This
result shows that the proposed algorithm can optimize the
NCL by excluding the BSs which do not satisfy handover
requirements.
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FIGURE 7. Comparison of the wrong cell proportion in NCLs for different
solutions.

FIGURE 8. Comparison of the probability of choosing the optimal BS as
the handover target for different solutions.

Likewise, as it can be seen from Fig. 8, the proposed
algorithm outperforms other two solutions on the probability
of choosing the optimal BS as the handover target in different
network sceneries. Specially, compared with the DT-based
solution and the RSS-based solution, the proposed algorithm
improves the handover performance through increasing the
probability by approximately 3 times and 7 times, respec-
tively. In spite of that the optimal BS can provide highest
RSS and sufficient cell capability, there still exist multiple
sub-optimal BSs that also meet the handover requirements.
This can explain why these three solutions keep the probabil-
ity in the relatively low level. Moreover, with the increasing
of BS density, the performance of both the DT-based and
the RSS-based solution degrades due to the complexity of
networks. However, the proposed algorithm maintains high
probability of choosing the optimal BS as the handover target,
even in ultra-high density networks, which shows that the
proposed algorithm is adaptive to the changes of BS densities.

Thirdly, we validated the robustness of the proposed
algorithm. Fig. 9 shows the performance of the proposed
CCB-NCL algorithm in the scenario where the BSs will
be turned off with the off-probability pe. For example,
the self-organization function triggered, power off, or other
damage occurred on the BSs. Here, it is assumed that pe
is an independent and identically distributed (i.i.d.), and is

FIGURE 9. Impact of the dynamic BS on scanned number of BSs.

uniformly distributed within [0, 0.3] [28]. This scenario is
more practical as some BSs in the presented eNCL will no
longer be detected when the scanning process begins. As it
can be seen from Fig. 9, the performance deteriorated due to
the disappearance of BSs in the presented eNCLs obtained
from the proposed algorithm. However, the proposed algo-
rithm still works well in keeping the number of scanned BSs
in a low level.

FIGURE 10. Impact of training times of the proposed learning algorithm
on the number of scanned BSs.

Next, we evaluate the efficiency of the proposed algorithm
with different number of learning iterations. The learning
iterations are set to 103, 104 and 105 respectively. As it can be
seen in Fig. 10, the average number of scanned BSs decreases
with the number of learning iterations. However, even the
learning algorithm is executed 104 iterations, the result still
show the superiority of the proposed algorithm. It is worth
noting that, comparing with results obtained from DT-based
solution, the disadvantage of learning algorithm with 103

iterations appears. The intuitive explanation on this result is
that the learning accuracy of the distributions of RSS and cell
load depends on the iteration times of the proposed learning
algorithm. Therefore, the long-term performance estimations
on the potential BSs are quite important in the configuration
of NCLs. After enough learning iterations, we have the eNCL
associated with the location of UE. By recording all the
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presented eNCLs in the coverage area of one BS, we have
a table that contains all UE positions associated with eNCLs.
Since the distribution of channel quality and cell load would
not change intensely, the table can be used to recommend
NCL to UE without any extra learning cost over a period of
time.

TABLE 2. Simulation results in heterogeneous network.

Finally, we apply the proposed algorithm to a heteroge-
neous network, where 4 macro BSs and 64 femto BSs are
deployed. In this scenario, macro BSs are randomly dis-
tributed with a minimum distance rmin = 300meters between
each other, while the distance from any femto BS to one
macro BS is set to be no less than 50 meters. As it can be
seen from Table 2, the proposed algorithm provides signifi-
cant improvement on reducing NCL length compared to the
DT-based and RSS-based solutions. Moreover, the superior-
ity of the CCB-NCL algorithm can be observed in Fig. 11.
It can be concluded that our proposed CCB-NCL algorithm
is robust in heterogeneous networks.

FIGURE 11. Comparison on the number of scanned BSs in NCLs obtained
from different solutions in heterogeneous network.

VI. CONCLUSION
In this paper, we have studied the handover management in
UDNs from the perspective of NCL configuration. By apply-
ing online learning methods, we use the long-term perfor-
mance estimation instead of the instantaneous performance
of BSs, to make the handover decision. We have proposed the
CCB-NCL algorithms that optimizes the NCLs presented to
UE when handover occurs. The proposed algorithm adopted
the cascading bandits framework, and was proved with sub-
linear regret bounds. We have made enhancements to the
standard cascading bandits framework, so that the proposed
CCB-NCL algorithm could enhance the handover perfor-
mance. Extensive simulations have been conducted to show

that the proposed algorithm can significantly shorten the
length of NCLs and the number of scanned BSs in handover
preparation phase, and reduce thewrong cell proportionwhile
increasing the probability of choosing the optimal BS as the
handover target in configuring NCLs, when compared with
the existing solutions. Thus, we shown that the proposed
algorithm can reduce the overlarge signaling cost and unnec-
essary delay in the handover preparation phase. Moreover,
the robustness of the proposed algorithms was demonstrated
in network scenarios with varies BS densities, BSs dynamic
and heterogeneous BSs.

.

PROOF OF THEOREM 1
Let reg(t) be the regret of the learning algorithm at time slot t .
The event that the sample value of RSS P̂i(t) or cell load
η̂i(t) of the i-th BS lies outside the corresponding confidence
interval [−ui,t , ui,t ] at time t , can be denoted as ξt = {∃i ∈
E, |P̂i(t)− P̄i| > ui,t or |η̂i(t)− η̄i| > ui,t }; and ξ̄t represents

the complement of ξt . Let Bt = {∃i, j ∈ L, i < j, P̄i
η̄i
<

P̄j
η̄j
}

be the event that the BSs in list L are not ranked in correct
order. Run Algorithm 1, we can decompose the regret as

R(T ) =
T∑
t=1

E
[
[1(ξt )+ 1(ξ̄t )]reg(t)

]
(11)

=

T∑
t=1

E [1(ξt )reg(t)]+
T∑
t=1

E
[
1(ξ̄t )1(Bt )reg(t)

]
+

T∑
t=1

E
[
1(ξ̄t )1(B̄t )reg(t)

]
, (12)

since there is no regret for 1(ξt )1(Bt )reg(t) and 1(ξt )1(B̄t )
reg(t). Because once the parameters are estimated correctly,
the ranking order of BSs in list is determined. Then, we need
to bound these three terms in (12) respectively. For simplicity,
we use the capital letter L instead of |L| to represent the length
of the list L in this section.

The first term in (12) is relatively small because all of
our confidence intervals hold with high probability. There are
some BSs whose sample values of reward or cost lie outside
the corresponding confidence interval. The regret resulted
from these BSs is defined as

T∑
t=1

E[1(ξt )reg(t)]≤K +
T∑

t=K+1

∑
k∈K

(
Pr
[
|P̂k (t)− P̄k | > uk,t

]
+ Pr

[
|η̂k (t)− η̄k |

] )
. (13)

Then, we decompose the definition and rewrite (13) as

K +
∑
k∈K

T∑
t=K+1

t∑
n=0

(
Pr
[
|P̂k (t)−P̄k | >

√
α log t
Nk (t)

,Nk (t)=n
]

+ Pr
[
|η̂k (t)− η̄k | >

√
α log t
Nk (t)

,Nk (t) = n
])
≤ K
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+

∑
k∈K

T∑
t=K+1

t∑
n=1

2 exp
(
−2
α log t
n

)
= K (14)

+ 2
∑
k∈K

T∑
t=K+1

t−2α+1 ≤ K + K
π2

3
= ψ (15)

where the (14) follows the Hoeffding’s inequality.
To obtain the regret upper bound of the second part of (12),

we first provide the following two lemmas.
Lemma 1: Let ps(e) = Pr{P(t) > τ1, and η(t) > τ2} be

the probability that the BS e will be chosen at time t, where
τ1 and τ2 are thresholds that the sample values of target BS
should meet. For any BS i ∈ K, if it is included in the NCL
(i.e., i ∈ Lt ), then, it will be actually scanned in time frame t
(i.e., i ∈ L̃t ) with probability no less than

pi =
∏K
j=1(1−ps(j))
(1−ps(i))

, (16)

i.e.,

Pr(i ∈ L̃t ) ≥ pi Pr(i ∈ Lt ). (17)

Proof: According to Algorithm 1, for a BS included in
Lt , it will be scanned only when all of the former BSs were
scanned and none of them was chosen as the target. Thus,
the lowest probability that i-th BSwill be chosen occurs in the
worst scenario where the target BS lies on last position of Lt .
The corresponding probability is given by

∏L−1
j=1 (1 − ps(j)),

which can be further bounded by pi.
Lemma 2: We use Ni(T ) to represent the total number of

times that the i-th BS has been selected as the target BS within
T time slots. Then, for all i ∈ L, we have

E[Ni(T )] ≥ pi(T − ψ). (18)

Proof: Based on the definition of Ni(T ), we have

E[Ni(T )] = E

[
T∑
t=1

1(i ∈ L̃t )
]

= E

[
T∑
t=1

(1(ξ̄t )+ 1(ξt ))1(i ∈ L̃t )
]

≥ E

[
T∑
t=1

1(ξ̄t )pi1(i ∈ Lt )
]

(19)

= piE

[
T∑
t=1

1(ξ̄t )

]
= piE

[
T −

T∑
t=1

1(ξt )

]
≥ pi(T − ψ) (20)

where (19) follows Lemma 1, and (20) follows the upper
bound on

∑T
t=1 1(ξt ) in (15).

Then, the second part of (12) represents the case that the
sample average of reward or cost of all BSs lie inside the cor-
responding confidence interval, but the BSs in the presented
list L are not ranked in correct order. Then, the regret of this
part is bounded as

E
[ T∑
t=1

1(ξ̄t )1(Bt )reg(t)
]

(21)

≤

L∑
j=2

E

[
T∑
t=1

1(ξ̄t )1(
P̄i
η̄i
<
P̄j
η̄j
)

]

=

L∑
j=2

E

 T∑
t=1

1(ξ̄t )1

Nj(t) < 4(1− P̄j
η̄j
)2α log t

( P̄j−1
η̄j−1
−

P̄j
η̄j
)2η2j


≤

L∑
j=2

E

[
0T∑
n=1

1

(
Nj(τn) <

α log τn
�2
j−1,j

)]
(22)

=

L∑
j=2

E

[
0T∑
n=1

1

(
Nj(τn) <

α log τn
�2
j−1,j

)
1 (τn ≤ 2n)

]
(23)

+

L∑
j=2

E

[
0T∑
n=1

1

(
Nj(τn)<

α log τn
�2
j−1,j

)
1 (τn>2n)

]
(24)

≤

L∑
j=1

(
ζj +

1

2p2j

)
+ ρ = O(1) (25)

where �i,j =
( P̄i
η̄i
−
P̄j
η̄j
)ηj

2(1−
P̄j
η̄j
)
. Then, the second part of (12) is

divided into (23) and (24), the former is bounded by

L∑
j=2

E

[
0T∑
n=1

1

(
Nj(τn) <

α log τn
�2
j−1,j

)
1 (τn ≤ 2n)

]

≤

L∑
j=2

E

[
0T∑
n=1

1

(
Nj(τn) <

α(log n+ log 2)

�2
j−1,j

)
.

]
(26)

Here, we define an independent random variable Zi(t), which
can be written as

Zi(t) =

{
0 , if 1(ξ̄t ) = 0
Ber(pi) , if 1(ξ̄t ) = 1

(27)

With Zi(t), (26) can be rewritten as

L∑
j=2

E

[
0T∑
n=1

1

(
τn∑
t=1

Zi(t) <
α(log n+ log 2)

�2
j−1,j

)]

≤

L∑
j=2

T∑
n=1

Pr

(
τn∑
t=1

Zi(t)− pin <
α(log n+ log 2)

�2
j−1,j

− pjn

)

≤

L∑
j=2

ζj + T∑
n=ζj+1

exp

−2t (pj− α(log t+log 2)
t�2

j−1,j

)2


≤

L∑
j=1

(
ζj +

1

2p2j

)
. (28)

where, ζj = maxt

{
pj
2 −

α(log t+log 2)
t�2

j−1,j
< 0

}
.

The upper bound of (24) can be obtained as

L∑
j=2

E

[
0T∑
n=1

1

(
Nj(τn) <

α log τn
�2
j−1,j

)
1 (τn > 2n)

]
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≤

L∑
j=2

E

[
0T∑
n=1

1 (τn > 2n)

]

=

L∑
j=2

E

[
T∑
t=1

1

(
t/2 >

t∑
s=1

1(ξ̄t )

)]

=

L∑
j=2

E

[
T∑
t=1

1

(
t∑

s=1

1(ξt ) > t/2

)]

≤

L∑
j=2

E

[
T∑
t=1

1

(
E[(
∑T

s=1 1(ξs))
2]

(t/2)2

)]
(29)

where (29) follows Chebyshev’s inequality and it can be
further bounded by

L∑
j=2

E

[
T∑
t=1

1

(
E[(
∑T

s=1 1(ξs))
2]

(t/2)2

)]
(30)

≤

L∑
j=2

E

[
T∑
t=1

1

(
4
t2

(
t∑

s=1

2K
s2

+2
∑

1≤t1<t2≤t

√
E[1(ξ2t1 )]E[1(ξ

2
t2 )]

 (31)

=

L∑
j=2

E

 T∑
t=1

1

 4
t2
(
t∑

s=1

2K
s2
+ 2

∑
1≤t1<t2≤t

√
4K 2

t1t2
)


=

L∑
j=2

E

[
T∑
t=1

1

(
8K
t2

(
t∑

s=1

1
s
)2
)]

< 8K
(
log t + 1

t

)2

= ρ (32)

where (31) is obtained by applying Cauchy’s inequality to the
last term.

The third part of (12) represents the case where the wrong
BSs are included in L, and these BSs in L are ranked in
correct order. Here, we use the notation K \ L∗ to represent
the relative complement of L∗ with respect toK. Let it be the
top ranked BS from K \ L∗ in Lt , and Di,t be the event that
it = i. We have the regret of this part as

E

[
T∑
t=1

1(ξ̄t )1(B̄t )reg(t)
]

= E

 ∑
i∈K\L∗

T∑
t=1

1(ξ̄t )1(B̄t )1(Di,t )[1(i ∈ Ĩt )

+1(i /∈ L̃t )]reg(t)
]

=E

 ∑
i∈K\L∗

T∑
t=1

1(ξ̄t )1(B̄t )1(Di,t )1(i ∈ L̃t )reg(t)

 (33)

= E

 ∑
i∈K\L∗

T∑
t=1

1(ξ̄t )1(B̄t )1
(
P̂i(t)+ ui,t
η̂i(t)+ ui,t

> τ

)

·1(i ∈ Ĩt )reg(t)
]

≤

∑
i∈K\L∗

K
16α log(T )

12
i

(34)

where (33) follows from the fact that if BS it is not scanned,
which means L contains the same BSs as that in L∗,
the regret resulted from this event equals to 0. By counting
the number of times that BS i is scanned, and using the

fact that 1
(
P̂i(t)+ui,t
η̂i(t)+ui,t

> τ
)
= 1

(
Ni(t) <

16α log(T )
12
i

)
, (34)

is obtained.
Combining the above results, we have the regret of pro-

posed algorithm as

R(T ) =
T∑
t=1

E
[
1(ξt )reg(t)

]
+

T∑
t=1

E
[
1(ξ̄t )(1(Bt )

+1(B̄t ))reg(t)
]

≤ ρ + K (ζ + 2ψ)+
∑

j∈K\L∗

16Kα log(T )

12
j

(35)

The upper bound in Theorem 1 is proved.
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