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ABSTRACT Neuromorphic computing offers parallel data processing and low energy consumption and
can be useful to replace conventional von Neumann computing. Memristors are two-terminal devices with
varying conductance that can be used as synaptic arrays in hardware-based neuromorphic devices. In this
research, we extensively investigate the analog symmetric multi-level switching characteristics of zinc tin
oxide (ZTO)-based memristor devices for neuromorphic systems. A ZTO semiconductor layer is introduced
between a complementary metal-oxide-semiconductor (CMOS) compatible Ni top electrode and a highly
doped poly-Si bottom electrode. A variety of bio-realistic synaptic features are demonstrated, including
long-term potentiation (LTP), long-term depression (LTD), and spike timing-dependent plasticity (STDP).
The Ni/ZTO/Si device in which the adjustment of the number of states in conductance is realized by applying
different pulse schemes is highly suitable for hardware-based neuromorphic applications. We evaluate the
pattern recognition accuracy by implementing a system-level neural network simulation with ZTO-based
memristor synapses. The density of states (DOS) and charge density plots reveal that oxygen vacancies in
ZTO assist in generating resistive switching in the Ni/ZTO/Si device. The proposed ZTO-based memristor
composed ofmetal-insulator-semiconductor (MIS) structure is expected to contribute to future neuromorphic
applications through further studies.

INDEX TERMS Neuromorphic, synaptic device, zinc tin oxide, density function theory, neural network.

I. INTRODUCTION
The recent emergence of artificial intelligence (AI), big data,
and the Internet of Things (IoT) has defined a new paradigm
of digital system alternation that has dramatically increased
data processing complexity in terms of represented power,
size, the number of gates, the amount of memory, and types of
environment [1]. The von Neumann architecture that is most
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used in a conventional computing system can execute logic
processing and arithmetic operations, but it is susceptible
to problems due to scaling, power consumption, and device
heating [2], [3]. To overcome the problems affecting these
conventional computing systems, most studies have concen-
trated on finding new types of computing architectures, such
as a neuromorphic or in-memory computing systems [4], [5].
Neuromorphic systems mimic neurons and synapses of the
human brain, in which a variety of arithmetic, logic, learning,
and memory activities are conducted using a low amount of
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power. Moreover, parallel computing through adaptive events
is suitable for learning and inference [6]–[8]. Neuromorphic
systems are more productive for complex tasks, such as
speech and image recognition [9]. Several memory devices
have been shown to have synaptic functions with a change in
weight by recognizing signals from post- and pre-neurons.
Two-terminal memristors, phase-change memory (PRAM),
conductive bridge memory (CBRAM), and resistive change
memory (RRAM) have been widely studied in the litera-
ture [10]–[27]. In particular, RRAM offers fast switching
(∼100 ns), low current operation (∼1µA), and a high-density
structure with a crossbar array [28]–[33]. To use RRAM as
a synapse for a neuromorphic system, it is essential to have
multi-level conductance modulation with a pulse at the side
of each two-terminal electrode. In contrast with filamentary
type devices with abrupt set transitions [34], an interface type
device achieves better controllablemultilevel states during set
and reset events [35]. Furthermore, neuromorphic engineer-
ing requires control of the conductance in an analog manner,
spike time-dependent plasticity (STDP), and a CMOS com-
patible with neuron circuits.

Researchers have frequently reported on material
approaches to improve the synaptic characteristics, including
using a bilayer structure, such as HfO2/Al2O3 [36], layered
two-dimensional materials such as graphene, MoS2, and
h-BN [37], and semiconducting materials such as IGZO and
ITO [38], [39].

Here, we conduct comprehensive experiments and sim-
ulations to evaluate the suitability of CMOS compatible
ZTO-based memristor as synaptic device for neuromorphic
hardware applications. We fabricated CMOS-compatible
Ni/ZTO/Si devices and studied their analog synaptic behav-
ior to emulate neuromorphic systems. When manufacturing
memristor devices, there are several advantages in using sil-
icon bottom electrodes instead of conventional metal elec-
trodes. Since the memristor can be connected directly to the
source or drain terminal of the transistor, the 1T1R structure
can be easily used for embedded memory applications [40].
Moreover, an anisotropic wet etching process can be used to
readily scale the silicon bottom electrode [41], and the dopant
concentration in the silicon surface can be adjusted to effi-
ciently obtain nonlinear I-V curves [42]. We demonstrate the
performance of the LTP and LTD for the change in conduc-
tance state and STDP as biological synaptic features to realize
the Hebbian learning rule. Different pulse schemes are used
for multiple conductance states. Furthermore, we obtain the
pattern recognition accuracy with a neural network consider-
ing the variation in conductance by using the proposed neuro-
morphic circuit. Finally, the role of the oxygen vacancies that
are related to the conduction mechanism are discussed using
density functional theory (DFT).

II. EXPERIMENTS
The Ni/ZTO/Si synaptic device was fabricated as follows.
Doped n-type Si BE was deposited via LPCVD by reacting
SiH4 and PH3 on an SiO2/Si substrate. The base pressure

in the sputter chamber was 1.0 × 10−4 Torr, and the target
was sputtered in an argon atmosphere for the ZTO film. The
temperature of the substrate was 25 ◦C. The working pressure
and RF power were maintained at 2.1× 10−2 Torr and 50 W,
respectively. A Ni top electrode (TE) with a thickness of 100
nm was deposited via DC sputtering and was then patterned
by a shadow mask with a diameter of 100 µm. X-ray pho-
toelectron spectroscopy (XPS) analysis was performed using
an XPS system with Thermo Fisher Scientific K-Alpha oper-
ating at 15 kV and 100 W with a monochromatic Al-Ka radi-
ation source. The crystal structure of the synaptic devices was
analyzed by a grazing angle X-ray diffraction (XRD) that was
performed using a diffractometer (SmartLab, Rigaku Corpo-
ration). The cross-sectional structure of the Ni/ZTO/n+-Si
device was characterized using high-resolution transmission
electron microscopy (HRTEM, JEM-2100F). DC I-V sweep
and pulse measurements were performed with a Keithley
4200-SCS semiconductor parameter analyzer and 4225-PMU
ultrafast I-V module, respectively. During device operation,
the Si BEs were grounded, and the Ni TE bias was controlled.

III. THEORETICAL METHODOLOGY
A theoretical confirmation of the formation of the conduct-
ing filaments, geometry optimizations and electronic density
of states (DOS) was performed using a generalized gradi-
ent approximation, Hubbard parameters (GGA + U), and
Perdew, Burke and Ernzerhof (PBE) functionals [43]–[45] to
produce accurate calculation that include the Coulomb effect
with non-local exchange and exchange correlation function-
als. The values of the Hubbard parameters U for Zn and
Sn were 5.0 eV [46] and 4.0 eV respectively, as reported
in earlier findings [47]. All these calculations were carried
out with the help of the Vienna ab initio simulation package
(VASP) [48], [49] based on density functional theory. The
ZTO supercell was modeled with the following atomic ratio
of Zn 4% and Sn 1%, which is very close to our experimen-
tal sample ratio, so it contains a total number of 64 atoms
(Zn = 24, Sn = 6 and O = 34). Convergence tests for the
total energy of the system with respect to electron wave
functions were conducted using plane waves with a cut-off
energy of 400 eV. The ionic positions, cell volume and lattice
parameters of the system were fully relaxed with the conju-
gate gradient (CG) method until Hellmann Feynman forces
became smaller than 0.02 eV/Åwhile the energy convergence
criteria wasmet at 1×10−5 eV [50]. Themost popular scheme
for these calculations is the Monkhorst Pack (MP) [51], [52]
which was applied for k-point sampling. The MP grid was
chosen to be 10 × 10×10. In addition, the formation energy
(1E) of the Ni/ZTO/Si-based memory device was calculated
using the following equation [53]:

1E = Etot(defect+ host)− Etot(host)+ naµa + EV (1)

where Etot(defect + host) is the total energy of the system
with defects in the host material, Etot(host) is the total energy
of the host material (ZTO), EV is the valence band maxi-
mum (VBM) of the host material (ZTO), na is the number
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FIGURE 1. (a) Schematic and (b) HRTEM image of the Ni/ZTO/Si device. (c) Three peaks (018, 303, and 306) of Zn2SnO4 by XRD. XPS spectra
of ZTO: (d) Zn 3d, (e) Sn 2p, (f) O 1s.

of atoms being removed (oxygen vacancy generation) during
defect formation in the host material, and µa is the chemical
potential of the oxygen vacancy.

IV. RESULTS AND DISCUSSION
Fig. 1(a) shows the schematic structure of a device com-
posed of top electrodes/switching layer/bottom electrode as a
Ni/ZTO/Si device. Fig. 1(b) displays a cross-sectional TEM
image of the Ni/ZTO/Si device where the overall thickness
of the ZTO is 3.5 nm. The structure of the deposited ZTO
film was investigated via XRD. Fig. 1(c) shows the XRD
analysis of the Ni/ZTO/Si device. The three peaks appearing
at 56.33◦, 64.50◦ and 75.16◦ correspond to the characteristic
peaks of Zn2SnO4, as shown in the inset of Fig. 1(c). The
XRD pattern shows that the structure of the ZTO film is
the cubic inverse spinel phase (JCPDS card NO.1381) of
Zn2SnO4 [54]. An XPS analysis was performed to confirm
the chemical composition and surface chemical state of the
ZTO thin film. Fig. 1(d)–(f) displays the corresponding high
resolution XPS spectra of Sn 3d, Zn 2p, and O1s of the
ZTO film. Fig. 1(d) shows the Zn2p core-level spectra with
two distinct peaks corresponding to Zn 2p3/2 and Zn 2p1/2
at 1045.30 eV and 1022.2 eV, respectively. The spin orbit
split between 2p3/2 and Zn 2p1/2 photoelectrons is 23.1 eV,
which reflects strong bonding between Zn atoms and oxygen
ions, which is consistent with previously reported result [55].
Fig. 1(e) shows Sn 3d5/2 and Sn 3d3/2 doublet peaks centered

at 488.6 eV and 495.2 eV (Sn4+ and Sn0), which is ascribed
to the formation of Sn-O bonding. Spin orbit splitting of the
doublet peaks Sn 3d5/2 and Sn 3d3/2 is 8.4± 0.2 eV [56]. The
Sn cations can be regarded as Sn4+ and Sn0 oxidation states.
In addition, the peak intensity for Sn4+ is obviously higher
than that of Sn0 [57]. Fig. 1(f) shows that the XPS spectra of
the O1s s-edge of the ZTO layer is deconvoluted into two
peaks equivalent to lattice oxygen (oxygen ions) and non-
lattice oxygen (oxygen vacancies or defects) [58]. We can see
that the binding energy peaks at 532.03 eV are due to oxygen
ions while the higher energy at 533.7 eV corresponds to
oxygen vacancies in the ZTO film. Fig. 2(a) show the current-
voltage (I-V) characteristics of the Ni/ZTO/Si device. The
basic I-V curve follows the typical interface type switching
with ION/IOFF ratio (∼67.5) and RON (∼0.16 M�) at 0.1 V.
To compare with the superior performance of the previously
reported memristor devices, it is necessary to further improve
resistive switching memory characteristics through various
approaches, such as stack, material, and structural engineer-
ing in ZTO-based memristors [59].

The SET and RESET operation occur at a positive volt-
age and at a negative voltage, respectively, indicating typi-
cal bipolar operation. When a Ni/ZTO/Si device is used as
a synaptic device to obtain multilevel states, the SET and
RESET stop voltages in the DC sweep mode are controlled.
Fig. 2(a) (inset) shows the device-to-device distribution of
the SET voltage and RESET voltage, which is defined as the
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FIGURE 2. (a) Typical interface-type I-V characteristics of a Ni/ZTO/Si
device. Multilevel I-V curves by stop voltage control by (b) step voltage
of 0.5 V and (c) 1 V. Retention of 4 levels controlled by SET stop voltage
for 10000 s.

starting voltage for the transition. The device has an advan-
tage in that the voltage and sweep range at which the current
changes begin for SET and RESET are nearly symmetrical.
Fig. 2(b) and (c) shows multilevel I-V characteristics of the
Ni/ZTO/Si device by changing the voltage steps of 0.5 V and
0.1 V. The current can be controlled very precisely according
to the stop voltage for SET and RESET. Fig. 2(d) shows
the retention property of the Ni/ZTO/Si device with different
current states obtained by adjusting the SET stop voltages
(2.5 V, 2.8 V, 3 V, and 3.5 V). Note that four current states
can be distinguished at room temperature at up to 10000 s.

To demonstrate the synapse features of the Ni/ZTO/Si
devices, it is essential to apply optimized pulses to the device.
To implement the multiple conductance in the same way
as in applying the DC voltage, we use the designed pulse
scheme. Fig. 3(a) and (b) show the transient characteristics
when applying one SET pulse and one RESET pulse response
between read pulses. After the SET pulse or RESET pulse is
applied to the device, a current rise or decrease is noticeable in
the read voltage of 0.5 V. There was a significant current over-
shoot in the voltage transition of the rising and falling time.
Fig. 3(c) and (d) show three states of the current levels during
a pair of pulse response for the SET and RESET operations,
respectively. Moreover, we observe a gradual increase and
decrease in the multi-level current by 20 consecutive identical
pulses with identical voltage responses in Fig. 3(e) and (f).

Here, 20 distinctive states were controlled with preci-
sion for the synapse array in hardware-based neuromorphic
engineering.

To further emulate a biological system, we design more
sophisticated pulse schemes. The LTP and LTD characteris-
tics of the conductance were obtained by applying repetitive
pulses to Ni/ZTO/Si devices in Fig. (4).

The conductance is extracted from a DC read voltage
of 0.5 V after each pulse response. Fig. 4(a) shows a gradual

FIGURE 3. Pulse response of the Ni/ZTO/Si device: (a) program and
(b) erase transient characteristics of one SET pulse and RESET pulse.
(c) Program and (d) erase of two SET pulses and RESET pulses.
(e) Program and (f) erase of 20 consecutive SET pulses and RESET pulses.

conductance increase and decrease by applying a series of
identical pulses with different amplitudes to achieve LTP and
LTD properties. The conductance of an initial minimum state
was from 0.586µS to 0.75µS, and for the maximum conduc-
tance state, the conductance value was tunable according to
the pulse amplitude with the same pulse width of 0.5 ms. The
final conductance values after 40 identical pulses controlled
by 2.3 V, 2.5 V, 2.8 V, and 3 V were 1.34 µS, 2.61 µS,
5.56 µS, and 8.68 µS, respectively. Similarly, the LTD char-
acteristics are observed in the same way as for LTP.

A larger pulse voltage during the depression created a sig-
nificant reduction in conductance at the first pulse response.
Fig. 4(b) shows 3 cycles including LTP and LTD from
identical pulses with potentiation at 3 V and a depression
at –2.8 V.

To obtain further conductance states, the pulse amplitude
and pulse width gradually change. Fig. 4(c) shows LTP and
LTDwith a larger dynamic range by pulse amplitude modula-
tion with an increase from 1.8 V to 3 V for LTP and –1.8 V to
–3 V for LTDwith a fixed pulse width of 5 ms. The maximum
conduction reaches 12µS. The number of conductance states
gradually vary by about 280 potentiation pulse events and
180 depression pulse events. Similarly, the pulse width was
varied to obtain an increase in the number of conductance
states. Fig. 4(d) shows the conductance as a function of
potentiation and depression pulses. The pulse amplitude is
fixed at 3 V and –3 V for potentiation and depression, respec-
tively, and the pulse width gradually increased from 50 µs
to 5 ms. The improved symmetric and linear conductance
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FIGURE 4. Potentiation and depression of the Ni/ZTO/Si device: (a) LTP
and LTD by an identical pulse condition. (b) 3 consecutive LTP and LTD by
identical pulse responses. LTP and LTD with a large dynamic range by
(c) an incremental pulse amplitude and (d) incremental pulse width.

FIGURE 5. STDP characteristics of the Ni/ZTO/Si device: (a) pre-spike and
post-spike pulse train scheme. (b) conductance change as a function of
interval time for 5 cells.

change between the potentiation and depression process was
achieved via width and amplitude modulation of the pulse
conditions.

One of the most important synaptic behaviors in Heb-
bian learning of a spiking neural network (SNN) is STDP.
The synaptic weight change is modulated by timing differ-
ences between the pre-synaptic spike and post-synaptic spike
in Fig. 5(a).

Note that the pulse scheme needs to be systematically
designed to demonstrate the optimal STDP behavior. The
pre-spike and post-spike are set according to changes in
conductance with the designed pulse train. The pulse voltage
is defined as the pre-spike minus the post-spike. It is applied
with 6 different pulse amplitudes, –1.5 V, 2 V, 1.5 V, 1 V,
0.5 V, and 0.3 V, in series in both the pre-spike and post-spike.
Fig. 5(b) shows STDP-like curves including potentiation and
depression.

Both the pulse width and interval were fixed at 5 ms where
GAfter is the conductance of the device after applying the
pulse train to the device at each time interval, and GBefore
is the conductance before applying the pulse train to the

FIGURE 6. Neural network simulation for hardware-based neuromorphic
system: (a) Single-layer neural network including input layer and output
layer. (b) Single-layer neuromorphic circuit containing the weight of the
memristor.

device at each interval. The result reveals a change in the
conductance value from –449% for depression to 2401% for
potentiation in the 5 devices. The smaller difference between
the pre spike and post spike, a larger effective pulse results in
a larger change in conductance.

Based on the measured characteristics of the Ni/ZTO/Si
device, we simulate a pattern recognition test with a sin-
gle layer neural network (one hidden layer) including input
and output neurons in Fig. 6(a). To classify image patterns,
a Modified National Institute of Standards and Technol-
ogy (MNIST) dataset is used, which corresponds to the input
neurons. Fig. 6(b) shows single layer neuromorphic circuit.

It consists of word lines (WLi, i = 1 ∼ 784) for 784 input
neurons and bit lines (BLj, j = 0 ∼ 9) for 10 output neurons.
The Ni/ZTO/Si device is used to connect the input and output
layers so that the conductance of the device corresponds to
the weight of the synaptic device.

We use two memristor devices as one synaptic device to
implement the negative value of the weight. Each synaptic
device consists of an exhibitory device and an inhibitory
device that are responsible for the exhibitory weight G+

and inhibitory weight G−, respectively. The weight of the
synaptic device is defined as Wij = G+–G−. The inference
scheme of this neuromorphic system is as follows: a feature
in a binaryMNIST image (white pixel) is a 1 V pulse voltage,
and the background (black pixel) is a 0 V pulse voltage, and
this is applied to the crossbar array through WLi.

All simulations train 60,000 training images in a single-
layer neuromorphic system and save the weight map for
every 100 training images. The test is conducted by inputting
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FIGURE 7. (a) MNIST pattern accuracy of three different pulse modes
(identical pulse, pulse amplitude incremental, and pulse width
incremental). (b) Maximum accuracy of relative standard deviation.

10,000 test images into the stored weight map, and the
number of correct images among the 10,000 test images is
expressed as the recognition accuracy percentage. Fig. 7(a)
shows the accuracy as a function of the number of training
images for different pulse measurement conditions (identi-
cal, amplitude incremental, and width incremental methods).
The width adjustment method shows the highest recognition
rate because pulse width-controlled potentiation/depression
can perform conductance updates linearly and symmetrically,
as shown in Fig. 2(a)–(d). To examine the effects of the
variation on the Ni/ZTO/Si device, we observe 5 additional
consecutive potentiation/depression cycles in the inset of
Fig. 7(b). As the potentiation/depression cycle continues,
themaximum andminimum conductance values change. This
has a disadvantage in that it is difficult to maximize the
dynamic range in the cross-point array structure. Fig. 7(b)
shows the maximum accuracy as a function of the relative
standard deviation (RSD, σ /µ). As the RSD is greater than
0.3, the recognition rate starts to noticeably decrease. There-
fore, additional approaches including materials tuning and
measurement methods and a new learning algorithm in the

FIGURE 8. DOS of (a) ZTO, (b) single-oxygen vacancy, (c) di-oxygen
vacancy. The dashed black vertical line at E = 0 eV represents Fermi level
Ef and the green rectangle indicates the charge / defects states of
electrons. Iso-surface charge density plots for ZTO (d) pure (e) single
oxygen vacancy f) and di-oxygen vacancy. The blue spheres represent Sn
atoms, grey spheres Zn atoms, red spheres oxygen atoms; yellow and
sky-blue colors reveal charge accumulation and depletion respectively
while the oval and circular shape box indicates the conducting channels.

neural network simulation to reduce the distribution of the
memristor parameters will be required.

To understand the switching mechanism of the Ni/ZTO/Si
device, we focus on a theoretical study to reveal the charge
transport of ZTO. The results of the density of states (DOS),
isosurface charge density, and formation energy of ZTO with
single and di oxygen vacancies for deep analysis of the
charge transformation mechanism. The value of the bandgap
of the ZTO calculated by GGA + U was 2.36 eV, as shown
in Fig. 8(a), which is consistent with the values obtained from
the literature (2.95–3.07 eV) [60]. Fig. 8(b) and (c) show that
in the case of single- and di-oxygen vacancies, the band-gap
shrinks with many localized electronic states transferred from
the valence band to the conduction band while crossing over
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the Fermi level (Ef) as indicated by the green rectangular box.
Sharing of the 2p-electrons of Zn and 1s-electrons of O is
expected to result in sp2 hybridization. Fig. 8 shows that the
oxygen vacancy in ZTO is able to enhance the conductivity by
generating the conducting oxygen vacancies. Moreover, this
is supported by the calculated values of the formation energy
of single and di oxygen vacancies. The value of the formation
energy for the di-oxygen vacancy in ZTO (3.05 eV) is smaller
than the value of single-oxygen vacancy (5.04 eV), which
indicates that the di-oxygen vacancy is more favorable in
terms of the formation of oxygen-based conducting defects.
The lowest formation energy of the di-vacancy in the ZTO
device is also evident, which is responsible for the large con-
centration of oxygen vacancies. Hence, the maximum charge
transfer occurs as depicted. Therefore, Zn can be expected to
extract oxygen from the ZTO to form a Zn oxide layer due to
the strong bonding between the Zn and oxygen atoms.

This accumulation of charges also helps increase the con-
ductance, and it can help charges/electrons to transport dur-
ing switching phenomena caused by these defect states,
as shown in Fig. 8(b) and (c). Fig. 8(d)–(f) show iso-surface
charge density plots for a pure, single-oxygen vacancy and
a di-oxygen vacancy in ZTO. Many charges are accumu-
lated at the inter-sites between the oxygen atoms and around
the oxygen vacancy as a result of a large number of con-
ducting channel formations, which is responsible for high
conductivity.

V. CONCLUSION
We demonstrate synaptic behaviors in a CMOS compatible
ZTO memristor. Interface-type synaptic Ni/ZTO/Si devices
with good retention are capable of fine gradual conductance
control, making them well-suited for biological plasticity for
hardware-based neuromorphic computing. The implementa-
tion of potentiation, depression, and STDP was realized by
the pulse responses, and the conductance value were con-
trolled well. The pattern accuracy was calculated using the
MNIST data set in the neural network configuration. The
behavior of the electronic density of states, formation energy,
and isosurface charge density of the ZTO device was studied
to propose the controllability of conductance by the oxygen
vacancies model.
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