
Received May 17, 2020, accepted July 7, 2020, date of publication July 21, 2020, date of current version July 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3010828

Thai Spelling Correction and Word Normalization
on Social Text Using a Two-Stage Pipeline With
Neural Contextual Attention
ANURUTH LERTPIYA 1, TAWUNRAT CHALOTHORN 2, AND EKAPOL CHUANGSUWANICH 3
1Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
2Kasikorn Labs Co., Ltd., Kasikorn Business Technology Group, Nonthaburi 11120, Thailand
3Chula Intelligent and Complex Systems, Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

Corresponding author: Ekapol Chuangsuwanich (ekapolc@cp.eng.chula.ac.th)

ABSTRACT Text correction systems (e.g., spell checkers) have been used to improve the quality of
computerized text by detecting and correcting errors. However, the task of performing spelling correction
and word normalization (text correction) for Thai social media text has remained largely unexplored. In this
paper, we investigated how current text correction systems perform on correcting errors and word variances
in Thai social texts and propose a method designed for this task. We have found that currently available
Thai text correction systems are insufficiently robust for correcting spelling errors and word variances,
while the text correctors designed for English grammatical error correction suffer from overcorrections (text
rewrites). Thus, we proposed a neural-based text corrector with a two-stage structure to alleviate issues
of overcorrections while exploiting the benefits of a neural Seq2Seq corrector. Our method consists of
a neural-based error detector and a Seq2Seq neural error corrector with contextual attention. This novel
architecture allows the Seq2Seq network to produce corrections based on both the erroneous text and its
context without the need for an end-to-end structure. Our method outperformed all the other evaluated text
correction systems. When compared to the second-best result (copy-augmented transformer), our method
further reduced the word error rate (WER) from 2.51% to 2.07%, improved the generalized language
evaluation understanding (GLEU) score from 0.9409 to 0.9502 on the Thai text correction task, and improved
the GLEU score from 0.7409 to 0.7539 on the English spelling correction task.

INDEX TERMS Natural language processing, machine learning, artificial neural networks, text generation,
spelling correction, text normalization, Thai language.

I. INTRODUCTION
The fast and widespread adoption of social media as a means
of communication has led to an explosive increase in user-
generated text data on the Internet. Natural language pro-
cessing (NLP) techniques are often used to keep up with the
pace of rapidly growing data and introduce new and exciting
applications such as real-time disease surveillance [1] and
monitoring the public perceptions of brands, products, and
services (social listening). However, social text also intro-
duces challenges not previously found in traditional written
media (e.g., news, published articles), such as a wide variety
of language usage from users with varying levels of language

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhan-Li Sun .

proficiency, the diverse culture of Internet users, and a lack
of formality and professionalism in the written texts [2], [3].
Natural language text correction systems (e.g., spell checkers
and grammatical error correctors) are used to help improve
writing quality by providing feedback on the correctness of
written text and proposing corrections to the authors. The
published literature related to Thai text correction has pri-
marily focused on postprocessing results from optical char-
acter recognition (OCR) systems [4]–[8]. However, the large
quantity of data on social media, which is input via other
interfaces (e.g., physical and virtual keyboards), does not
strictly exhibit the same types of errors as do data from OCR
systems.Moreover, the text correction systems developed and
employed in free open source software (FOSS) have yet to be
evaluated on social texts.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 133403

https://orcid.org/0000-0002-5699-8653
https://orcid.org/0000-0003-4154-8745
https://orcid.org/0000-0001-6104-4857
https://orcid.org/0000-0002-2405-2927


A. Lertpiya et al.: Thai Spelling Correction and Word Normalization on Social Text

In this paper, we investigate how to perform spelling cor-
rection and word normalization tasks effectively on Thai
communicational text collected from social media. Hence-
forth, we collectively refer to the tasks of spelling correction
and word normalization as the text correction task (TC), refer
to Thai communicational text collected from social media
sites as Thai user-generated web content (Thai UGWC) and
the spelling errors and correctable variances of words in the
TC task as errors. The types of errors that naturally occur in
Thai UGWC and the types of errors we aim to correct in Thai
TC are covered in Section III-A. The contributions of this
paper are as follows.

First, we evaluate the currently existing techniques for Thai
text correction, as well as techniques borrowed from a similar
task, English grammatical error correction (GEC). We exam-
ined a variety of text correction techniques, ranging from
dictionary-based (i.e., Hunspell [9]) and statistically based
methods (i.e., PyThaiNLP [10]) to modern systems featuring
sequence-to-sequence neural networks employed in state-of-
the-art English GEC systems (i.e., Bi-GRU Seq2Seq [11],
Copy-Augmented Transformer [12]).

Second, we propose a text correction system designed
for the TC task. Our proposed method features a two-stage
structure containing a neural-based error detector and a neural
sequence-to-sequence (Seq2Seq) error corrector with con-
textual attention. This novel neural architecture enables the
Seq2Seq corrector to produce corrections based on both the
detected errors and the text surrounding the error (context)
without requiring an end-to-end (E2E) structure. As reported
in Section VI-A, relying solely on the Seq2Seq corrector can
lead to overcorrections (text is rewritten as opposed to simply
corrected).

The remainder of this paper is structured as follows.
Section II discusses works relating to Thai TC. Section III
outlines our TC tasks (spelling correction and word normal-
ization) task on Thai UGWC as well as the development of
our Thai UGWC dataset. Section IV describes our proposed
two-stage TC system for Thai UGWC. Section V details
our experimental setups. Section VI discusses the results of
other models we experimented with alongside those of our
proposed method. Finally, Section VII reiterates our contri-
butions and concludes the paper.

II. RELATED WORKS
In this section, we explore previous works related to our TC
task on Thai UGWC. This section is split into four parts: an
overview of text correction systems, a brief history of spell
checkers, the works relating to Thai text correction, and the
English grammatical error correction literature.

A. TEXT CORRECTION SYSTEMS FOR NATURAL LANGUAGE
In this section, we provide an overview of the two pri-
mary types of text correction systems: two-stage systems and
end-to-end systems.

Two-stage systems separate the text correction task
into two phases: error detection (detector) and error

correction (corrector). For example, the detector in
dictionary-based systems [9], [13] classifies whether a token
is an error by searching its dictionary. The reliance on prebuilt
dictionaries limits the detectable errors to nonword errors
only (words not in the dictionary). More statically complex
models have been proposed to achieve better error detection
[3]–[5], [8], [10]. In the error correction stage, one or more
tokens are chosen as a correction for each of the errors
identified. The corrector in dictionary-based systems may
suggest words based on spelling similarity and use some form
of tie-breaking (e.g., the prior probability of a word derived
from word frequency encoded in the dictionary). The accu-
racy of dictionary-based correctors suffers because context is
often necessary to select the proper substitution. The use of
language models (LMs) has been proposed to overcome this
issue and produce context-dependent corrections [4], [5].

End-to-end systems (E2E) combine the detection and cor-
rection stages into a single step by reformulating the error
correction task as a machine translation task (MT). Error
correction is formulated as a translation from an ‘‘erro-
neous/informal’’ language into a ‘‘correct/formal’’ language.
These systems are employed in modern correction systems
designed for the English grammatical error correction task.
Techniques from statistical machine translation [11], and sub-
sequently, neural machine translation (NMT) [11], [14], [15]
have been employed with great success compared to the tradi-
tional two-stage systems.More specialized architectures [12],
[16] and techniques for data augmentation and training [12],
[17] emerged later.

B. SPELL CHECKERS
Spell checkers are traditionally defined as systems for
identifying nonword errors (words that do not exist in the
dictionary). Given a dictionary, the task of building spell
checkers is considered an engineering problem, where per-
formance [18] or the performance-accuracy trade-off [19] is
the primary concern. However, in languages where minor
spelling errors often result in a valid dictionary word (e.g.,
Thai), spell checkers are also expected to detect real-word
errors (errors that are valid words in the dictionary) [4],
[5], [8]. A wide variety of methods have been proposed
for non-English spelling correction: including dictionary-
based, rule-based, statistically based, deep-learning-models
and statistical machine translation models [20]. Hunspell [9]
(dictionary-based) is the most widely adopted spell checker;
it is used by LibreOffice, OpenOffice.org, Mozilla Firefox 3,
Mozilla Thunderbird, and Google Chrome. However, Hun-
spell’s popularity is likely due to the large number of lan-
guages it supports (56 languages).

C. THAI TEXT CORRECTORS
Publicly available works for Thai TC can be grouped into two
categories: published literature and FOSS.

The published literature on Thai TC has focused heavily
on correcting errors produced by optical characteristic recog-
nition (OCR) systems [4]–[8]. In contrast, text correction

133404 VOLUME 8, 2020



A. Lertpiya et al.: Thai Spelling Correction and Word Normalization on Social Text

for text input via human-computer interfaces (HCIs), such
as keyboards, is an underresearched area [20]. FOSS text
correctors (e.g., Aspell [19], Hunspell [9], PyThaiNLP [10],
[13]) are primarily meant for correcting text from HCIs.

Most Thai TC systems are two-stage systems. A variety of
statistical models have been proposed for the detection stage:
dictionary [9], character-gram [3], [8], WinNow [4], [5],
and conditional random fields (CRF) [10]. However, the
works on correctionmodels include only dictionary-based [9]
and statistical language models using part-of-speech (POS)
trigrams [4], [5]. The current statistical methods used in
error detectors cannot detect errors that require extended
context [8] or require manual feature engineering to address
out-of-vocabulary tokens [4], [5].

On the other hand, E2E systems for Thai TC based on
token-passing algorithms rely exclusively on prebuilt dictio-
naries [6], [7]. Thus, these methods cannot address out-of-
vocabulary tokens (i.e., names) at all.

D. ENGLISH GRAMMATICAL ERROR CORRECTION
The GEC task is an extension to the spelling correction
task whose goal is to automatically produce a grammatically
correct sentence when given an erroneous sentence—without
changing the meaning. The most notable standard benchmark
dataset for this task is the Conll-2014 shared task [21], which
consists of essays written by English as a second language
(ESL) learners and the corresponding corrections annotated
by teachers (language owners).

Significant and recent advancements on the GEC task is
the reformulation of GEC into MT. This reformulation has
proved highly successful and has shifted the area of research
from two-stage systems (refered to as ‘‘classifier systems’’ in
the GEC literature) to end-to-end systems [22], [23].

III. THAI TEXT CORRECTION TASK
This section describes the Thai TC task and our dataset, which
is built from user-generated web content (UGWC).

The goal of TC systems is to detect and correct errors
that exist in the input text. In the scope of this research,
we are interested only in correctable errors in UGWC. Details
on the different types of errors that occur in UGWC (and
which are correctable) are covered in Section III-A. In our
task, errors are defined as words not in The Royal Institute
Dictionary [24] or a word (or a sequence of words) that falsely
represents the original intent of the author (e.g., ‘‘sea’’ in
‘‘I sea the light.’’). Such errors originate from two primary
sources: the input method and nonstandard language usage
by the authors.

Textual data input via different methods suffer from dif-
ferent types of errors. One type can be introduced from
unreliable input methods. For example, artifacts from OCR
systems (i.e., similar-looking characters being mistaken for
another character), incorrect keyboard decoding (typos: strik-
ing improper keys), and even from false corrections by
automatic correction systems (e.g., autocorrect on virtual
keyboards on touch screen enabled devices). In this work,

TABLE 1. Examples of different types of errors and their respective
corrections.

TABLE 2. Size of the UGWC dataset and the training-testing split.

we primarily correct errors that originate from texts input by
Internet users (i.e., keyboard decoding errors).

The demographics of the authors also play a role in the
types of errors in a text. Errors can be attributed to nonstan-
dard language use by the authors: intentional use of non-
standard words or nonstandard word spellings (e.g., morphed
words, spoonerisms, and slang) and unintentional spelling
errors (e.g., misspellings). For example, the characteristics of
errors that occur in a business letter differ from those in a
social media post.

A. UGWC DATASET
Our UGWC dataset is an expanded version of our previous
UGWC dataset [3] and is constructed from text data collected
from users of online social media platforms. This data differs
from data collected from other online outlets (e.g., news
sites) where the content is typically created by professionals
and is often curated. Due to privacy concerns, the UGWC
dataset for spelling correction and word normalization will
be only partially released by Chulalongkorn University for
future research purposes. The dataset consists of both longer
bodies of text (e.g., discussions on public forums) and shorter
conversational dialogues (e.g., posts and comments on social
media). The dataset items have a mean length of 66 words
and a median length of 19 words. Details on the size of our
data are shown in Table 2. Errors and the corresponding cor-
rections were annotated by language-major students from the
Faculty of Arts of Chulalongkorn University. Errors typically
involve one or more of the six main types of errors: mis-
spelled words, morphed words, slang, spoonerism, incorrect
abbreviation, and others. Errors in non-Thai languages are
ignored (annotated as correct), and lines of text consisting
purely of other languages were filtered out prior to data
annotation. Real-world examples of each type of error and the

VOLUME 8, 2020 133405



A. Lertpiya et al.: Thai Spelling Correction and Word Normalization on Social Text

FIGURE 1. Overview of our text correction system. The ‘‘ ’’ (space) character between two words in the error segment is added for
visual clarity. ‘‘<BEGIN>’’ and ‘‘<END>’’ tokens are omitted to reduce clutter.

respective corrections are shown in Table 1. Explanations of
each type of error and their English equivalents are outlined
below.

Misspelled words are words whose spelling deviates from
the standard spelling (according to The Royal Institute Dic-
tionary) of the intended word. In this study, misspelled words
are not limited to words that do not appear in the dictionary.
For example, the word ‘‘sea’’ in ‘‘I cannot sea in the dark’’ is
a misspelling of the intended word ‘‘see’’, although the word
‘‘sea’’ is a valid word in the dictionary.

Morphed words are words intentionally morphed to
emphasize emotions or replicate human speech. For example,
by intentionally misspelling the phrase ‘‘sooo gooood’’ the
author may intend to imitate vowel stresses as they might
occur in a verbal conversation.

Incorrect abbreviation notations include abbreviated
words that are misspelled (e.g., ‘‘USA.’’ instead of ‘‘USA’’ or
‘‘U.S.A.’’) and words that are abbreviated despite not having
an official abbreviation (e.g., ‘‘brb’’, which is an unofficial
abbreviation of ‘‘be right back’’).

Spoonerisms are a form of wordplay on sound commonly
found in informal Thai dialogue. An English example would
be writing ‘‘beautiful world’’ as ‘‘weautiful borld’’.

Slang can consist of either new words (e.g., ‘‘Frenemy’’,
which is a combination of ‘‘friend’’ and ‘‘enemy’’) or repur-
posed words that take new meanings (e.g., the verb ‘‘ride’’ is
sometimes used as a noun to refer to a ‘‘car’’).

‘‘Other’’ errors include words that do not exist in the
dictionary, words that do not have an official spelling in Thai
(i.e., named entities), and words that imitate sounds (e.g.,
‘‘ahh’’, ‘‘eww’’, and ‘‘aww’’).

For our TC task, we are interested only in correctable
errors. Thus, slang with no correction and ‘‘other’’ errors are
not considered. The UGWC contains three separate sets of
samples: a training set, a development set, and a test set,
as shown in Table 2.

IV. METHOD
This section outlines our proposed two-stage TC method for
Thai TC. This section is split into three subsections: model
description, data augmentation, and training. The model
section details the structure of our proposed text correction
system. The data augmentation section describes the data
augmentation techniques applied during training. Moreover,
the training section outlines the techniques we found to be
effective in improving model performance.

133406 VOLUME 8, 2020



A. Lertpiya et al.: Thai Spelling Correction and Word Normalization on Social Text

FIGURE 2. Error detector operating on a sequence.

A. MODEL
This section describes the two-stage corrector: the error
detection stage and the error correction stage. A structural
overview of the entire pipeline is shown in Fig 1. The inputs
and outputs of each stage and the details of the models are
outlined below.
Error Detection Stage: The input to the error detection

stage is a sequence of words containing potentially erroneous
input text Ew = {w1,w2, . . . ,wN }, whereN is the total number
of words. The detection stage uses the error detector to predict
a sequence of labels of the same length El = {l1, l2, . . . , lN },
where a prediction li denotes the prediction of the correspond-
ing word wi. A word is labeled either erroneous or correct
li ∈ {error, correct}, where the erroneous label denotes
correctable errors as defined in Section III.
Error Correction Stage: The error correction stage is

given the same input sequence Ew = {w1,w2, . . . ,wN }
and error detection prediction El. The error correction stage
should produce the appropriate corrected sequence Ew∗ =
{w∗1,w

∗

2, . . . ,w
∗
M } while leaving every correct input word

unaltered. The error correction stage achieves this by extract-
ing error segments from the error detection result. An error
segment is a contiguous sequence marked as erroneous. The
correction stage then uses the error corrector to produce a
sequence of correction words to replace each error segment.
The sequence-to-sequence structure of our error corrector
allows the correction stage to produce a corrected sequence
that may differ in length from the input sequenceN 6= M . For
example, given the input with
the 1st, 2nd, and 7th words labeled as erroneous, the correction
stage would extract two error segments: and . Given
the correction and , the correction stage will produce
the corrected sequence .
Error Detector:Our error detector is a bidirectional-LSTM

(bi-LSTM) [25], [26] binary sequence tagger. An illustration
of the detector is shown in Fig 2. Themodel consists of a word
embedding layer (with a size of 64), a character embedding
layer (with a size of 128), a character bi-LSTM encoder
(32 nodes in each direction), a two-layer bi-LSTM (64 nodes
in each layer and direction), and an output dense projec-
tion layer with a softmax activation function. The character-
level embeddings are produced from the concatenation of the

FIGURE 3. Character LSTM embedding layer encoding a word token.

character encoder bi-LSTM last hidden state in both direc-
tions, as shown in Fig 3. The sequence tagger estimates
the probability of each input word as either erroneous or
correct. The detection threshold is selected based on the
error detection F1-score on the development set (detailed
in Section VI-E). The vocabulary of the error detector is
created by selecting the n most common words from the
corrected text of our training data. This approach minimizes
the number of erroneous words in our vocabulary because the
presence of label noise causes a small number of words in
the corrected text to be erroneous. We selected the 24,576
(3 × 213) most common words as our vocabulary. Words
not in our vocabulary are replaced with a special out-of-
vocabulary (OOV) token. We also explored using of sub-
word units to handle OOV by evaluating our model with
SentencePiece tokens [27] rather than word tokens. In the
SentencePiece variant of our model, the vocabulary size is
also 24,576 tokens. During training, the detection model is
optimized using Adam [28] with a learning-rate of 0.002 on
the cross-entropy loss. See Appendix B for a consolidated list
of hyperparameters.
Error Corrector:Our proposed error corrector is an autore-

gressive sequence-to-sequence (Seq2Seq) neural network.
An illustration of the overall structure is shown in Fig 4.
For each error segment, the corrector is given the error seg-
ment in characters and the context of the error segment in
words. The context is the input sequence with a portion of
the error segment replaced with a special ERR token. The
corrector then produces a sequence of words as a correction
for the error segment. The difference between our model a
typical Seq2Seq network is our context-aware encoder, which
includes a contextual attention layer. Details of the encoder
and the decoder of the corrector are provided later in this
paper. The corrector shares the same vocabulary as the error
detector. Corrections containing OOV tokens are discarded,
and the error segment is left unaltered. The corrector is opti-
mized using Adam [28] with a learning rate of 0.002 on the
cross-entropy loss. The main hyperparameters are m = 24
and n = 128. See Appendix B for a consolidated list of
hyperparameters.

1) ENCODER
The context-aware encoder is composed of two embedding
layers, 3 bi-LSTM encoders, and a contextual attention layer
as illustrated in Fig 5. The contextual attention layer allows
the corrector to encode both the erroneous sequence and the

VOLUME 8, 2020 133407



A. Lertpiya et al.: Thai Spelling Correction and Word Normalization on Social Text

FIGURE 4. Structure of the Seq2Seq text corrector. The model is split into two parts: the encoder and
decoder, separated by the dotted line. This figure highlights the decoder; a more detailed view of the
encoder is shown in Fig 5 . Three parallel arrows represent passing a sequence of vectors (a matrix), while a
single arrow represents passing a single vector.

FIGURE 5. Structure of our context-aware encoder. The boxes denoted with LSTM represent bidirectional
LSTM layers. The ‘‘<ERR>’’ token is a special token that denotes the position of the erroneous input within
the context. Both the error input and context also feature special ‘‘<BEGIN>’’ and ‘‘<END>’’ tokens but those
are omitted to reduce clutter. Each of the erroneous character embeddings is simplified in the drawing.

context sequence into the encoded sequence. The encoder
was inspired by the query-to-context attention mechanism in
BiDAF, which is a proven architecture originally proposed
for the machine comprehension task [29]. BiDAF is used to
model a sequence generation task for two input sequences
of varying lengths. The encoder in BiDAF computes two
attention matrices: query-to-context (Q2C) and context-to-
query (C2Q), which are combined along with the encoded
query into a single encoded sequence that represents both the
query and the context. Our context-aware encoder encodes
the context by performing dot-product attention from the
erroneous sequence to the context sequence. This approach

is similar to the Q2C attention in BiDAF. Our erroneous
sequence is equivalent to the query sequence in BiDAF, and
our context sequence is equivalent to the context sequence
in BiDAF. The encoded context represents the information in
the context relevant to decoding the erroneous characters. Our
preliminary experiments showed that the corrector performed
better when utilizing only BiDAF’s Q2C encoder rather
than the full array of encoders in BiDAF. Our experiments
were developed using the AllenNLP framework [30] and the
BiDAF implementation in AllenNLP [31] as a reference.
The details of each layer of our context-aware encoder are
described below.

133408 VOLUME 8, 2020



A. Lertpiya et al.: Thai Spelling Correction and Word Normalization on Social Text

a: ERROR ENCODING
The erroneous character tokens Ee = {e1, e2, . . . , eJ } of the
error segment are embedded with the character embedding
layer. The embedding layer projects each character into a
2m vector space, which produces a matrix E (e)

∈ R2m×J .
The character embeddings are then encoded by the ‘‘error
encoder’’ (a bidirectional LSTM with m nodes in each direc-
tion) into an erroneous-encoding matrix E (l)

∈ R2m×J .

b: CONTEXT ENCODING
The contextual word tokens Ec = {c1, c2, . . . , cK } are embed-
ded with the word embedding layer. The word embeddings
project each word into a 2m vector space, which produces
a matrix C (e)

∈ R2m×K . The word embeddings are then
encoded by the ‘‘context encoder’’ (a bidirectional LSTM
with m nodes in each direction) into a context-encoding
matrix C (l)

∈ R2m×K .

c: CONTEXTUAL ENCODING
The erroneous-encoding matrix E (l) and the context-
encoding matrixC (l) are then input to the contextual attention
layer, which computes the contextual embeddings matrix
Z (e)

∈ R4m×J . The contextual embedding z(e)j ∈ R2m is

a concatenation of the error encoding e(l)j ∈ R2m and the
error-to-context vector xj ∈ R2m as shown in Eq 2. The
error-to-context matrix X (e)

∈ R2m×J is the attention of
error encoding on the context encoding computed from the
similarity matrix S ∈ RK×J as shown in Eq 1.

S ∈ RK×J skj = c(l)Tk · e(l)j ∈ R

A ∈ RK×J aj = softmax(sj) ∈ RK

X (e)
∈ R2m×J xj = (C (l)T

· aj)T ∈ R2m (1)

Z (e)
∈ R4m×J z(e)j = [e(l)j ; xj] ∈ R4m (2)

Subsequently, the contextual embeddings Z (e)
∈ R4m×J

are encoded by the ‘‘contextual encoder’’ (a bidirectional
LSTM layer containing n nodes in each direction) into a
contextual-encoding matrix Z (l)

∈ R2n×J .

2) DECODER
The decoder is a typical LSTM decoder (a unidirectional
LSTM containing 2n nodes) with an attention mecha-
nism [32] that observes contextual encoding, as shown
in Fig 4. The decoder produces a correction for the error
segment. Because the corrector is an autoregressive network,
the decoder operates by predicting a token w(c)

t given the
token predicted from the previous timestep w(c)

t−1; therefore,
the tokens before and after the actual correction words are
special tokens, as shown in Eq 3, where L is the number of
words in the correction.

Ew(c)
= {BEGIN ,w(c)

1 ,w(c)
2 , . . . ,w(c)

L ,END} (3)

The decoding process is repeated until the timestep following
the end of the correction sequence t = L + 1, where the
network is expected to output a special END token to indicate

the end of the sequence. The hidden state h0 ∈ R2n of the
decoder LSTM is initialized with the final hidden state of the
‘‘contextual encoder’’. The input to the LSTM decoder is a
concatenation of the word embeddings and the context vector,
as shown in Eq 4. The token produced from the previous
timestep w(c)

t−1 is embedded with the word embedding layer,
which produces word embeddings e(e)t ∈ R2n. The context
vector e(c)t ∈ R2n is computed with dot-product attention
from the previous hidden state ht−1 to the encoded sequence
Z (l). The embedding et is a concatenation between the word
embeddings and the context vector, as shown in Eq 4.

et = [e(e)t ; e
(c)
t ] ∈ R4n

ht , ct = LSTMdecoder (ht−1, ct−1, et ) (4)

The decoder is trained with teacher forcing. Thus, during
training, the decoder’s input is derived from data instead of
the output from the previous timestep.

B. DATA AUGMENTATION
We experimented with injecting noise into the dataset dur-
ing model pretraining to help increase the number of erro-
neous examples in the training set. Our method was inspired
by the data augmentation technique employed in the copy-
augmented transformer [12]. However, we inject character
errors rather than word errors. We inject three types of errors:
a random character deletion, a random character substitution,
and a random character insertion. Each type of error possesses
a 3% probability of appearing for every position in the text.
When a character is replaced or inserted, the replacement
character is chosen at random based on the distribution of that
character in the training set.

C. TRAINING
This section describes the training routine, which is shared
by both the detection and the correction stages. Any details
that differ between the two models are outlined in their cor-
responding subsection under Section IV-A.

The dataset is separated into three sets: a training set,
a development set, and a test set. The test set is used only
to report the model performance after training and to conduct
the error analyses reported in this paper. The details of each
set for UGWC are covered in Section III-A, while details on
other tasks are listed in their corresponding experiments.

We evaluated three training configurations: training only
on the training set, training only on the noise-injected train-
ing set, and models pretrained on the noise-injected training
set and fine-tuned on the original training set. During fine-
tuning, we reduced the learning rate to 0.0005 for both the
detector and the corrector.

During training and pretraining, the models are validated
(evaluated on the development set) to prevent overfitting
between epochs. The corrector is evaluated after a fixed
number of iterations (i.e., 25,000 error segments) instead
of finishing the whole epoch. Early stopping patience is
20 epochs for the detector and 20 groups (of 25,000 error

VOLUME 8, 2020 133409



A. Lertpiya et al.: Thai Spelling Correction and Word Normalization on Social Text

segments) for the corrector. The models were evaluated using
their respective loss functions. We found that neither using
the F1-score for the detector validation nor accuracy for the
corrector validation resulted in improved performances.

V. EXPERIMENTS
In this section, we discuss the procedures used for each exper-
iment in detail. The first subsection outlines the evaluation
metrics used for each experiment. The second subsection
outlines the experiments performed on our Thai TC task. The
third subsection outlines the experiments performed on the
publicly available Conll-2014 [21] dataset from the English
GEC task and a cut-down version of Conll-2014 to create a
spelling correction task for English.

A. EVALUATION CRITERIA
Word-error-rate (WER) and generalized language evaluation
understanding (GLEU) [33], [34] were adopted as the met-
rics for the TC task. WER is the standard evaluation metric
used in past literature on Thai TC [4], [5]. GLEU [33], [34]
was developed as an evaluation metric for English GEC and
has a high correlation with human preference by extend-
ing BLEU [35]. Because GLEU evaluates words based on
n-grams instead of individual tokens, it tends to favor grouped
errors over scattered ones, whereas WER treats all errors
equally. For the English GEC and spelling correction tasks,
we employed the standard M2 and GLEU for comparability
with the existing literature [11], [12], [14]–[17], [21]. Our
initial goal was to adopt both correction metrics from English
GEC for our Thai TC task. However, we droppedM2 [36] due
to a combination of M2’s high computational complexity and
the Thai language’s lack of explicit sentence boundaries [37].
We found that a single paragraph of text can take upwards of
an hour to evaluate.

B. THAI TEXT CORRECTION ON UGWC
We evaluated five methods on the Thai UGWC dataset: an
industry-standard spell checker (i.e., Hunspell), a well-known
Thai NLP toolchain (i.e., PyThaiNLP), two models from the
English GEC task (i.e., Bi-GRU [11] and the copy-augmented
transformer [38]), and our proposed method. We categorize
the approaches into two groups: two-stage error correction
(i.e., Hunspell, PyThaiNLP, and ours) and end-to-end (E2E)
error correction (i.e., Bi-GRU and copy-augmented trans-
former). The configurations used for each method are out-
lined below, and the hyperparameter tuning is detailed in
Appendix B.

Hunspell [9] was evaluated using both the provided pre-
built Thai dictionary and a dictionary constructed from the
training data. The constructed dictionary built from the words
in the corrected text of the UGWC training set. We exper-
imented with multiple cut-off thresholds for a word to be
added to the dictionary; however, we report using only the
best performing threshold (frequency ≥ 1).
PyThaiNLP is a popular toolchain in the Thai NLP

community that employs techniques adapted from

state-of-the-art research on other languages. PyThaiNLP has
a ready-to-use text correction module that uses a two-stage
approach. PyThaiNLP employs a detector that uses passive-
aggressive CRF [39] and a Norvig corrector [38].

Two neural sequence-to-sequence models were evaluated:
the bidirectional GRU (Bi-GRU) network [11] and the copy-
augmented transformer [12]. Bi-GRU represents a baseline
for a neural Seq2Seq model, because Bi-GRU is a strictly
neural-based MT method that achieved relatively good per-
formance at its time of publication. In contrast, the copy-
augmented transformer represents the current state-of-the-art
architecture from the English GEC task; it employs specif-
ically designed techniques to perform text corrections (i.e.,
the copy substructure and pretraining on augmented data).
For the Bi-GRU model, where the model is meant to operate
on SentencePiece tokens (SP) [27], the SP tokens are encoded
from tokenized Thai text and space tokens are used to denote
word boundaries, the existing space characters are escaped
(replaced with special characters).

C. ENGLISH GEC & SPELLING CORRECTION
Further experiments were performed to evaluate our
method on two additional text correction tasks: the Conll-
2014 shared-task for English Grammatical Error Correc-
tion [21] and an English spelling correction task we built
from Conll-2014 [21]. The detailed annotation in Conll-
2014 allowed us to create a TC that involved only spelling
errors, which resembles our Thai TC task. All types of errors
other than spelling errors (denoted with ‘‘Mec’’) were pre-
corrected in both Conll-2013 and Conll-2014 to build the
development and test sets. The training set is a combination
of NUCLE [40] and Lang-8 [41] without any precorrections
because there is no way to discern the type of error for each
correction. Using NUCLE and Lang-8 as training sets, Conll-
2013 as the development set, and Conll-2014 as the test set is
a standard practice in the previous literature [11], [15], [23].
The hyperparameters and training configuration for our mod-
els remain the same as on the UGWC dataset, except for
the detection threshold selection. We found that a thresh-
old tuned for F0.5 on the development set (instead of F1)
produced a better correction overall. The hyperparameters
for other methods were based on their respective papers
(i.e., Bi-GRU [11] and the copy-augmented transformer [38]).

VI. RESULTS AND DISCUSSION
In this section, we outline and discuss the results of our
experiments. The TC approaches were evaluated on three
tasks: our TC task on Thai UGWC and two TC tasks derived
from the English Conll-2014 shared task [21].

A. THAI UGWC
In this section, we cover the results on the TC task on the Thai
UGWC dataset. The results include the evaluation of existing
techniques from Thai TC, English GEC, and our method.

The TC results on the Thai UGWC dataset are shown
in Table 3. We categorized the results into two groups:

133410 VOLUME 8, 2020



A. Lertpiya et al.: Thai Spelling Correction and Word Normalization on Social Text

TABLE 3. Evaluation of end-to-end error correction on the Thai UGWC
test set by various systems.

off-the-shelf ready-to-use models and models trained
on the UGWC training set. Two off-the-shelf models
were evaluated: Hunspell with its prebuilt dictionary [9],
PyThaiNLP [10]. Furthermore, we evaluated three trained
models: Hunspell (dictionary-based) [9], Bi-GRU (Neural
Seq2Seq) [11], and the copy-augmented transformer (Neu-
ral Seq2Seq with Augmentation) [12]. Samples of the cor-
rections produced by the individual models are shown in
Appendix A. The time required by each model to perform
inference on the test set is shown in Table 5. Below, we dis-
cuss the shortcomings of the methods that struggled on the
Thai TC task before reporting the overall results.

Correction systems with dictionary-based correctors (i.e.,
Hunspell [9], and PyThaiNLP [10]) often struggle to select
a correct correction candidate. As a result, system with
more conservative error detectors produce less incorrect cor-
rections. Hunspell with its prebuilt dictionary performed
the worst. Although we experimented with multiple cut-
off thresholds for creating the custom dictionary for Hun-
spell, the best result is reported in Table 3.—the dictionary
built from words in the corrected text from the training set
(frequency ≥ 1). Although this model suffers from erroneous
words in the dictionary, due to label noise in the corrected
text, compared to the provided dictionary, the errors left
uncorrected outweigh the potential errors introduced from
corrections with false-positives.

Although the GEC literature may suggest that end-to-end
(E2E) correction systems are the natural step forward for text
correction systems, our results showed that the basic E2E text
corrector is insufficient for correcting errors in Thai UGWC
(see Bi-GRU [11] in Table 3). The error analysis showed
that most of the errors made by Bi-GRU result from the
model getting stuck in a loop, thus repeatedly producing the
same groups of tokens. To combat this, we tried performing
corrections on truncated inputs, which improves the score.

TABLE 4. Detailed WER evaluation of correction methods on the Thai
UGWC test set.

However, the Bi-GRU with the best performing input size
(20 tokens for WER and 50 tokens for GLEU) still suffered
from looping and overcorrections (i.e., text being rewritten
with a different meaning). As a result, Bi-GRU performed
significantly worse than did the simpler two-stage correctors.
In Table 3, Bi-GRU scores are reported from the model oper-
ating on SentencePiece tokens with the original space charac-
ters escaped. However, we also experimented with executing
Bi-GRU on SentencePiece with untokenized Thai text, and
that model still exhibits the issues mentioned above. Some
samples produced by executing Bi-GRU on SentencePiece on
untokenized Thai text are shown in Appendix A.

The copy-augmented transformer [12] showed massive
improvement over Bi-GRU and even produced a positive
word error rate reduction on the input text. However, the error
analysis showed that the copy-augmented model still suffers
from overcorrections, primarily randomly dropping words
from the input and producing corrected text with a different
meaning. Table 4 shows a breakdown of the WER score; the
copy-augmented model shows substantially worse deletion
and insertion error rates compared to our model, which con-
firms our analysis.

Our proposed method without data augmentation outper-
forms all the other models evaluated on the Thai TC task. The
results also showed that pretraining on the augmented training
set followed by fine-tuning further improves the correction
performance. However, training on an augmented training
set without fine-tuning significantly degrades the correction
performance.

B. SentencePiece AS UNIT TOKENS
In this section, we evaluate how our model performs with
two different token types: word tokens and SentencePiece
tokens. SentencePiece (subword tokens) potentially allow a
model to operate on text with an open vocabulary. Because
SentencePiece-based models do not produce word bound-
aries, word tokenization is required to postprocess the results
for evaluation. To ensure a fair comparison between the two
models, we also retokenized the results from our word-based
model. The results are shown in Table 6. In terms of GLEU,
both models scored similarly. However, the word model sub-
stantially outperformed the SentencePiece model in terms
of WER. The error analysis showed that when the word-
based model is unable to produce a correction (outputs an
OOV token), the SentencePiece-based model also produced

VOLUME 8, 2020 133411



A. Lertpiya et al.: Thai Spelling Correction and Word Normalization on Social Text

TABLE 5. Inference time on the Thai UGWC test set by various systems.

TABLE 6. Evaluation of retokenized output from our method with
different unit token types on the Thai UGWC test set.

FIGURE 6. Four types of error segments.

incorrect corrections. Due to false-positives in the detection
stage, not correcting is the better option in such cases.

C. DETECTION STAGE
This section examines the detection stage from two aspects:
detection coverage of the errors in the data and the error seg-
ments produced from the detection stage. An error segment
can be classified into four types: exact detection, overde-
tection, partial detection, and false-positive detection. Fig 6
shows the four types of error segments. An exact detection
occurs when the predicted boundaries of an error segment
match the true boundaries of the error segment. Overdetection
occurs when the predicted error segment covers an area larger
than the actual error segment. A partial detection occurs when
a predicted error segment only partially covers the actual

FIGURE 7. Detection coverage of our method on the Thai UGWC test set.

error segment. Last, false-positive detection occurs when a
predicted error segment does not overlap with any actual
error segments. From the perspective of the actual errors
in the data, reducing the detection threshold increases the
detection coverage, as shown in Fig 7. However, there is a
trade-off between the detection coverage and the number of
false-positive detections, as shown in Fig 8 and Fig 9. Overde-
tection increases as the threshold decreases; but Interestingly,
partial detection remains roughly the same across all detec-
tion thresholds. The evaluation broken down by error types is
shown in Fig 10 and Fig 11. The performance is consistent for
misspelledwords, morphedwords, and incorrect abbreviation
notations but varies for spoonerisms and Slang, which have
smaller numbers of samples.

D. CORRECTION STAGE
This section also examines the correction stage from two
aspects: correction coverage of the errors in the data and
the error segments that are corrected in the correction stage.
Correction of a covering error segment (i.e., exact detection
and overdetection) is corrected either accurately or incor-
rectly. For false-negative detection, the error is uncorrected.

133412 VOLUME 8, 2020



A. Lertpiya et al.: Thai Spelling Correction and Word Normalization on Social Text

FIGURE 8. Types of error segments produced from the detection stage of
our method on the Thai UGWC test set.

FIGURE 9. Coverage of the detection and false-positives produced from
the detection stage of our method on the Thai UGWC test set.

FIGURE 10. Number of error segments produced for different types of
errors on the Thai UGWC test set.

For partial detection, any correction is considered incorrectly
corrected because portions of the erroneous text lie outside

FIGURE 11. Normalized number of error segments produced for different
types of errors on the Thai UGWC test set.

FIGURE 12. Correction coverage of our method on the Thai UGWC test
set. ‘‘Oracle’’ is used to denote the results from using an ideal detection
output. Uncorrectable Oracle detection is due to the corrector rejecting
the detection by producing OOV tokens.

the error segments. Fig 12 shows the correction coverage
of our method. From the perspective of the actual errors in
the data, reducing the detection threshold tends to increase
the correction coverage. However, the correction coverage
flattens out at lower thresholds and even decrease slightly
at a threshold of 0.1. Thus, a trade-off exists between the
correction coverage and the number of remaining errors in the
corrected text, as shown in Figs 13, 14, and 15. A breakdown
of the evaluation by error types is shown in Figs 16 and 17.
In line with error detection, performance is consistent for
misspelledwords, morphedwords, and incorrect abbreviation
notations but varies for spoonerisms and slang.

E. DETECTION SENSITIVITY
In this section, we evaluate how the detector performance
correlates with the end-to-end correction performance at dif-
ferent detection sensitivities. The detection stage is evalu-

VOLUME 8, 2020 133413



A. Lertpiya et al.: Thai Spelling Correction and Word Normalization on Social Text

FIGURE 13. Types of corrections produced by our method on the Thai
UGWC test set. ‘‘Oracle’’ is used to denote the results from using an ideal
detection output. Uncorrectable Oracle detection is due to the corrector
rejecting the detection by producing OOV tokens.

FIGURE 14. Breakdown of the remaining errors after executing our
method on the Thai UGWC test set. ‘‘Oracle’’ is used to denote the results
from using an ideal detection output. Uncorrectable Oracle detection is
due to the corrector rejecting the detection by producing OOV tokens.

ated as a typical detection task using the F1-score on the
test set. The results are shown in Fig 18. We found that
the trend of the GLEU score follows the detection F1-score
and that a threshold of 0.4 performs best on both metrics.
For all the results reported outside of this section, we tune
the detection threshold on the development set and set the
threshold to 0.5.

F. ENGLISH GEC CONLL-2014
Our method was evaluated on two tasks: the full grammat-
ical error correction (GEC) task and the spelling correc-
tion task built from Conll-2014. The results are shown in
Tables 7 and 8. As expected, ourmethod performs very poorly
on the full GEC task because performing GEC effectively
requires the ability to rewrite large portions of the text. The
GLEU scored our model below doing nothing.

FIGURE 15. Coverage of the correction and the resulting number of errors
from our method on the Thai UGWC test set. ‘‘Oracle’’ is used to denote
the results from using an ideal detection output. The total number of
segments is neither consistent with Fig 9 nor consistent across different
detection thresholds, because nonideal detection can cause the true error
segments to merge or split.

FIGURE 16. The number of error segments corrected for different types of
errors on the Thai UGWC test set.

FIGURE 17. Normalized number of error segments corrected for different
types of errors on the Thai UGWC test set.

To evaluate only the spelling correcting capabilities of our
model, we built a spelling correction task using the Conll-

133414 VOLUME 8, 2020



A. Lertpiya et al.: Thai Spelling Correction and Word Normalization on Social Text

FIGURE 18. Detection and end-to-end correction performances at
different detection sensitivities.

TABLE 7. Evaluation of end-to-end error correction on the GEC
Conll-2014 dataset by various systems.

TABLE 8. Evaluation of end-to-end error correction on the misspelling
subset of GEC Conll-2014 by various systems.

2013 and Conll-2014 datasets by precorrecting any gram-
matical errors and leaving only the spelling errors (correc-
tions marked as ‘‘Mec’’ in the dataset). We tested both our
model and Bi-GRU [11] under two training regimes: with
and without data augmentation on the training set. For the

copy-augmented transformer, we used the pretrained weights
provided by the authors (which were trained on augmented
data according to their paper [12]) and fine-tuned it on the
training set. Ourmodel outperformed both the Bi-GRUmodel
and the copy-augmented transformer model with respect to
both M2 and GLEU scores on the spelling correction task.
However, due to the sparse nature of the misspelling errors in
the test set (only 228 misspelled segments constituting only
9.54% of all 2,391 erroneous segments) spanning 1,312 sen-
tences, the resulting corrected text from all the evaluated
models received a lower M2 score than did the precorrected
text used as the input. Only our model (with augmentation
and fine-tuning) produced an increased GLEU score over the
precorrected text.

VII. CONCLUSION
In this study, we investigated how various text correction
systems and our proposed method performed on our Thai text
correction (Thai TC) task.

Our investigation into the various techniques showed that
most systems struggle when applied to Thai TC. Tradi-
tional two-stage Thai text correction systems, which rely
on a dictionary-based corrector, suffer because they select
improper candidates during the correction stage. As a result,
these systems are unable to produce an output with error lev-
els below those of the input. However, these results are in-line
with the current use of these systems because spell checkers
require human intervention to select the proper correction.
On the other hand, the basic end-to-end correction systems
(E2E) (i.e., Bi-GRU Seq2Seq [11]) suffer other issues when
applied to Thai TC and perform much worse. However, mov-
ing to a more advanced E2E system (i.e., copy-augmented
transformer [12]) showed that a Seq2Seq corrector with a
substructure that encourages copying can enable a corrector
to produce text corrections that are better than the original
input text.

Our proposed model is a neural-based two-stage error cor-
rection system with a novel context-aware correction stage.
We investigated how the detection stage affects the overall
correction performance and how to tune the proposed text cor-
rection system for optimal correction performance. Our pro-
posed system outperformed all the existing tested techniques
on the TC task on the Thai UGWC dataset. Our proposed
method also outperformed the state-of-the-art GEC model
on an English spelling correction task constructed from the
Conll2014 task [21].

In this work, we proposed a handcrafted procedure for per-
forming data augmentation for model pretraining. In future
work, a learning-based method for data augmentation (e.g.,
back-translation [17]) could further improve the correction
performance.

APPENDIX A
ERROR ANALYSIS OF TEXT CORRECTION ON THAI UGWC
In this section, we perform error analyses on each of the
results reported on our text correction task on the Thai

VOLUME 8, 2020 133415



A. Lertpiya et al.: Thai Spelling Correction and Word Normalization on Social Text

TABLE 9. Error analysis of each model on the first sample line on the TC task on the Thai UGWC dataset.

user-generated web content (text data collected from social
media) described in Table 3. We selected two lines (see
Tables 9 and 10) to illustrate the types of issues each correc-
tion system struggled with. ‘‘Annotation’’ is used to denote
the test set, while ‘‘Annotation-2’’ denotes another annotation
by our linguist at KLabs. For the bidirectional GRU (Bi-
GRU) model [11] on untokenized text, where the model
operated on the SentencePiece tokens [27], the results are
hand tokenized in favor of the model (leading to the low-
est amount of errors). For models with multiple configu-
rations, only the best configuration is analyzed. That is,
our pretrained and fine-tuned model with words as the unit
tokens, the Bi-GRU model with 50-token limits, the Bi-GRU
model with 20-token limits, the Bi-GRU model with 40-
token limits (untokenized), and the pretrained and fine-tuned
copy-augmented transformer.

Error correction systems with dictionary-based correction
(i.e., Hunspell, Hunspell (trained), PyThaiNLP), struggle
with choosing the proper correction even when the target
word is in the dictionary. Thus, the system with the most
conservative detection stage (i.e., PyThaiNLP) performs the
best by introducing the fewest number of corrections. While

Hunspell with the provided dictionary corrects some error
segments correctly, the introduced errors outweigh the effect
of the corrections made.

End-to-end correction systems (i.e., Bi-GRU, copy-
augmented) often produce correct Thai sentences but with a
different meaning. An analysis of the output suggested that
the model prefers to produce sentences or phrases that are
common in the training dataset. While the copy-augmented
transfer’s substructure should alleviate this issue, the model
still suffers from this issue, but to a lesser extent when com-
pared to Bi-GRU.

APPENDIX B
HYPERPARAMETERS
On the Thai text correction task, we obtained the hyperpa-
rameter values for both our method and the other neural-
based methods evaluated in this paper (i.e., Bi-GRU [11]
and copy-augmented transformer [38]) using grid-search for
optimal performance. Table 11 shows a consolidated list
of the hyperparameters for our method. The search range
for each component of our error detector was 32-512 with
multiple-of-2 increments. For our corrector, the search

133416 VOLUME 8, 2020



A. Lertpiya et al.: Thai Spelling Correction and Word Normalization on Social Text

TABLE 10. Error analysis of each model on the second sample line on the TC task on the Thai UGWC dataset.

VOLUME 8, 2020 133417



A. Lertpiya et al.: Thai Spelling Correction and Word Normalization on Social Text

TABLE 11. Consolidated list of hyperparameters for our
proposed method.

ranges for ‘‘m’’ and ‘‘n’’ are 16-40 with increments of 8
and 64-256 with multiples of 2 increments, respectively.
On the English spelling correction task, our hyperparam-
eters remain the same as on the Thai TC task, while the
hyperparameters for other methods were set according to
their original papers (i.e., Bi-GRU [11] and copy-augmented
transformer [38]).

ACKNOWLEDGMENTS
This work was supported in part by the joint research of
Kasikorn Business Technology Group (KBTG) and the Fac-
ulty of Engineering, Chulalongkorn University. The authors
would like to thank the linguist at KLabs, Nutcha Tirasaroj,
for her help with the error analysis.

REFERENCES
[1] K. Lee, A. Agrawal, and A. Choudhary, ‘‘Real-time disease surveillance

using Twitter data: Demonstration on flu and cancer,’’ in Proc. 19th ACM
SIGKDD Int. Conf. Knowl. Discovery data Mining, 2013, pp. 1474–1477.

[2] A. Farzindar and D. Inkpen, ‘‘Natural language processing for social
media,’’ Synth. Lectures Hum. Lang. Technol., vol. 8, no. 2, p. 9, 2015.

[3] A. Lertpiya, T. Chaiwachirasak, N. Maharattanamalai, T. Lapjaturapit,
T. Chalothorn, N. Tirasaroj, and E. Chuangsuwanich, ‘‘A preliminary
study on fundamental Thai NLP tasks for user-generated Web content,’’
in Proc. Int. Joint Symp. Artif. Intell. Natural Lang. Process. (iSAI-NLP),
Nov. 2018, pp. 1–8.

[4] S. Meknavin, B. Kijsirikul, A. Chotimongkol, and C. Nuttee, ‘‘Progress of
combining trigram and winnow in Thai OCR error correction,’’ in Proc.
IEEE. APCCAS . IEEE Asia–Pacific Conf. Circuits Syst. Microelectron.
Integrating Systems. Proc., 1998, pp. 555–558.

[5] S. Meknavin, B. Kijsirikul, A. Chotimongkol, and C. Nuttee, ‘‘Combining
trigram and winnow in Thai OCR error correction,’’ in Proc. 17th Int. Conf.
Comput. Linguistics, 1998, pp. 836–842.

[6] M. Rodphon, K. Siriboon, and B. Kruatrachue, ‘‘Thai OCR error correction
using token passing algorithm,’’ inProc. IEEEPacific RimConf. Commun.,
Comput. Signal Process., 2001, pp. 599–602.

[7] B. Kruatrachue, K. Somguntar, and K. Siriboon, ‘‘Thai OCR error correc-
tion using genetic algorithm,’’ in Proc. 1st Int. Symp. Cyber Worlds, 2002,
pp. 137–141.

[8] S. Watcharabutsarakham, ‘‘Spell checker for Thai document,’’ in Proc.
IEEE Region Conf., Nov. 2005, pp. 1–4.

[9] Hunspell. (Nov. 2019). Hunspell/Hunspell. [Online]. Available:
https://github.com/hunspell/hunspell

[10] PyThaiNLP. (May 2019). PyThaiNLP/Spelling-Check. [Online]. Avail-
able: https://github.com/PyThaiNLP/spelling-check

[11] R. Grundkiewicz and M. Junczys-Dowmunt, ‘‘Near human-
level performance in grammatical error correction with hybrid
machine translation,’’ 2018, arXiv:1804.05945. [Online]. Available:
http://arxiv.org/abs/1804.05945

[12] W. Zhao, L. Wang, K. Shen, R. Jia, and J. Liu, ‘‘Improving gram-
matical error correction via pre-training a copy-augmented architec-
ture with unlabeled data,’’ 2019, arXiv:1903.00138. [Online]. Available:
http://arxiv.org/abs/1903.00138

[13] PyThaiNLP. (Nov. 2019). PyThaiNLP/pythainlp. [Online]. Available:
https://github.com/PyThaiNLP/pythainlp

[14] S. Chollampatt and H. T. Ng, ‘‘Amultilayer convolutional encoder-decoder
neural network for grammatical error correction,’’ in Proc. 32nd AAAI
Conf. Artif. Intell., 2018, pp. 5755–5762.

[15] M. Junczys-Dowmunt, R. Grundkiewicz, S. Guha, and K. Heafield,
‘‘Approaching neural grammatical error correction as a low-resource
machine translation task,’’ 2018, arXiv:1804.05940. [Online]. Available:
http://arxiv.org/abs/1804.05940

[16] S. Chollampatt and H. T. Ng, ‘‘Neural quality estimation of grammatical
error correction,’’ in Proc. Conf. Empirical Methods Natural Lang. Pro-
cess., 2018, pp. 2528–2539.

[17] S. Kiyono, J. Suzuki, M. Mita, T. Mizumoto, and K. Inui, ‘‘An
empirical study of incorporating pseudo data into grammatical
error correction,’’ 2019, arXiv:1909.00502. [Online]. Available:
http://arxiv.org/abs/1909.00502

[18] wolfgarbe. (Nov. 2019). Wolfgarbe/SymSpell. [Online]. Available:
https://github.com/wolfgarbe/SymSpell

[19] K. Atkinson. (2019). GNU Aspell. [Online]. Available: http://aspell.net/
[20] N. Zukarnain, B. S. Abbas, S. Wayan, A. Trisetyarso, and C. H. Kang,

‘‘Spelling checker algorithm methods for many languages,’’ in Proc. Int.
Conf. Inf. Manage. Technol. (ICIMTech), Aug. 2019, pp. 198–201.

[21] H. T. Ng, S. M. Wu, T. Briscoe, C. Hadiwinoto, R. H. Susanto, and
C. Bryant, ‘‘The CoNLL-2014 shared task on grammatical error correc-
tion,’’ in Proc. 18th Conf. Comput. Natural Lang. Learn., Shared Task,
2014, pp. 1–14.

[22] A. Rozovskaya and D. Roth, ‘‘Grammatical error correction: Machine
translation and classifiers,’’ in Proc. 54th Annu. Meeting Assoc. Comput.
Linguistic, Berlin, Germany, Aug. 2016, pp. 2205–2215. [Online]. Avail-
able: https://www.aclweb.org/anthology/P16-1208

[23] M. Junczys-Dowmunt and R. Grundkiewicz, ‘‘Phrase-based Machine
Translation is State-of-the-Art for Automatic Grammatical Error Cor-
rection,’’ in Proc. Conf. Empirical Methods Natural Lang. Process.,
Austin, TX, USA, Nov. 2016, pp. 1546–1556. [Online]. Available:
https://www.aclweb.org/anthology/D16-1161

[24] The Royla Inst. Dictionary 2542 B.E. Nanmeebooks, Bangkok, Thailand,
1999.

[25] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[26] M. Schuster and K. K. Paliwal, ‘‘Bidirectional recurrent neural net-
works,’’ IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673–2681,
1997.

[27] T. Kudo and J. Richardson, ‘‘SentencePiece: A simple and language
independent subword tokenizer and detokenizer for neural text pro-
cessing,’’ 2018, arXiv:1808.06226. [Online]. Available: http://arxiv.org/
abs/1808.06226

[28] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-
mization,’’ 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.
org/abs/1412.6980

[29] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi, ‘‘Bidirectional atten-
tion flow formachine comprehension,’’ 2016, arXiv:1611.01603. [Online].
Available: http://arxiv.org/abs/1611.01603

[30] M. Gardner, J. Grus, M. Neumann, O. Tafjord, P. Dasigi, N. F. Liu,
M. Peters, M. Schmitz, and L. S. Zettlemoyer, ‘‘AllenNLP: A deep
semantic natural language processing platform,’’ 2017, arXiv:1803.07640.
[Online]. Available: https://arxiv.org/abs/1803.07640

[31] AllenNLP. (Feb. 2019). AllenNLP Bidirectional Attention Flow Imple-
mentation. [Online]. Available: https://github.com/allenai/allennlp/blob/
v0.8.2/allennlp/models/reading_comprehension

[32] D. Bahdanau, K. Cho, and Y. Bengio, ‘‘Neural machine translation by
jointly learning to align and translate,’’ 2014, arXiv:1409.0473. [Online].
Available: http://arxiv.org/abs/1409.0473

133418 VOLUME 8, 2020



A. Lertpiya et al.: Thai Spelling Correction and Word Normalization on Social Text

[33] C. Napoles, K. Sakaguchi, M. Post, and J. Tetreault, ‘‘Ground Truth
for Grammatical Error Correction Metrics,’’ in Proc. 53rd Annu. Meet-
ing Assoc. Comput. Linguistics, Beijing, China, Jul. 2015, pp. 588–593.
[Online]. Available: https://www.aclweb.org/anthology/P15-2097

[34] C. Napoles, K. Sakaguchi, M. Post, and J. Tetreault, ‘‘GLEU
without tuning,’’ 2016, arXiv:1605.02592. [Online]. Available:
http://arxiv.org/abs/1605.02592

[35] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, ‘‘BLEU: A method for
automatic evaluation of machine translation,’’ in Proc. 40th Annu. Meet-
ing Assoc. Comput. Linguistics, 2001, pp. 311–318. [Online]. Available:
https://www.aclweb.org/anthology/P02-1040

[36] R. Grundkiewicz, M. Junczys-Dowmunt, and E. Gillian, ‘‘Human evalu-
ation of grammatical error correction systems,’’ in Proc. Conf. Empirical
Methods Natural Lang. Process., 2015, pp. 568–572. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2382029.238211

[37] W. Aroonmanakun, ‘‘Thoughts on word and sentence segmentation in
Thai,’’ in Proc. 7th Symp. Natural Lang. Process., Pattaya, Thailand,
Dec. 2007, pp. 85–90.

[38] P. Norvig. (Feb. 2007). How to Write a Spelling Corrector. [Online].
Available: http://norvig.com/spell-correct.html

[39] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer,
‘‘Online passive-aggressive algorithms,’’ J. Mach. Learn. Res., vol. 7,
pp. 551–585, Dec. 2006.

[40] D. Dahlmeier, H. T. Ng, and S. M. Wu, ‘‘Building a large annotated
corpus of learner English: The NUS corpus of learner English,’’ in Proc.
8th Workshop Innov., Atlanta, Georgia, Jun. 2013, pp. 22–31. [Online].
Available: https://www.aclweb.org/anthology/W13-1703

[41] T. Mizumoto, Y. Hayashibe, M. Komachi, M. Nagata, and Y. Matsumoto,
‘‘The effect of learner corpus size in grammatical error correction of ESL
writings,’’ in Proc. COLING, 2012, pp. 863–872.

ANURUTH LERTPIYA received the B.Eng. degree
in computer engineering fromChulalongkorn Uni-
versity, Bangkok, Thailand, in 2018, where he is
currently pursuing the M.Eng. degree in computer
engineering. His research interests include natural
language generation, information extraction, and
named-entity recognition.

TAWUNRAT CHALOTHORN received the B.S.,
M.S., and Ph.D. degrees from the University of
Northumbria, Newcastle, U.K., in 2010, 2011,
and 2016, respectively. She then joined the Nat-
ural Language Processing Team, Kasikorn Labs
(KLabs) Company Ltd., Kasikorn Business Tech-
nology Group (KBTG), which mostly research
based on Thai language. Her research interests
include chatbots, social listening, and text analyt-
ics.

EKAPOL CHUANGSUWANICH received the
B.S. and M.S. degrees in electrical and com-
puter engineering from Carnegie Mellon Univer-
sity, in 2008 and 2009, respectively, and the Ph.D.
degree from the MIT, in 2016. He then joined the
Spoken Language Systems Group, MIT Computer
Science and Artificial Intelligence Laboratory.
He is currently a Faculty Member of the Depart-
ment of Computer Engineering, Chulalongkorn
University. His research interests include speech

processing, assistive technology, and health applications.

VOLUME 8, 2020 133419


