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ABSTRACT SNARE proteins are a group of proteins that drive the biological fusion of two membranes.
It is important to identify them accurately, because malfunction of the SNARE proteins can lead to a lot
of diseases. In this paper, a Pearson based feature compressing model is proposed to identify the SNARE
proteins accurately and efficiently. First, 188D, CKSAAP, CTDD and CTRIAD feature extraction methods
are used to extract features from the SNARE and non-SNARE proteins. As the number of features extracted
by the four methods is very large, which means many redundant features are included. It is necessary to
filter the original feature set. The Chi-Square, Information Gain and Pearson Correlation Coefficient feature
selection methods are used to evaluate the value of each feature in the feature set. The selected features
are used to train a random forest classifier and the performance of the selected features is evaluated by
cross validation. The experimental results showed that the CTDD based model with the first 70% of features
selected by the Pearson feature selectionmethod can achieve the best performance among all kinds ofmodels.

INDEX TERMS
Feature representation, feature selection, protein classification.

I. INTRODUCTION
SNARE proteins are a group of proteins that drive the bio-
logical fusion of two membranes. Some research shows that
many diseases are associated with the malfunction of the
SNARE protein, whichmeans the SNARE proteins are essen-
tial to human health, they have attracted many researchers
to study it [1]–[12]. And it is necessary to develop some
techniques to identify them. The identification of SNARE
proteins can be carried out in two ways. The first one is
by means of bioinformatics techniques, which are expensive
and time-consuming. Considering that the machine learning
basedmethods have beenwidely used in protein classification
[13]–[34], we will use machine learning to recognize SNARE
protein in this paper. Traditionally, features are extracted from
the SNARE proteins. Then some kinds of machine learning
algorithms are trained based on the features. After adjusting
the parameters for the machine learning algorithm, a model
can be constructed. But the problem is whether the features
extracted are all necessary for the protein identification prob-
lem? As we all know, most feature extraction methods extract
hundreds or even thousands of features from a protein, which
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can introduce many redundant features. This kind of features
brings two problems. First, they increase the complexity of
the training algorithm. Second, they can reduce the accuracy
of the classifier. To overcome the two problems, the feature
compressing or selection methods [13]–[30], [35]–[44] are
used to filter the redundant features out.

In this paper, we test the performance of several fea-
ture compressing methods to identify the SNARE proteins
accurately and efficiently. Four feature extraction methods,
which are the 188D [45], the CKSAAP [43], [44], [46],
the Composition/Transition/Distribution (CTDD) [47], [48]
and the CTRIAD methods [49], are used to extract features
from the proteins [50]. As the number of features extracted
by the four methods are very large, three kinds of feature
compressing methods (Chi-square, Information Gain and
Pearson) are used to compress the feature set just extracted.
The Chi-square method orders the value of each feature by
measuring the correlation degree between the feature and the
category. Information gain method orders the value of each
feature by calculating how much information the feature can
bring to the classification system. Pearson method calculates
the degree of coefficient for the feature and category. The
feature set is compressed to 10%, 25%, 40%, 55%, 70%,
85% and 100% of their original size by the three feature
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FIGURE 1. Framework of the feature compressing model for the SNARE protein identification.

compressing methods. Finally, the compressed feature set is
used to train a random forest classifier. Experiments show that
the performance of the Pearson based on the CTDD feature
extraction method can achieve the best performance among
all models.

The contributions of this work include (1) Three kinds of
feature selection methods are applied to four kinds of feature
sets extracted by four feature extraction methods from the
SNARE proteins. The optimal compressing feature set for
each kind of feature extraction method has been found. (2)
By comparing the performance of all the optimal compressed
feature set, a Pearson based feature compressing model is
proposed to identify the SNARE proteins accurately and
efficiently.

The rest of the paper is organized as follows. In section 2,
we briefly introduce the feature extraction methods, feature
compressing methods and machine learning algorithm used
in this paper. The experiments are given in Section 3. Finally,
we draw the conclusion in Section 4.

II. METHODS
The framework of feature compressing model for the SNARE
protein identification is shown in figure 1. The framework is
composed of four steps. In the first step, feature extraction
methods are used to extract different kinds of features from

the dataset, which is composed of SNARE and non-SNARE
proteins. Four kinds of feature selection methods are used,
which are the CTDD, CKSAAP, 188D and CTRIAD. The
188D method extracts 188 features from the dataset. The
feature set for the CKSAAP is composed of 2400 features.
The CTDD and CTRIAD extracts 195 and 343 features
respectively. It can be seen that the number of features is
very large, which contains lots of redundant features. In the
second step, several feature compressing or selectionmethods
are used to select the most valuable features from the feature
set extracted by each feature extraction method. The feature
compressing methods used are the Chi-square (CHI2), Infor-
mation Gain (IG) and Pearson Correlation Coefficient (Pear-
son) methods, which are used to select a part of features
from the whole feature set, called compressed feature set.
In the third step, the compressed feature set is used to train
a classifier, which is based on the random forest algorithm.
Finally, the performance of each compressed feature set is
evaluated by the cross validation method and the best model
will be selected.

A. DATASET
First, we downloaded the SNARE data from the UniProt
database [51]–[53] as the positive instances. We choose the
vesicular transport proteins as the negative instances, because
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the structure of vesicular transport proteins are similar to the
SNARE proteins and downloaded them. If our classifier can
distinguish the SNARE protein from the vesicular transport
proteins accurately, it must be a precise classifier. Finally, the
dataset with positive and negative instances is used to train
and cross validate the feature compressing models.

B. FEATURE EXTRACTION METHODS
1) 188D
188D feature extraction method extracts 188 features from
each protein. These features can be further divided into two
categories: the first category is the statistical characteristics
of amino acids that make up proteins. Because there are
altogether 20 kinds of amino acids, the first 20 features belong
to the first category and calculated as follows.

Let FV1, . . . ,FV20 denote the first 20 features (1–20):

FVi =
ai
L

(i = 1, . . . , 20)

where ai is the number of the 20 amino acids in the protein
sequence and L is its length.
The second category is the statistical characteristics of

proteins according to their physicochemical properties, which
are mainly from eight kinds of sources, such as hydrophobic-
ity, surface tension, normalized Van der Waals volume etc..
21 features are calculated based on each physicochemical
property to form the remaining 168 features.

2) CKSAAP
CKSAAP features are extracted based on the order of
the AACs appearing in the sequence. It computes at
most 2400 features from a protein. As we know, a protein
is composed of 20 kinds of AACs. There are 400 possible
combinations to form a pair of amino acids. Given a protein
sequence, the CKSAAP first checks the combination of any
two consecutive ACCs in the sequence and counts the number
for each combination appearing in the sequence. By dividing
the number of each combination with the number of total
consecutive pairs of AAC in the sequence, the frequency of
the pair of AAC in the sequence are computed, as is shown in
the following formula, which is a vector of 400 dimension.(

NAA
Ntotal

,
NAC
Ntotal

,
NAD
Ntotal

, . . . ,
NYY
Ntotal

)
400

whereNAA . . .NYY are the combinations of amino acids in the
protein sequence.

Two AACs can be separated by the other k AACs (k =
1, 2, 3, 4, 5). In the case of two consecutive AACs, the k
equals to 0. For each k(k = 1, 2, 3, 4, 5), 400 features are
extracted in the same way as in the case of k = 0. The number
of features extracted by CKSAAP are 400× 6 = 2400.

3) CTDD
CTDD is a set of features extracted based on the AAC
distribution patterns of the physicochemical property in a
protein sequence, whose calculation method is as follows:

(i) The AACs sequence is converted into a sequence with
certain physicochemical or structural property; (ii) Based
on the 7 different physicochemical features from the AAC
indices of Kanehisa and Tomii, twenty AACs are divided into
three groups for each of them.

The Distribution descriptor is composed of five values for
each of the three features (neutral, hydrophobic and polar).
The descriptor calculates the fraction for an AAC of a given
group, where it first located, and where 25, 50, 75 and 100%
of occurrences are located at the entire sequence.

For instance, we begin at the first residue and include the
residue that marks the occurrence of 25/50/75/100% of any
given group of residues, and then we divide the position of
the residues by the entire sequence length.

4) CTRIAD
The Conjoint Triad descriptor (CTriad) extracts the 343 fea-
tures from the proteins. In CTRIAD, all the 20 amino acids
are catalogued into 7 classes and three consecutive AACs in a
protein sequence are considered as a single unit. The extrac-
tion method of CTRIAD is similar to that of the CKSAAP.
All the combinations for a unit should be equal to 7 × 7 ×
7 = 343. Accordingly, i = 1, 2, 3, . . . , 343. The CTRIAD
first calculates the frequency fi of the ith combination for
the protein. In principle, the longer a protein sequence is,
the higher probability it has larger values of fi. Thus, a new
parameter di is defined, which normalizes fi by the following
formula:

di =
fi −min {f1, f2, . . . , f343}
max {f1, f2, . . . , f343}

C. FEATURE COMPRESSING METHODS
1) CHI-SQUARE FEATURE SELECTION (CHI2)
The basic idea of χ2 test is to determine whether the
hypothesis is correct or not by calculating the deviation
between the theoretical value and the actual value. We often
assume that the two random variables are indeed independent
(called ‘‘original hypothesis’’), and then calculate the degree
of deviation between the theoretical value and the actual
value (called the observation value). If the deviation is small
enough, we think that the error is a very natural sample error,
which is the measurement If the measurement method is not
accurate enough to cause or happen accidentally, the two
are indeed independent, then accept the original hypothesis;
if the deviation is large enough to a certain extent, so that
such error is unlikely to be caused by chance or measurement
inaccuracy, we think that the two are actually related, that
is, deny the original hypothesis, and accept the alternative
hypothesis.

χ2
=

∑ (A− E)2

E
where A is the observed value and E is the expected value.
χ2 feature selection is a kind of supervised feature selec-

tion method. By χ2 test between the feature and the real
category, it can judge the correlation degree between the
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feature and the real category, and then determine whether to
select the feature or not.

2) INFORMATION GAIN FEATURE SELECTION (IG)
Information gain is a frequently used feature selection
method. It is used to measure the amount of information a
feature can take to the classification algorithm. The more
information a feature takes, the greater the corresponding
information gain of the feature will be. For a feature F from
the feature set, the information entropy is calculated as:

I (F) = −
∑
j

P
(
fj
)
log2

(
P
(
fj
))

in which fj represents a set of values of F , and P(fi) is its prior
probability. The conditional entropy of F under the condition
of C is defined as:

I (F |C) = −
∑
i

P (ci)
∑
j

P
(
fj|ci

)
log2

(
P
(
fj|ci

))
in which P

(
fj|ci

)
denotes the posterior probability of fj given

ci of C . And the information gain IG(F |C) is calculated by:

IG(F |C) = I (F)− I (C)

3) PEARSON CORRELATION COEFFICIENT FEATURE
SELECTION (PEARSON)
Pearson correlation coefficient, denoted as r , is usually used
to measure the degree of correlation between a pair of random
variables (P,Q), which is calculated as follows:

r =

∑
i (pi − p̄i) (qi − q̄i)√∑

i (pi − p̄i)
2∑

i (qi − q̄i)
2

in which p̄i and q̄i are the mean of P and the mean of Q
respectively.

The range of r is within the interval from 1 to −1. The
greater the absolute value of r , the stronger the correlation
between two random variables P and Q.

D. RANDOM FOREST
As is well known, the major shortcoming of the decision
tree algorithm is that it is easy to overfit. Random forest
algorithm is proposed to overcome the shortcoming of the
decision trees. As the name of the algorithm, the random for-
est algorithm constructs multiple decision trees like a forest.
By applying the voting mechanism, the final classification
results of random forest is determined by the majority voting
mechanism. The bagging strategy is used to train each deci-
sion tree in the forest, which means n samples for training
a tree is generated from the population by the bootstrapping
method.

III. EXPERIMENTS
In this section, five experiments are done to test the perfor-
mance for different kinds of the feature compressing methods
based on the 188D, CKSAAP, CTDD and CTRIAD fea-
ture extraction methods. Three kinds of feature compressing

methods are used, which are the Cha-square, information
gain, the Pearson correlation coefficient based methods. Ran-
dom forest algorithm is used to identify the SNARE proteins.
SN , SP, ACC , and MCC given by formula (1) to (4) are

used to evaluate the performance of different kinds of feature
compression methods. 10 fold cross validation methods are
used to evaluate the performance of different feature com-
pressing models.

SN =
TP

TP+ FN
(1)

SP =
TN

TN + FP
(2)

ACC =
TN + TP

TN + FP+ TP+ FN
(3)

MCC =
1− ( FN

TP+FN +
FP

TN+FP )√
(1+ FP−FN

TP+FN )(1+
FN−FP
TN+FP )

(4)

in which TP denotes True Positive, FP denotes False Positive,
TN denotes True Negative and FN denotes False Negative.

Weka [54] is used to do the experiments. The parameters
are listed in table 1.

TABLE 1. Parameter list.

A. PERFORMANCE OF DIFFERENT KINDS OF
COMPRESSING METHODS FOR THE 188D
In this section, the 188D method is used to extract features
from the SNARE proteins. The feature set extracted is com-
posed of 188 features. Then, three kinds of compressing
methods, which are the CHI2, IG and Pearson, are used to
compress the 188D feature set. The number of features in
the compressed feature set is the 10%, 25%, 40%, 55%,
70%, 85% and 100% of that in the original feature set. For
example, there are 188 features in the original feature set.
After CHI2 method is used to compress the feature set into
10% of the original feature set, only 19 features are left in the
compressed feature set. Then the data set are filtered based on
the compressed feature set, which means only the data for the
compressed feature set are left. The filtered data are used to
train and cross validate the random forest machine learning
algorithm. In the same way, different kinds of compressing
algorithms are imposed on the data set for different kinds of
feature extraction methods.

The performance for different kinds of compressing meth-
ods for the 188D is shown in Figure 2. The performance
comparison for SN is shown in Figure 2a. It shows that, for
IG and Pearson method, the best SN is achieved when 85%
of features are selected from the 188d feature set, which is
composed of 160 features. While for the CHI2 method, the
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FIGURE 2. Performance comparison of different feature compressing methods for 188D.

best performance for SN is achieved when 188 features are
all used. By comparing the best performance of SN achieved
by the three comparison methods, the Pearson method wins,
which means the best SN is achieved by the personr feature
compressing method when 85% features are selected. As the
number of selected features increases, the performance of SP
becomes better and better. It can be seen from the figure that
the best SP value is obtained by the Pearson compression
method when 85% of the features are selected. The perfor-
mance of different compression methods on ACC and MCC
is shown in the figure. Similarly, as the number of selected
features increases, the performance of ACC and MCC grad-
ually improves. But for the IG and Pearson compression
methods, the best performance is also obtained when 85%
of the features are selected, rather than when 188 features
are used for classification. The experimental results show that
the Pearson method is the best compressing method for 188d
feature extraction method when 160 features are selected.

B. PERFORMANCE OF DIFFERENT KINDS OF
COMPRESSING METHODS FOR THE CKSAAP
Figure 3 shows the performance comparison results of var-
ious feature compressing methods on the CKSAAP feature
extraction method, and the random forest algorithm is used
to classify the SNARE proteins based on the compressed
feature set. Figure 3a is the comparison result of SN index
of various compression algorithms. As shown in the fig-
ure, as the number of compression features increases, the
performance of SN continues to deteriorate. This is mainly
because the feature set of CKSAAP consists of 2400 features.
When the first 10% of features are selected as classification
features, the feature set already includes 240 features. As the
number of features in the compressed feature set increases,
more and more Many features not related to classification are
added to the compressed feature set, which results in poor
classification performance of the random forest classifier.
Furthermore, as can be seen from Figure 3a, the SN index IG
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FIGURE 3. Performance comparison of different feature compressing methods for CKSAAP.

compressionmethod has the best performancewhen selecting
the top 10% of features from the CKSAAP feature set as the
classification feature set.

Figure 3b is the SP index comparison results of vari-
ous compression algorithms. For SP indicators, the Pearson
feature compression method has the best performance. The
best SP value is when using the Pearson method to select
the top 40% of features from the CKSAAP feature set as
classification features. Figure 3c and Figure 3d show the
comparison results of ACC and MCC indicators of various
compression algorithms. The results of these two indicators
are similar to the situation of SN. As the number of features
in the compressed feature set increases, the performance of
the ACC and MCC indicators deteriorates. The best perfor-
mance is achieved when 10% of the features are selected as
classification features. In summary, for the CKSAAP fea-
ture collection method, the IG feature compression method
can obtain the best feature compression effect, and the best
effect is achieved when the first 10% of the features are
selected.

C. PERFORMANCE OF DIFFERENT KINDS OF
COMPRESSING METHODS FOR THE CTDD
Figure 4 shows the performance comparison results of var-
ious feature compression methods on the CTDD feature
extraction method, using the random forest algorithm to clas-
sify SNARE proteins based on the compressed feature set.
Figure 4a is the comparison result of various compression
algorithm SN indexes. As shown in the figure, when the IG
and CHI2 feature compression methods are used to com-
press the CTDD feature set, as the number of features in the
compressed feature set increases, the performance of the SN
gradually improves, so these two methods cannot perform
the CTDD feature set compression. When using the Pearson
method to compress the CTDD feature set, as the number
of compressed features increases, the performance of the
SN gradually improves. When the number of features in the
compressed feature set reaches 70% of the total number of
CTDD features, the SN reaches the maximum value. Subse-
quently, as the number of features in the compressed feature
set increases, the performance of SN gradually deteriorates.
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FIGURE 4. Performance comparison of different feature compressing methods for CTDD.

It can be seen that the Pearson compression method has a
feature compression effect on the CTDD feature set. The
CTDD feature set is composed of 195 features. When the
Pearson method takes the top 70% of CTDD features as a
compressed feature set for classification (contains 137 fea-
tures), SN obtains the maximum value. When the number of
features in the compressed feature set is small, the classifier
does not have enough information to classify, so the SN
value is low. As the number of features in the compressed
feature set increases, the performance of the classifier grad-
ually improves. When the number of features reaches 137,
the best is achieved. Subsequently, more and more irrelevant
features are added to the compressed feature set, which leads
to the performance degradation of the classifier. As can be
seen from Figure 4a, the SN index Pearson compression
method has the best performance when selecting the top 70%
of features from the CTDD feature set as the classification
feature set.

Figure 4b is the SP index comparison results of various
compression algorithms. For SP indicators, the CHI2 feature
compression method has the best performance. The best SP

value is when using the CHI2 method to select the top 70% of
features from the CTDD feature set as classification features.
Figure 4c and Figure 4d are the comparison results of ACC
and MCC indicators of various compression algorithms. The
results of these two indicators are similar to the situation of
SN. The IG and CHI2methods have no compression effect on
the CTDD feature set. With the increase in the number of fea-
tures in the compressed feature set of the Pearson method, the
performance of the ACC andMCC indicators is good first and
then poor. The best performance is achieved when 70% of the
features are selected as classification features. In summary,
for the CTDD feature collection method, the Pearson feature
compression method can obtain the best feature compression
effect, and the best effect is achieved when the first 70% of
the features are selected.

D. PERFORMANCE OF DIFFERENT KINDS OF
COMPRESSING METHODS FOR THE CTRIAD
Figure 5 shows the performance comparison results of var-
ious feature compression methods on the CTRIAD feature
extraction method, using the random forest algorithm to
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FIGURE 5. Performance comparison of different feature compressing methods for CTRIAD.

classify SNARE proteins based on the compressed feature
set. Fig. 5a is the comparison result of SN indexes of various
compression algorithms. As shown in the Figure, the com-
pression effect of various feature compression methods on
the CTRIAD feature set is similar to the compression effect
of the CKSAAP feature set in III-B. When the number of
features contained in the compressed feature set is small, the
performance of SN is the best. Since the CTRIAD feature set
contains a total of 343 features, Figure 5a shows that when
the CHI2 method is used to compress the CTRIAD feature
set, SN works best when the first 10% of features are taken.
As shown in Figure 5b, when using the Pearson method to
compress the CTRIAD feature set, the SP achieves the best
effect when the feature is taken at 70%. Figure 5c and Figure
5d are the comparison results of ACC and MCC indicators
of various compression algorithms. The results of these two
indicators are similar to those of SN, and the best performance
is achieved when 10% of the features are selected as classi-
fication features. In summary, for the CTRIAD feature col-
lection method, the Pearson feature compression method can
obtain the best feature compression effect, and the best effect
is achieved when the first 10% of the features are selected.

E. COMPARISON OF DIFFERENT KINDS OF
COMPRESSING METHODS
In this section, we compare the performance of different
combinations of the feature compressing algorithms and fea-
ture extraction algorithms. In the last four sections, we find
an effective feature compressing methods for each kind
of feature extraction method. For the 188D feature extrac-
tion method, the Pearson method with 160 features is the
best. For the CKSAAP feature extraction method, the IG
method with 240 features is the best. For the CTDD feature
extraction method, the Pearson method with 137 features
achieves the best performance. For the CTRIAD feature
extraction method, the Pearson method with 35 features
selected achieves the best performance. In this experiment,
we compare the performance of the four models. The com-
parison results are shown in figure 6.

Figure 6a shows that, for SN, the CTDD based model
achieves the best performance. For SP, even though the per-
formance of the CTRIAD based model is the best among
the four models, the difference among different models is
small. For ACC and MCC, the CTDD based model achieves
the best performance. The performance of the 188D based
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FIGURE 6. Comparison among different kinds of compressing methods.

model is in second place. The CKSAAP based model is the
third. Taking the performance of feature compressing into
consideration, the number of compressed features for CTDD,
188D, CKSAAP and CTRIAD, shown in figure 6b, are 137,
160, 240 and 35 respectively.We can conclude that the CTDD
based model with Pearson compressing method is the best
model.

IV. CONCLUSION
In this paper, three kinds of feature selection methods were
applied to four kinds of feature sets extracted by four feature
extraction methods from the SNARE proteins. The optimal
compressing feature set four each kind of feature extraction
method has been found. By comparing the performance of
all the optimal compressing feature set, a Pearson based fea-
ture compressing model is proposed to identify the SNARE
proteins accurately and efficiently.
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