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ABSTRACT Concepts of apparent power and power factor as measures of a system’s power delivery
capability are over a century old but have not been defined in one general, rigorous and acceptable way.
Instantaneous power is defined precisely, and average power measured over a selected period is widely
accepted. The many ways of defining and measuring reactive and apparent power in single and three phase
systems are based on different assumptions and give different results in real cases. Building on definitions
in the IEEE Standard 1459-2010, this paper formulates in vector space linear algebra and the frequency
domain, the active wire currents as those that cause the minimum losses in a network for the power delivered.
Power factor measures the relative efficiency of power delivery as defined by the losses. Apparent power
consistent with early terminology is the maximum power that can be sourced for the same original line losses
and has the unit of power: Watt. It is identified without requiring the contentious concept of reactive and
non-active power components. Measurements based on this approach are independent of assumptions about
sinusoidal waveform, voltage and current balance, and frequency-dependent wire resistances, and apply to
power delivery systems with any number of wires. The rigor of this novel general formulation is important
for technical design of compensators and inverters; analyzing power system losses, delivery efficiency and
voltage stability; and electricity cost allocation and pricing.

INDEX TERMS Active current, apparent power, harmonics, power theory, representational measurement,
unbalance.

I. INTRODUCTION
Power theory has scientific, engineering and economic rele-
vance. It identifies the relationships between parameters of
power systems, such as voltages, currents, delivered power
and the losses incurred, as explored in the literature review
section. Despite the need for it, no general power theory ade-
quately copes yet with the conditions of real power delivery
systems. For example, many different definitions of reactive
power, power factor (PF), and apparent power (AP) have
been proposed in thousands of papers and engineering stan-
dards and implemented in meters and tariffs – but without
general agreement and consistent technical rigor. The many
different power theory formulations are based on different
simplifications and assumptions that are violated in practical
systems. Examples of violations include having a different
number of wires from that used in formulating the definition
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of measurement, unbalanced voltages or currents instead of
balanced, waveforms distorted by variable combinations of
harmonics instead of only fundamental frequency sinusoids,
and practical line impedances different from those assumed.

This paper presents a new, more general formulation of
power theory for any poly-phase systems, including a neutral
or without it, with any periodic non-sinusoidal waveforms
and dc components, voltage and current unbalance, and
unequal and/or frequency-dependent wire impedances.

The formulation is derived entirely in elementary vector
space linear algebra [1]. It maintains rigorously the frame of
reference of measurements and compliance with Kirchhoff’s
voltage and current laws and the law of Conservation of
Energy. The calculations of a measurement are arithmetic
and implemented easily in a simple spreadsheet, processor
or program.

This power theory builds on two key interpretations of
PF relative to power and losses in the IEEE Standard 1459-
2010 [2]: that ‘‘unity power factor means minimum possible
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line losses for a given total active power transmitted’’, and
‘‘. . . the ratio (PF=) P/S is a utilization factor indicator’’.
These lead to a reformulation of the definition of AP, for
which the units are shown to beWatts, as themaximum power
that can be transmitted from the source to a specific point of
a network for the same delivery loss. Further, it is shown that
the widely used reactive power concept is incompatible with
real systems with unbalanced and distorted waveforms.

Since the PF and AP can be identified with measurement
made at a point of connection or common coupling (PCC)
of a power supply to a load or other network, this power
theory has many potential applications, such as in converters,
loss reduction in delivery systems and loads, dispatching of
embedded or distributed generation (DG) into systems, and
in electricity trading and tariffs.

In the rest of the paper, Section II locates the challenge
of a general definition in the context of power delivery,
and Section III reviews some of the extensive literature
describing various approaches to defining and measuring AP.
Sections IV presents the theory development in two parts:
as a transport problem of delivering power most efficiently
to or from the source (identified in a Thévenin equivalent
circuit) to the PCC. Section V extends the development with
the concept of a controllable power processor such as a power
electronic converter. Section VI demonstrates the arithmetic
process of measurement in three examples with unbalanced
voltages and currents and distortion. Section VII discusses
the interpretation, implications and potential applications of
the general power theory, and there is a brief conclusion in
Section VIII.

II. PROBLEM STATEMENT
Electrical engineers recognized at an early stage that, com-
pared with dc systems, loads supplied by ac were affected by
an extra loss of power in the cables [3] and, later, that this
depended on frequency, waveform distortion and unbalance.
Bell [4, Discussion] identified the need to charge for capacity
and not only energy when the PF is low, to which Steinmetz
replied ‘‘. . . it would be desirable to charge for a part of the
wattless currents, a part sufficiently large to take care of
the losses due to resistance of lines and transformers and
generator capacity’’ [4, Discussion]. Silsbee [5] wrote about
the economic importance of capacity cost and the cost of
losses for which it is important to define PF correctly in
the presence of ‘‘phase displacement, unbalance and wave
form’’. Much more recently, the IEEE Std 1459-2010 [2]
identified the need to make accurate measurements so that
the cost of maintaining the quality of electricity service could
be distributed fairly.

The common needs expressed by all these writers can
be represented by a source, a delivery system with any
(real,>1) number M of wires (with or without a neutral wire)
and a load, depicted in Fig. 1 by the Thévenin equivalent
circuit. Further, consider that the currents drawn at the PCC
of the delivery system and load are the result of unbalanced
voltages and delivery system impedances and distorted by

FIGURE 1. Dispatch of power PTh from a Thévenin equivalent source
through M x (H+1) lines representing a system of M wires with
H+1 harmonics to deliver PPCC at the PCC.

FIGURE 2. Wire current and voltage waveforms at the PCC, with dc and
harmonic components, and v-i waveform phase-displacement of the
fundamental frequency components.

harmonic components, so that the waveforms of the currents
and voltages at the PCC are such as depicted in Fig. 2. The
following questions arise:
1) What re-distribution of the currents between wires and

harmonics delivers the power most efficiently (with the
lowest losses) to the PCC?

2) What AP or PF can be identified with this load as
suggested by Bell, Steinmetz and Silsbee?

3) What if the load is replaced by a source feeding into the
system instead of drawing currents from it?

4) What are the implications of the answers to these
questions?

These questions have not yet been answered adequately
in 100 years since the problems were first identified.

Note: For consistency, we refer to phases or conductors
(including a ground neutral) as wires, and the elements of a
Thévenin equivalent circuit as lines.

III. LITERATURE REVIEW
In this section we review four aspects: recent papers in mea-
surement theory; progress during the past decade towards
determining active currents and AP; some of our previous
research; and some approaches in the frequency domain.

A. RECENT MEASUREMENT THEORY
Representational measurements require close association
between the concept model and the physical components

133096 VOLUME 8, 2020



M. Malengret, C. T. Gaunt: Active Currents, PF, and AP for Practical Power Delivery Systems

being measured [6], so some power measurement problems
can be attributed to an inadequate definition for reactive
power measurement when the waveforms are no longer pure
sinusoids [7]. Too many constraints or assumptions inherent
in the definition of a parameter make it likely that measure-
ments are operational and, in practice, violating the defini-
tion’s conditions leads to invalid measurements.

Although not expressed in the context of representational
measurement, Ghassemi [8] identified the requirements for a
rigorous definition of electrical power parameters as having
to include applicability to systems of all topologies and con-
ditions, with any number of phases, balanced or unbalanced,
sinusoidal or distorted waveforms, and without violating any
principle of electrical engineering.

B. POWER PARAMETERS RESEARCH DURING THE PAST
10 YEARS
For many years, a rigorous, comprehensive power theory of
reactive power, PF and AP has been a controversial topic,
even in single phase systems [9]. The IEEE Standard 1459-
2010 [2] might have resolved the problems, but it too left
several issues unresolved [10], [11].

In 2011, a review of definitions of various power param-
eters used in meters [12] identified eleven formulae for
the calculation and measurement of reactive power (termed
VAR) in single-phase elements. It was shown by testing with
14 different waveforms that the measured VAR varied widely,
differing even in sign between some approaches. The AP
in single phase elements was calculated by three methods.
In three-phase supplies, the AP and reactive power are the
sum of the single elements, or a vector sum of the power,
AP and VAR as calculated by a method specified by the
manufacturer. To summarize, the survey foundmany different
methods being used to measure reactive power and AP and
they gave different measurement results. None of the mea-
surements included the resistance of the wires of the delivery
system.

We have scanned many (>200) of the apparently most rel-
evant papers published since 2014 and most appear to follow
three well-established approaches: that of Current Physical
Components (CPC) proposed by Czarnecki, or Conservative
Power Theory (CPT) following Tenti, or variations of the p-q
instantaneous power theory developed by Akagi.

The CPC power theory identifies active, reactive, scat-
tered, load generated, and three unbalanced sequence current
components [13]. Various applications are constrained by
different assumptions, such as loads being linear and time-
invariant, or by decomposition into symmetrical compo-
nents of a three-phase system [14]–[16]. Some character-
istics of the CPT approaches, with five or six component
currents [17], [18], are like the CPC theory and suffer
from similar limitations. Despite the limitations requiring
a modified formulation according to each system topol-
ogy, CPT and CPC approaches have been applied recently
to filter design [19] and to reactive compensation [16].

The IEEE Std 1459-2010 [2] adopted a similar approach in
identifying several reactive and distortion power components.

A recent formulation in geometric algebra [20] proposed a
different set of apparent power components.

The p-q theory was developed to define instantaneous
power. None of the more recent p-q approaches appears
to have addressed fully the limitations of its assump-
tions. An instantaneous approach to mitigate harmonic
distortion [21] is interesting for its depiction of the dis-
torted grid but a solution that does not depend on the grid
parameters. To overcome the limitations of the instantaneous
power theory, the Lagrange multiplier technique has been
used to identify the active current using digital signal pro-
cessors [22]. This appears to be one of relatively few power
theory approaches tested in hardware and not only simulation,
and although the control algorithms were promising they
could not ‘‘keep the grid currents balanced’’. The work
illustrates the difference between grid current balancing and
the compensation of non-active power, which is discussed in
Section V.

Some of the papers reviewed propose alternative methods
for specific studies, including applications of optimization
algorithms, fuzzy controllers or neural networks (comprehen-
sively reviewed in [23]), but do not appear to have been fol-
lowed up with general approaches. Such approaches cannot
reflect the structure and physics of the system and cannot
qualify as measurements or definitions of any parameters
other than as defined in the artificial intelligence approach
used.

In all the papers reviewed, the constraints on the various
definitions, by the number and resistances of phase and neu-
tral wires or by specified non-physical current components
or by any other assumptions, limit all the approaches to being
operational measurements of PF and AP.

C. GENERAL POWER THEORY IN TIME DOMAIN
We proposed a general power theory developed in linear alge-
bra for multiple wire systems with consistency between the
instantaneous and average time domain [24]–[26] and com-
plying with all the requirements identified by Ghassemi [8].
We reviewed in the paper on instantaneous power [24] the var-
ious proposals of Akagi, Buchholtz, Dai, Depenbrock, Fer-
rero, Fryze, Nabae, Peng, Rossetto, Salmerón, and Willems
and their co-authors, and in the paper on average power [25]
the concepts of AP, including papers by Czarnecki, Depen-
brock, Emanuel, Ferrero, Filipski, Jeon, Mayordona, Morsi,
and Willems, and their co-authors. Although some of those
papers introduced unequal resistances [27] or distortion,
unbalance and multi-wire systems [28], none of the papers
proposed approaches meeting all the requirements. We con-
cluded that agreement on reactive or non-active components
required a unique definition of AP for systems for all the
variables of any number of wires of any resistance, and
any conditions of unbalance, harmonic distortion, and direct
current components.
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We explained the requirement for a resistance-weighted
null point as the correct reference for the voltage measure-
ments, else the minimum theoretical line losses cannot be
identified [24], [25]. The derivations were consistent with the
link between power theory and delivery losses that requires
the wire resistances to be included in the analysis [29], [30],
and the definition of unity PF as the minimum loss
condition [31].

The derivation showed compensating currents have only
two components and that they are physically realizable, being
a portion instantaneously transferred between wires and a
portion that needs energy storage during the period of a
wavelength [25]. Later [32], we extended the compensation
reference to the Thévenin point, maintaining a consistent
frame of reference for the null point of voltage measurement,
and reported the successful testing of compensator hardware.

However, until recently, our approach did not provide for
frequency dependent Thévenin equivalent impedances con-
sistent with the harmonic distortion of waveforms. This led
us to consider a frequency domain approach.

D. ACTIVE CURRENTS IN THE FREQUENCY DOMAIN
According to Czarnecki [33] and Depenbrock [34], Fryze and
Buchholz defined the active current in a sinusoidal system in
the time domain as:

ia(t) = P
/
||u(t)||2u(t)

where P is the power delivered, u is the load (and source)
voltage and llu(t)ll is its rms value.

Expressed in the frequency domain it is equivalent to:

IA,m = P
/
||U ||2Um = GeUm (1)

where Ge is a common, constant of proportionality, and a real
number termed ’equivalent admittance’ of the load and its
components, Um and IA,m are M complex root mean square
(CRMS) values representing each of the mth wire voltages
and current components, and

| |U | |2 =
∑M

1
| |Um| |

2 (2)

In the case of bandwidth limited non-sinusoids the active
CRMS components values for each m-wire includes also
H harmonics components [10], [33]:

IA,m,h = P
/
||U ||2Um,h = GeUm,h

and

| |U | |2 =
∑M

1

∑H

0
|
∣∣Um,h

∣∣ |2 (3)

where m = 1 to M wires and h = 0 to H.
At the PCC, all Um,h for every m and h are measured

from a common reference that is generally not defined, or is
‘arbitrary’ [2], and therefore may result in incorrect and
inconsistent calculation of active currents. A ‘fictitious null-
point’ from which all the wire voltages add to zero, which

effectively eliminates the zero sequence has been pro-
posed [35]. In the case where not all the wires have equal
resistances, the ‘null reference’ must be calculated in such a
way the line voltages are weighted in proportion to the inverse
of their respective line resistances [24], [25], [30], [31].

Jeon [36] proposed a generalized theory in the frequency
domain, based on Buchholz and a ‘fictitious’ neutral. The
approach allows transmission lines to have different and
frequency-dependent resistances by determining a reference
resistance and an effective current and voltage. In what is
effectively a superposition approach, compensation currents
are rearranged among the subsystems of the whole power sys-
tem to minimize the total transmission loss. All components
are defined at the PCC.

An approach combining frequency components with the
CPC theory [37] and referencing the supply voltage to an
artificial zero, still does not consider the impedances of the
delivery system.

In a series of seven papers, Lev-Ari, Stanković and
co-authors calculate the near-optimum shunt compensator
compensation for an inductionmachine load using the Hilbert
transform and frequency domain. In early papers they refer
to weighting the Thévenin side wire voltages with the inverse
wire resistances, respectively, [38], and to voltage measure-
ments from a common point or the neutral wire [39]; though
the concepts of a weighted null point are not explicitly
included, even later [40]. These papers are not the only
ones using analysis in the Hilbert space. Other authors have
applied geometric algebra, but then adopt power components
that make the definition of AP ‘‘impossible’’ [20] or other
simplifications that limit their approach.

E. SUMMARY OF DEFINITIONS OF PF AND AP
Although different forms of PF have been identified, it is
generally agreed that PF is an index of relative delivery
efficiency and a measure of utilization [2], [30] consistent
with the meaning implied by Bell [4]. It is also generally
agreed that PF = P/AP and PF = 1 when only active currents
are delivered, incurring the minimum loss [2], [31] [34].

However, the values of PF < 1 are not identified uniquely
and vary with the definition of AP.

Formulations of AP have followed different
approaches [41]. They are based on various models con-
strained by assumptions, such as voltages being invariant
after compensation [10], or that AP is a geometric sum of
components of power and non-active power, such as in the
IEEE Std 1459-2010 [2] and the CPC and CPT approaches.

Therefore, better, more general, unique definitions are
needed of PF and AP. Any new definition should apply in
the context of measurement theory, meet the needs of various
practical applications, and conform to all physical electrical
principles. The review suggests a novel solution might be
found in the frequency domain with a Thévenin equivalent
circuit decomposed into lines of wire-harmonic components,
and with careful attention to a line-resistance-dependent
reference for all voltage components at all frequencies,
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to comply with Kirchhoff’s current and voltage laws. The
approach must allow unequal frequency-dependent line resis-
tances and inductances in the physical model of the power
system and always lead to optimal (minimum loss for the
delivered power) dispatch by redistribution of the active cur-
rents. We have not identified an approach incorporating all
these fundamental concepts.

IV. GENERAL DERIVATION OF ACTIVE CURRENTS IN THE
FREQUENCY DOMAIN AS TRANSPORTATION PROBLEM
The problem can be considered as a transportation problem
where the same total energy as before is delivered to a
PCC over a specific time interval. This is achieved through
the re-assignment of the current components’ CRMS values
between all wires. Re-assignment allows the same energy
as before to be transported with minimal power losses. This
leads to the following relationships:

- the power consumed (or generated) at the PCC remains
constant,

- the objective of identifying minimal losses requires a
specified reference for resistance-weighting the voltage
measurements [24], [25], which includes maintaining
a consistent frame of reference over the extent of the
system;

- there is a physical model of currents that can be redis-
tributed between wires and/or temporarily extracted,
stored and returned to a wire, which allows that a wire
can be represented by Thévenin equivalent lines for
each frequency component, such that the dimensions of
vectors Um and IA in (1) and (2) are increased; and

- Kirchhoff’s current law applies to all wire currents and
also to their respective line current components.

The approach transfers the point of reference for all volt-
ages to the Thévenin equivalent point. The formulation of (1)
is generalized as:

IA = KAVTh(null)R−1 (4)

where VTh(null) is a voltage vector representing all the equiv-
alent Thévenin CRMS voltages components of the equivalent
circuit of the network (source). Each voltage component, h,
differs from the others in that each has its own reference,
not necessarily the same for all frequency components. This
‘‘multiple’’ reference for all h satisfies Kirchhoff’s current
law that the sum of all wires’ weighted harmonic current
components respectively add to zero.

Accordingly, this approach differs in several aspects from
previous formulations of active currents, namely:
1) The key voltages are the Thévenin point voltages mea-

sured from h different references.
2) The optimal total power is at the Thévenin point after

re-assigning current components, and not the power at
the load/PCC.

3) Weighted voltage references are specific to each fre-
quency voltage component, so that∑M

1

VThm,h
Rm, h

= 0 (5)

is always true for all h.

4)

KA =
PTh(OPT)

||V ′Th(null)||
2 (and not

PPCC
||U ||2

as in (1)) (6)

where PTh(OPT) = PPCC +/−
∣∣∣∣I ′A∣∣∣∣2 where ∣∣∣∣I ′A∣∣∣∣2 is the

minimal line loss for the same power delivery, and

||I ′A||= 1/2(−||V ′Th(null)|| − /+
√
(||V ′Th(null)||

2

+ 4 PPCC))

and KA replaces Ge of (1) to allow for additional vari-
ables; where KA and Ge will only be the same when
three limiting conditions apply: the line voltages do not
change at the PCC after the current components are
re-assigned, the line resistances are equal and negligible,
and there are no weighted zero sequence voltage
components.

The main stages of the theoretical development are:
- setting up the input data structures in the form of CRMS
vectors and a resistance square matrix;

- identifying the Thévenin side CRMS voltage vectorVTh;
- calculating the voltage components’ reference CRMS
offsets from the PCC-side reference;

- finding VTh (null) by subtracting the offset voltages from
VTh;

- identifying the weighted Thévenin voltage vector and
finding the minimum possible P(OPT) at the Thévenin
point by adding the minimum line loss to PPCC;

- identifying KA and the individual CRMS solution cur-
rent components IAm,h from (4).

These stages are developed in the following sub-sections.

A. SETTING UP THE INPUT MATRICES
Consider the network shown in Fig. 1 with Mwires described
in terms of the equivalent Thévenin circuit in which the
voltages vector U(t) and uncompensated currents vector IS(t)
at the PCC point are known.

Similar to (1), each M wire’s time-variable bandwidth-
limited voltage Um and current Im during a chosen time
interval T can be expressed in a condensed form, by Fourier,
with a finite set of h CRMS values, namely:

(Um,0,Um,1, . . .Um,,H) and (Im,0, Im,1, . . . Im,,H)

where m = 1 to M and h = 0 to H (includes dc h = 0).
From these, let row vectors IS andU be constructed so that

each consists of two M x (H+1) CRMS values:

U = {(U1,0,U1,1, . . .U1,H), (U2,0,U2,1, . . .U2,H), . . . ,

(UM,0,UM,1, . . .UM,,H)} (7a)

IS = {(I1,0, I1,1, . . . I1,H), (I2,0, I2,1, . . . I2,H), . . .

(IM,0, IM,1, . . . IM,,H)} (7b)

Further, construct a square matrix R with M x (H+1) rows
and M x (H+1) columns, where the diagonal vector is

R(diag) = {(r1,0, r1,1, . . . r1,H), (r2,0, r2,1, . . . r2,H), . . . ,

(rM,0, rM,1, . . . rM,H)} (8)
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and where all other elements of the R square matrix are
zero.

VectorsU and IS and matrixR represent all the parameters
in convenient data structures, to which can be applied the
properties of linear algebra to find a solution current vector
called IA.

B. RELATIONSHIPS BETWEEN PCC AND THÉVENIN POINT
We propose a Theorem: A unique vector IA consisting of M
x H+1 optimal line CRMS current components IAm,h values
exists, which delivers the same total power to the PPCC with
minimal losses, can be identified and computed with (4):

IA = KA VTh(null)R−1 (9)..same as (4)

where KA is a single real value constant throughout the
interval chosen and applicable to all M wires and H+1 com-
ponents:

KA =
PTh(OPT)

||V ′Th(null)||
2 (10)

in which PTh(OPT) and V ′Th(null) are calculated with (24)
and (31) below.

The proof of the theorem is developed in the rest of this
section and up to (36) at the end of III.H. It is necessary both
for rigor and to identify the equations needed for calculating
a measurement quantity. A reader more interested in the
application of the theory may pick up the general story in
Section III.I.

Given the CRMS vectors U, IS representing the original
time domain line voltages um(t) and currents ism(t), and the
physical constraints of the system namely Kirchhoff’s current
law (the sum of current components in all lines respectively
must sum to zero) and that the power delivered to the PCC
remains the same after re-assigning the current components,
then PPCC, the power flow at the PCC point, can be calculated
from classical power theory as:

PPCC = <U, IS> (11)

where<U , IS> is the real part of the inner product of the two
vectors defined as the dot product of the complex vectors U
and I∗S where I∗S is the conjugate of IS.
It is important to note that the power PPCC is independent

of the reference chosen for measuring the voltages at the
PCC, shown as RefPCC in (a) of Fig. 3. Different voltage
references may even be used for each voltage component,
such as measuring the voltages between phases of a three
phase, three wire system. In practice, it is common to use one
of the wires of the system or a ground point.

Also, given (measured) the sets of all M wires equivalent
Thévenin resistances rm,h and equivalent inductances: lm,h
for all m = 1 to M and h = 0 to H, then. . .
. . . using classical complex power theory, one can calculate

the Thévenin side voltages with respect to the PCC common
arbitrarily chosen voltage reference RefPCC (see (b) in Fig. 3).

FIGURE 3. Mx(H+1) line Thévenin equivalent circuit as seen from PCC,
with (a) the PCC side voltages measured from a common arbitrarily
chosen reference, possibly the potential of one of the wires; (b) the
voltages at the Thévenin point referenced to RefPCC; and (c) the null
reference at the Thévenin point, offset from RefPCC by eref.

C. THÉVENIN SIDE VOLTAGE VECTOR
Each of the Thévenin side CRMS voltage componentsVThm,h
for all m and h with respect to the original single voltage
PCC-side reference RefPCC are calculated using standard
power theory as follows:

VThm,h = Um,h + zm,hIm,h

where zm,h = rm,h+j2π f h lm,h for m = 1 to M, and h = 0
to H.

Construct the M x H+1 Thévenin complex voltage vectors
VTh:

VTh = {(VTh1,0,VTh1,1, . . .VTh1,H), (VTh2,0,VTh2,1, . . .
VTh2,H), . . . , (VThM,0,VThM,1, . . .VThM,H)} (12)

The total power PTh drawn at the equivalent Thévenin
voltage side (point) can then be calculated as:

PTh = <VTh, IS> (13)

This total power can be positive or negative depending of the
direction of the total power flow. The difference of power
between PPCC and PTh is the transmission losses consisting
of the sum of the losses due to all current components.
Further, the component powers may be individually positive
or negative and may not be flowing in the same direction.
Then let the following weighted Thévenin voltage vectors

be defined as: V ′Th = VThR−1/2; namely:

V ′Th = {(VTh1,0r
−1/2
1,0 ,VTh1,1r

−1/2
1,1 , . . .VTh1,Hr

−1/2
1,H ),

(VTh2,0r
−1/2
2,1 ,VTh2,1r

−1/2
2,1 , . . .VTh2,H r

−1/2
2,H ), (. . .),

(VThM,0r
−1/2
M,0 ,VThM,1r

−1/2
M,1 , . . .VThM,Hr

−1/2
M,H )} (14)

and the weighted current vector be defined as the product of
a vector and a matrix:

I ′S = ISR1/2
;

namely:

I ′S = {(I1,0r
1/2
1,0 , I1,1r

1/2
1,1 , . . . I1,Hr

1/2
1,H),

(I2,0r
1/2
2,0 , I2,1r

1/2
2,1 , . . . I2,Hr

1/2
2,H), (. . .), (. . .),

(IM,0r
1/2
M,0, IM,1 r

1/2
M,1, . . . IM,Hr

1/2
M,H)} (15)
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D. REFERENCE OFFSETS FROM THE PCC SIDE
It can be seen from (15) that the norm square<I ′S, I

′

S>, where
the inner product is defined as the real part of the product of I ′S
and its conjugate I ′S

∗, is equal to the wire losses PS(loss) since
it is the sum of all I2r of all wires for all current components:

PS(loss) = <I ′S, I
′

S> = ||I
′

S||
2 (16)

The solution approach consists of finding first theweighted
vector I ′A and then IA, the current vector representing the
physical currents required to flow through the wires. This cur-
rent vector with the minimum norm in the solution subspace
will deliver the same power PPCC as delivered with the set of
non-optimal currents.

The mathematical technique to find such minimum norm
vector is to project the original weighted current I ′S onto a
solution subspace representing all the physical constrains of
the M x (H+1) sub-vector weighted solution space, in two
steps.

First, Kirchhoff’s current law at PCC, is expressed mathe-
matically for each h from 0 to H as:∑M

1
ITh,m,h = 0 (17)

This can be expressed also as the equivalent inner products
for each and every h being equal to zero:

<IA, 1h> = 0

where the vectors 1h vector structures also have M x (H+1)
elements.

11 = {(1, 1, . . . 1), (0, 0, . . . , 0), . . . , (0, 0, . . . , 0)}

12 = {(0, 0, . . . 0), (1, 1, . . . , 1), . . . , (0, 0, . . . , 0)}

. . .

13 = {(0, 0, . . . 0), (0, 0, . . . , 0), . . . , (1, 1, . . . , 1)} (18)

It can now be seen that the following inner product of two
weighted vectors is also equivalent for any h = 0 to H:

<I ′A, 1
′

h> = 0 (19)

where 1′h = 1hR−1/2.
The vectors are 1′0, 1

′

1, . . ., 1
′

H where:

1′0 = {(r
−1/2
1,0 , r−1/21,1 , . . . r−1/21,H ), (0, 0, . . . , 0), . . . ,

(0, 0, . . . , 0)}

1′2 = {(0, 0, . . . , 0), (r
−1/2
2,0 , r−1/22,1 , . . . , r−1/22,M ), . . . ,

(0, 0, . . . , 0)}

. . .

1′H = {(0, 0, . . . , 0), . . . , (r
−1/2
M,0 , r

−1/2
M,1 , . . . , r

−1/2
M,H )}. (20)

Therefore, 1′0, 1′1, . . ., 1′H are some of the necessary
weighted vectors defining the weighted solution subspace
where the optimal weighted current vector I ′A must reside.
Furthermore 1′0, 1

′

1, . . ., 1
′

H can be seen to be orthogonal
to each other, such that H+1 coordinates must be part of the
definition of the weighted solution subspace.

Secondly, the following equation must also remain true
after current component re-assignment where the line current
has changed to IA, which still needs to be found.

PPTh(OPT) = <VTh, IA> (21)

Clearly, this can also be calculated as the inner product of
the weighted vectors V ′Th, I

′

A as defined above:

PPTh(OPT) = <V ′Th, I
′

A>

Therefore, V ′Th must also reside in the solution weighted
vector subspace needed to find the solution current vector.
However, V ′Th as measured from the PCC ref, is not necessar-
ily orthogonal to the other solution vector space’s coordinates
vector 1′0, 1

′

1, . . ., 1
′

H: and is not a coordinate vector.
Another orthogonal coordinate vector V ′Th(null) (with a

different reference) that is orthogonal to 1′0, 1
′

1, . . ., 1
′

H and
also in the solution subspace can be obtained using the
Gram-Schmidt method [1]. This linear algebra method con-
sists of subtracting from VTh all the components e′ref,h for
every h in the direction of 1′h, where e′ref,h the projection of
V ′Th is calculated as:

e′refh = <V
′

Th, 1
′

h) > 1′h/||1
′

h||
2 (22)

for h = 1 to H, and

e′refh = (
∑m

m=1
VTh,m,hRm,h

−1/
∑m

m=1
R−1m,h)1

′

h (23)

E. VTh(null ) BY SUBTRACTING THE OFFSETS
It can then be seen (shown as (c) in Fig. 3) that V ′Th(null) can
be obtained directly by changing the voltage component ref-
erence from the original common RefPCC to a new reference
displaced by a constant value e′ref,h for all the wires and their
respective frequency components h.

Since the calculation of power is independent of the voltage
reference chosen, it applies to any of the power components.
An offset can be subtracted from each component’s reference
without changing the power calculated at the Thévenin point:

PTh(OPT) = <V ′Th(null), I
′

A> = <VTh, IA> (24)

F. WEIGHTED THÉVENIN VECTOR V ′

Th, I ′

A
Now

V ′Th(null) = V ′Th − e′ref
= (VTh − eref)R−1/2=VTh(null)R−1/2 (25)

Namely:

V ′Th(null) = {((V1,0 − eref 0)r
−1/2
1,0 , (V1,1 − eref 1)r

−1/2
1,1 , . . . ,

(V1,H − eref H)r
−1/2
1,H ),

((V2,0 − eref 0)r
−1/2
2,0 , (V2,1 − eref 1)r

1/2
2,1 , . . . ,

(V2,H − eref H)r
−1/2
2,H ),

(. . . . . . . . . . . . . . . . . . . . . ,
. . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . ,

(. . . . . . . . . . . . . . . . . . . . . . . .),
((VM,0 − eref 0)r

−1/2
M,0 , (VM,1 − eref 1)r

−1/2
M,1 , . . . ,

(VM,H − eref H)r
−1/2
M,H )} (26)
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where for h = 0 to H and m = 1 to M:

eref h = (
∑M

m=1
VTh,m,hrm,h−1/

∑M

m=1
r−1m,h)

From which

||V ′Th(null)||
2
= <V ′Th(null),V

′

Th(null)> (27)

This is the sum of all VTh(null)m,h (weighted) magnitude
squared divided by respective resistance.

G. THÉVENIN POWER AND MULTIPLIER KA
The weighted solution vector space is now completely deter-
mined by the set of H+1 orthogonal coordinates 1′0, 1

′

1, . . .,
1′H representing Kirchhoff’s law applied to the current com-
ponents and the weighted Thévenin voltage V ′Th(null) which is
also mutually orthogonal to 1′0, 1

′

1, . . ., 1
′

H.
The solution optimal weighted current vector defined I ′A

which has minimum length can now be found by projecting
the non-optimal weighted original line current vector I ′S onto
the weighted solution vector space. This projection vector
(by the property of linear algebra), which has minimum
length (i.e. ||I ′A||

2 is the minimum possible sum of squares,
representing line losses) and conforms to the solution space
constraints, namely Kirchhoff’s current law (18..16), will
deliver the same power PPCC as the original line current
vector IS (13).
The coordinates of I ′A in 1′0, 1

′

1, . . ., 1
′

H are all zero since:

<I ′A, 1
′

h> = 0 for all h = 0 to H (28)

And, since all current components add to zero for each
respective harmonic, this implies that the solution vector I ′A is
in the directionV ′Th(null) only, as it is the only other coordinate
left which is not zero. Therefore:

I ′A = KAV ′Th(null) (29)

where KA is a real value and constant throughout the duration
of T chosen and common for all components.

From (21) and (29):

PTh(OPT) = <KAV ′Th(null),V
′

Th(null)>

Hence:

KA = PTh(OPT)/||V ′Th(null)||
2 (30)

And since = <I ′A, I
′

A> represents the sum of all line com-
ponents losses, then:

PTh(OPT) = PPCC + /− ||I ′A||
2 (31)

where +/− depends on the direction of total power flow.

||I ′A||
2
− ||V ′Th(null)||||I

′

A|| + PPCC = 0 (32)

Expanding, rearranging and solving the quadratic equation:

||I ′A|| = 1/2(−||V ′Th(null)||−/+ (||V ′Th(null)||
2
+ 4P

PCC
)
1/2

(33)

Now knowing ||I ′A||, PTh(OPT) can be calculated from (31)
and KA can be calculated too.

H. CRMS SOLUTION CURRENT COMPONENTS
Finally, the active current components are given by
multiplying (29) by R−1/2:

I ′AR
−1/2
= KAV ′Th(null)R

−1/2 (34)

The optimal CRMS solution (active) current vector is:

IA = KAVTh(null)R−1 (35)

And the individual unweighted CRMS solution current
components are:

IA(m,h) = KA
VTh(null)(m,h)

r(m, h)
for all m and h. (36)

I. IDENTIFYING PF AND AP
By definition:

PF = ||I ′A|/||I
′
S ||orPTh(OPT)/PTh(bef) (37)

where PTh(OPT) = ||V ′Th(null)||||I
′

A|| is the minimum power
needed to be transmitted from the Thévenin source to deliver
PPCC with optimal delivery loss; and

AP = PTh(bef) = ||V ′Th(null)||||I
′

S|| (38)

is the maximum optimally distributed power that could be
transmitted from the source with the original delivery loss.

J. PRACTICAL APPLICATION
The order of the steps followed to calculate the minimal
loss current CRMS vector, representing the optimal current
components that will deliver PPCC power to a PCC point with
minimal losses, is not the same as the order of the theory
development and are illustrated by examples in Section VI.

V. POWER PROCESSOR (COMPENSATOR) CONCEPT
The applications of power theory include the calculation of
active currents and the control with compensators and invert-
ers of the currents in power systems to reduce the delivery
losses.

With the advent of modern, flexible, and low-cost power
processing devices (PPD), we use this term to include all
forms of compensators, converters and inverters, irrespective
of their topology.

PPDs that process the electrical energy can be represented
simply as a combination of bi-directional current sources,
voltage sources and temporary energy storage (capacitors,
inductances and batteries) connected at the PCC, from which
power can be received from the Thévenin side during an
interval T (typically a cycle), illustrated in Fig. 4. For example
the converter could be a double conversion converter drawing
the specific currents IA and reissuing the original voltages U
on the output. This converter would have a zero average
power requirement apart from the internal losses of the power
PPD. The power capacity of this converter could be minimal
depending on the topology used.

The input currents of the PPD are processed as input
current sinks, and the compensation purpose of the PPD is
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FIGURE 4. PPD connected at the PCC changes the currents from the
Thévenin point to minimize delivery losses, and control the output
voltages as needed.

to optimize the power delivery to the PCC by reducing the
delivery losses. However, the result of the re-distribution of
current components will change voltages at the PCC from the
original voltage U to U(OPT). It can be shown that:

<U(OPT), IC>+<U−U(OPT), IS> = 0

so that no power apart from compensator loss is needed if the
output voltage is restored to the original voltage. The output
voltages can be processed independently to deliver the power
PLoad according to the application. They may be restored to
the original values or balanced voltages as needed.

The flow of power out of the PPD could deliver the same
power PLoad as received, less the PPD losses or plus power
from any local source such as solar. The output voltages
and currents depend on the nature of the load circuit, which
may be another network, and can be controlled independently
according to the type of PPD, such as balancing the output
voltages and/or restoring an acceptable voltage range.

Thus, the role of a PPD at the PCC is to modify an original
set of line currents (IS) transporting power by injecting and
extracting compensation currents (IC) in such a way that the
same quantity of power still reaches the PCC, with lower
losses or, preferably, minimal possible losses, as identified
by the transportation solution identifying the active currents
(IA) described in Section IV.

In essence, the PPD approach is that the losses will be
reduced to a minimum by the compensation current. For the
system, this can be written as loss before rearrangement:

||I ′S||
2
= ||I ′A||

2
+ ||I ′C||

2
+ 2<I ′A, I

′

C> (39)

And the loss after rearrangement is ||I ′A||
2 giving a loss

reduction of ||I ′C|||
2
+ 2<I ′A, I

′

C> in which 2<I ′A, I
′

C> can
be a negative or positive value. This real value of power is
attributable to the voltage change at the PCC point and can
be positive or negative depending on the circumstances. The
value will be zero only if I ′A and I ′C are orthogonal. Note that
||I ′C||

2 is the loss attributed to the ‘‘non-necessary’’ currents
conventionally associated with the concept of reactive or
non-active power.

These steps lead to reconciliation of the losses without
and with (or before and after) compensation and, therefore,

identify the PF before compensation. After compensation,
only active current is delivered and the loss is minimized for
the power sent out, so PF = 1.

VI. MEASUREMENT EXAMPLES
Electrical quantities defined by mathematical models can be
measured by modern instruments incorporating processors
and programs [2].

Although the algebraic notation and the length of some
equations of Section III might appear complex, the measure-
ment breaks down into simple arithmetic steps, for which the
operations are written easily in a spreadsheet or a program.
The steps are shown in Table 1, referenced to the cells of the
full spreadsheet (shown in Example 2).

TABLE 1. Calculation process.

The spreadsheets not only illustrate the process of the
calculation, but act as a benchmark for others using the
approach. The contents of the key cells with the more com-
plex formulae of each table are expressed in their arithmetic
form in the Appendix, from which is should be easy to iden-
tify the calculation steps, adapt the equations for the similar
cells and translate them into other software, as we have done
already into JavaScript, Matlab measurement blocks, and a
processor to control a compensator.

Example 1 shows the solution of a measurement with
only fundamental frequency waveforms and unbalanced wire
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impedances. In Example 2 some harmonic content is added,
including a dc component, and the full spreadsheet is pre-
sented. Example 3 compares our approach with another
approach that is similar in some respects.

A. EXAMPLE 1: FUNDAMENTAL FREQUENCY ONLY
The first example considers three phases with a neutral wire
and with only fundamental frequency waveforms (no har-
monics). The example is compiled using arbitrary sinusoidal
waveforms and phase shifts to give unbalanced currents, illus-
trated in Fig. 5, and unequal line resistances and inductances.

FIGURE 5. Example 1 line voltages um(t) and currents iSm(t) at PCC
before component current re-assignment, with sinusoidal waveforms and
unbalance.

Since this example is constrained to the fundamental wave-
forms, frequency dependent Thévenin impedances are not
relevant. A time domain solution is possible following our
past work [25], [32] and using the 16 samples of the six
waveforms over period T in Table 2.

TABLE 2. Measurements (from Fig. 5).

Alternatively, using the frequency domain approach,
the first step is to take the sampled line currents and voltages
measured from an arbitrary reference and derive the fre-
quency components, in this case the fundamental frequency
waveforms.

Thereafter, the process of the calculation follows the
sequence detailed in Table 1, using the input parameters of
Table 3. The results are reviewed in Section VII.

Were re-assignment or compensation implemented,
the avoidable losses would be reduced to zero, making the

TABLE 3. Input parameters of Example 1.

relative efficiency PF = 1. Although the power PPCC deliv-
ered to the PCC without and with compensation does not
change, compensation would change the voltages, according
to the reallocated wire currents and loss reduction. The
voltages and currents at the PCC after compensation, if imple-
mented, are illustrated in Fig. 6, showing that the currents are
not necessarily in phase with the voltages at the PCC when
the delivery loss is minimized, even though the PF = 1.

FIGURE 6. Example 1 voltage and current waveforms at the PCC after
compensation.

B. EXAMPLE 2: SEVERAL FREQUENCY COMPONENTS
AND FREQUENCY-DEPENDENT IMPEDANCES
The second example comprises a three-wire four-wire system
with fundamental, dc and 3rd and 5th harmonic components,
and with frequency-dependent impedances. The input values
are the CRMS voltages measured from PCC side and line
currents at the PCC, and line resistances Rm,h and Lm.h for
all lines from m = 1 to M and harmonics 0 to H.

To demonstrate the relative effects of unbalance and the
harmonics, all the values of the fundamental frequency com-
ponents are the same as those in Example 1, with the dc
and two harmonic components added to shape the voltages
towards a square wave (to illustrate the power delivery capa-
bility of the harmonic components), with arbitrary added
current components.

The waveforms before compensation were illustrated
in Fig. 2, and the compensation currents are shown
in Fig. 7.
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TABLE 4. Spreadsheet of inputs with harmonic components and conventional calculations.

FIGURE 7. Example 2 compensation current waveforms in each wire at
the PCC.

The steps of the whole calculation, carried out in the full
spreadsheet, are laid out in Tables 4 and 5. Table 4 gives
the input parameters and the calculation of conventional
measurements of the power at the PCC (PPCC), the delivery
loss, ||I ′S||

2, the power PTh at the Thévenin point without
compensation, and the conventional value of S and PF as
measured at the PCC. Table 5 presents the calculation of the
measurements following the steps of Table 1 and the results
are discussed in Section VII.

C. EXAMPLE 3: FROM LEV-ARI AND STANKOVIĆ
Unable to find a standard model with which to compare our
approach, we considered several power system models used
by other authors. The approach of Lev-Ari et al. [38]–[40] is

like ours in several respects. It is developed in the frequency
domain in the Hilbert space of projecting orthogonally one
vector onto another and both their approach and ours do
not consider line impedances to be negligible, though their
approach relies on the Hilbert transform. Their approach is
adaptive and includes load admittances, while ours arrives
directly at the measured quantities of loss, PF and AP, and
is independent of load admittances.

This third example is a three-phase system without a neu-
tral [39]. The input parameters are the same for both calcu-
lations. The currents have fundamental and fifth harmonic
components and are unequal. The Thévenin and PCCvoltages
are unequal. The resistances and inductances are the same
in all three wires, so our correction of the reference used
for resistance weighting the Thévenin point voltages has no
effect. This detail, not mentioned in their example, might be
significant were the resistances unequal. Further, their exam-
ple includes adaptation of the load power when the voltage
at the PCC changes with compensation; it is not based only
on the analysis of the losses for delivering the original load
power PPCC. Although using nominally the same example,
there are small differences between the results in [39] and a
smaller set of results in [40].

The key results of the two approaches are compared
in Table 6.
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TABLE 5. Spreadsheet of rigorous calculation of PF and AP.

There is close agreement on values before compensa-
tion and the minimum possible loss for the same PPCC
delivered.

In our approach, the AP is identified as the maximum
power ||V ′Th(null)||||I

′

S|| that could be sent out from the
Thévenin point for the same losses as before compensation.

It is not the same as the optimal power shown as (b) in Table 6,
needing to be sent out after compensation to deliver the
original power to the PCC. An avoidable loss of (a)-(c) =
988 W before compensation corresponds to the ‘‘wattless’’
power that does not reach the PCC and can be eliminated by
compensation.
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TABLE 6. Comparison of two approaches in Hilbert space.

AP is defined in [39] as the power that can be delivered to
the PCC for the same losses, given as:

||V ′Th(null)||||I
′

S|| − ||I
′

S||
2
.

A PF based on this AP would not return a quantity consis-
tent with the Cauchy-Schwarz Inequality notion that the angle
between two vectors (namely V ′Th(null), I

′

S) in inner product
space [1] is:

cos (∅) = <I ′S,V
′

Th(null)>/||I
′

S||||V
′

Th(null)|| ≤ 1

Only in the case where I ′S is in the direction of V ′Th(null)
would the PF be optimal and equal to 1.

In our opinion, PF can be defined only at the Thévenin
point and not at the PCC side, unless the wire impedances
are negligible.

VII. DISCUSSION
A. CONTRIBUTION OF TRANSPORTATION APPROACH
In 1927, Budeanu proposed that the AP in one phase of a
circuit or load was S2 = P2+Q2

B+D2
B where QB = reactive

power and DB = distortion power [42]. The relation, derived
from the fundamental and harmonic voltages measured at
the PCC, was reproduced in many publications, extended
to three-phase loads and adopted in IEEE definitions and
standards [2], [42] without referring to the delivery system
impedances.

Our objective is different: to characterize the loss and the
relative efficiency of the delivery system to the PCC. The PF
and AP depend on the parameters of the delivery system and
the distribution of currents in the lines as well as the ‘circuit’
load at the PCC.

The formulation of the general power theory in the fre-
quency domain adds frequency-dependent line parameters to
our earlier time-domain formulations and identifies the active
elements of current and power, avoidable losses and possible

compensation. This allows the PF and AP of a system/load to
be defined at the PCC, and the avoidable loss to be compen-
sated if desired.

The analysis is consistent with our earlier findings
[24], [25] that a physically-realizable model of the system
requires only two components of the ‘non-active’ power: the
power/energy transferred instantaneously between wires and
the energy requiring local storage at the PCC during the
period of a wavelength.

The analysis defines all the active CRMS active current
components IAm,h for all M wires and all H+1 orders of
frequency. IA = KAVTh(null)R−1 is a generalized formula in
which the components of active current are:
• proportional to the common factorKA, the magnitude of
which scales to the Thévenin lines the distribution of the
current components, the delivered power, and AP;

• proportional to each of their respective weighted
Thévenin voltage CRMS componentsVTh(null)(m,h)mea-
sured from their respective harmonic weighted null point
reference;

• inversely proportional to the respective line resistances.
Further, KA reduces to Ge as used by Fryze and many

following his approach, provided all line resistances are equal
and line impedances negligible.

A practical advantage of the frequency domain approach
is that it condenses the measurement data input to frequency
components, making them easier to transfer to a processor to
measure PF and AP or derive the compensation currents for
controlling a PPD.

B. COMPENSATION EFFECT
Losses incur costs, and the benefits of loss reduction lead to
the popular concept of PF compensation, such as by shunt
capacitors to reduce the phase displacement between volt-
ages and currents of loads with inductive components. PPDs
provide alternative approaches to all compensation, even of
distortion and unbalance.

Many approaches to passive or active compensators have
been proposed, with various degrees of success in minimizing
losses, generally arising from assumptions that compromise
rigorous power theory. For example, a general assumption
that the voltages at the PCC do not change with the introduc-
tion of compensation currents is inconsistent with physical
laws, and results in invalid active currents. Current compensa-
tion that removes all non-active components from the current
delivered from the source will change the voltages at the PCC.
For this reason, definitions of AP assuming invariant voltages
at the PCC after compensation cannot be valid.

The basic theory does not depend on introducing compen-
sating currents at the PCC; instead it identifies the PF and
AP associated with the load at the PCC of the power system
without compensation. It retains the initial network structure
(represented by the Thévenin equivalent circuit) to calculate
compensation where required.

When compensation is implemented to optimize delivery
by reducing the avoidable loss component, the voltages at
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the PCC will change on some or all wires. The change will
affect any intermediate voltage-dependent loads and require
the Thévenin equivalent parameters to be re-determined.
Similarly, a PPD can improve the voltage magnitude and/or
balance the voltages supplying the load at the PCC and,
by changing the load, might adjust the power drawn from the
Thévenin side of the system.

The term 2<I′A, I
′

C>, introduced by compensation is part
of the change in losses and is typically small. (If the vectors
were orthogonal, the inner product would be zero. This occurs
if the delivery system is assumed to have no impedance and
is not valid in practical systems.) In most cases, its non-zero
value indicates the ‘compensation’ current component IC is
not orthogonal to the active current IA but has two compo-
nents, one in direction of I′A and one perpendicular to I′A,
arising from the change of the PCC voltages with compen-
sation, and challenging further the concept of reactive power
and the geometric power model.

Where harmonic currents in a load are driven by harmonic
voltages, and are not detrimental to the load, then the exclu-
sion of the harmonic frequencies from delivering power
will increase delivery losses without a compensating ben-
efit. In some circumstances, current waveform distortion
is undesirable or unacceptable, and only a measurement
of the power quantity at the fundamental frequency power
delivery is considered relevant. Where power transfer only
at the fundamental frequency current is required, the power
no longer delivered at the harmonic frequencies must be
delivered by the fundamental current instead, increasing the
associated losses and the voltage drop. The scaling parameter
KA decreases and is no longer optimal in terms of losses,
although it may be desirable in terms of power quality.
However, a suitable PPD can provide optimum power deliv-
ery as well as load balancing and harmonics removal.

Clearly, there are many opportunities for power condition-
ing, and the details of the many forms of PPDs are beyond the
scope of this paper.

The topic of compensation would be incomplete without
reference to safety. Measurement of PF and AP has no effect
on a system, simply characterizing its performance in terms
of two parameters. However, as soon as current components
are reassigned in the wires of the delivery system and the
total losses are reduced, the loss in one or more wires might
increase, and the distribution of voltages in the wires at the
PCC will change too. In most cases, the changes will be
beneficial. However, in systems operating at their voltage
and thermal limits, compensation might cause a limit to be
violated, as might occur also in traditionally compensated
systems.

C. APPLICABILITY
Most variables of practical power delivery systems are
accommodated in the formulation, and no engineering prin-
ciples are violated. The model and analysis approach the con-
ditions for a representational measurement in power system
steady-state conditions.

The measurement is based on the fundamental frequency,
which might differ from the rated power frequency. The
measurement of power, PF, AP and energy, though valid,
will return different quantities according to the window of
measurement, such as for a chosen time period or several
fundamental frequency wavelengths, as might be defined for
a standard or declared differently for a particular purpose. The
time period of measurement is an operational measurement
constraint.

Measurement is based also on the Thévenin equivalent cir-
cuit parameters, assumed constant during the measurement.

The processor time for the actual AP and PF measurement
calculation is negligible (<1 ms using a typical industrial
processor). However, a first measurement is delayed by the
period needed to extract the Thévenin parameters, and the
CRMS components of the currents and voltages. Further,
where operational measurement standards require measure-
ment of average values over several cycles, this will extend
the minimum duration of a first measurement. Thereafter,
a sliding window can be utilized for rapid re-calculation if
required. Other delays must be considered when compensa-
tion is implemented, based on the parameters of the preceding
wavelength. Compensation causes the load currents and volt-
ages to change dynamically, locally at the PCC and at inter-
mediate voltage-dependent loads on the system, requiring re-
measurement.

D. INTERPRETING THE RESULTS
A ‘conventional’ approach to PF defined by S = ||v|| ||iS||
at the PCC neglects the resistance and inductance of the
delivery system. Example 1 introduces a delivery systemwith
unbalanced impedances and unbalanced sinusoidal voltages
and currents; and Example 2 adds extra power with harmonic
components. The results are compared in Table 7.

TABLE 7. Comparison of results of Examples 1 and 2.

Rigorously including unbalance (in Example 1) and unbal-
ance and harmonics (Example 2) in the system models
and calculations leads to lower measurements of the PF
of the load on the system, compared with a conventional
approach. Or, the other way around, violating assumptions
of sinusoidal waveforms and balanced voltages, currents, and
wire impedances, invalidates themeasurement of PF based on
a hypothetical ideal power system.
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With a constraint that only fundamental frequency power
is permitted, practically implemented by harmonic blocking
filters, then the power PPCC required by the load must be
delivered by IA with only fundamental frequency compo-
nents. Effectively, the ‘benefit’ of the parallel impedances
of the extra lines at harmonic frequencies is lost, and the
minimum loss in Example 2 increases to 971 W. A full study
of power quality and optimal power delivery at high power
factor is beyond the scope of this paper.

E. DEFINING PF AND AP
The PF of the system supplying the load at the PCC is
an index of the relative delivery efficiency, given by the
square root of (minimum possible loss by redistribution of
the transmitted current components at the Thévenin source
divided by the actual losses incurred in delivering to the PCC
the original power without redistribution or compensation).
Thus, the original statement in Section I needs to be clarified:
‘‘unity power factor means minimum possible line loss for a
given total active power transmitted from a source.’’
The PF is also equal to the ratio P/AP, described in IEEE

Std 1459-2010 [2] as a utilization factor indicator. Therefore,
the AP (with units ofWatts) is the maximum power that could
be dispatched from the source by the optimum distribution of
the components of the active current IA and with the same
Thévenin source voltages, and delivered through the same
system for the same delivery loss as the original uncompen-
sated power PPCC received at the PCC.

The maximum power received at the PCC for the same
losses and after compensation is less than the AP by the
quantity of the minimum loss. This differs from many inter-
pretations of AP as being the power supplied to a load, such
as in [2], which applies only when the delivery system has no
impedance.

F. REVERSE POWER FLOW: DISTRIBUTED GENERATION
There are four approaches to controlling reactive power oper-
ation of DG. One is at a fixed specified level of PF opera-
tion.With voltage-var or active power-reactive power control,
when voltage is high, the generator must be under-excited and
absorb vars on a sliding scale up to the rated limits. Only
under a voltage-active power characteristic must generation
be reduced when voltages are high. Clearly, the three PF or
reactive power approaches do not consider loss optimization
and the potential of flexible control to reduce the loss to a
minimum for the power delivered.

Especially as distortion and unbalance tend to be higher
towards the lower voltage ends of a network, a more appro-
priate control of DG can be achieved by turning around the
power flow of Fig. 1 and controlling the currents to minimize
the loss in delivering power/energy to the network, thereby
reducing the avoidable loss of generated energy on extra
heating of the wires. The detailed approach to answering the
third question in Section II will be described in a separate
paper.

G. OTHER POTENTIAL APPLICATIONS
We conceive that in smart grids it will be economic to trans-
port only the useful energy and supply locally the components
of power for which no net energy is required. Power elec-
tronics provides this capability and will become even more
significant with lower losses. Since battery systems (BESS)
and most DG already include power electronic controllers,
the adoption of more appropriate control algorithms using the
losses-based definition of PF has the potential to reduce total
energy losses, consistent with economic cost allocation.

Scott counselled in 1898 ‘‘While it is desirable, it is not
as essential to have absolute scientific accuracy in all of the
definitions as it is to have definite definitions of capacity and
performance, and definite methods of testing which are mutu-
ally understood’’ [43]. Building on the research of many engi-
neers during the subsequent 120 years, a representational,
accurate, measurable definition of the minimum possible and
avoidable losses attributable to a load at any point (PCC) is
now available. This changes the perspective. The continued
empirical approximation of PF, AP and reactive power in
technical and economic studies where model assumptions are
likely to be violated is no longer necessary. AP as an indicator
of the utilization of the delivery systemmight be of interest to
wires operators. Regulators can now take an evidence-based
approach to rate-making that incorporates PF penalties or
avoidable losses according to measurements that are uniquely
defined. The NEMA meter study [12] and some preliminary
research in energy trading [44] indicate the new definition
could have significant financial implications when applied to
metering and tariffs.

Other potential applications include economically justified
load compensators, including STATCOMs, for loss reduction
in both delivery systems and motor loads, and the injection of
renewable energy into delivery systems. The definition opens
new approaches to power quality assessment and voltage sta-
bility analysis (such as where distortion by geomagnetically
induced currents compromises conventional approaches [7]),
and wherever conventional approximations are inadequate.

H. EVALUATION AGAINST CRITERIA OF IEEE STD 1459
According to IEEE Std 1459- 2010 [2] a generalized power
theory providing simultaneously for energy billing; evaluat-
ing electric energy quality; detecting the major sources of
waveform distortion; and calculations for designing mitiga-
tion equipment was not available at that time. As proposed
here, the new theory, calculations and measurement process
can be applied:
• at a PCC anywhere in a power system, to measuring
power, energy, AP, and avoidable loss in consistent units
of W and Wh, and the PF as the relative loss efficiency
of the power delivery, and these can be used in various
combinations for electricity trading; and

• in calculations of the intra- and inter-wire energy trans-
fer required inmitigation equipment, including theworst
case conditions that might be defined as the basis of
design of the equipment, and in operation.
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The approach allows measurement of the actual delivery loss
without optimal distribution of the current components and
the loss avoidable by compensation. The PF before compen-
sation measures the ratio of minimum possible to actual loss
for an unchanged delivery of PPCC. The AP measures the
potential utilization of the delivery system for the original
level of delivery loss. These parameters can be used for
system and compensator design, and energy billing.

The approach does not differentiate current harmonics and
unbalance, conventionally considered as being generated by
the load, from the voltage harmonics and unbalance, because
their effects are all combined in the measurement of one PF
and one AP quantity that incorporate all the many degrees of
freedom inherent in the measurement. It is possible, though,
to identify the contribution of non-fundamental-frequency
power components without compensation, and after compen-
sation including or excluding all non-fundamental-frequency
components. These do not evaluate an undefined ‘energy
quality’ beyond these quantities and the conventional
concepts of power quality may need to be re-visited.

VIII. CONCLUSION
In a ‘perfect’ balanced system with sinusoidal waveforms
and all phase wires of equal and negligible impedance,
the conventional approach to apparent and reactive power
is valid, but it is impractical. Power factor used to describe
the impedance of a load or appliance in the form of R/|Z|,
independent of the delivery system, has only a weak relation-
ship to the delivery losses or voltage drop in practical power
systems.

Power systems with any number of wires, unbalance,
dc components, periodic waveform distortion, and unequal
and/or frequency-dependent wire resistances can only be rep-
resented adequately by a model incorporating all the vari-
ables, which is the approach taken in this paper.

The definitions of power and apparent power are derived
in vector space linear algebra and are representational to
the extent that the practical conditions do not violate the
properties of the model. Power factor is a measure of the
relative efficiency of delivering power to the PCC.

The approach is based on minimizing the loss associated
with the delivery of power to the point of measurement. The
two assumptions in the approach are that the supply system
can be modelled by a Thévenin equivalent circuit and the
active (or real) power delivered is constant.

We have shown that the calculation of the quantities of
apparent power, power factor and delivery loss is relatively
simple, and requires relatively little data transfer (as fre-
quency components derived from measured voltages and
currents) to an inexpensive processor where the calculation
is made. The accuracy of the derived parameters obviously
depends on the accuracy ofmeasurement of voltages, currents
and the Thévenin equivalent parameters of the system, and
there are many methods for making such measurements,
including by the compensator.

This formulation produces unambiguous and repeatable
results, resolving the problems of all non-sinusoidal period-
ical and bandwidth-limited waveforms that can be resolved
into a limited set of frequency components.

Steinmetz, Bell and Silsbee [4], [5] would have known the
loss associated with a dc load at the PCC. A power factor
rigorously defined in the presence of unbalance and distortion
would have given them the avoidable ‘‘wattless’’ loss through
PF2 and enabled them to calculate the power needing to be
sent out for each load. The AP would have them enabled
them to calculate how much more power could have been
sent out to optimally compensated loads for the same losses
and thereby increase the utilization of the delivery system.
These same concepts are still useful for power system design
and operation and are embedded in many tariffs, though not
always with scientific accuracy.

Power factor, apparent power, reactive power, and
non-active power as defined in IEEE Standard 1459-2010
and other standards clearly do not lead to representational
measurement and expose users to the uncertainty inherent in
operational measurements in practical systems.

The scientific accuracy of this proposed novel, rigorous
and practical (general) definition of power factor and
apparent power avoids the assumptions made in all other
definitions we have found, approaches representative mea-
surement, questions fundamentally the validity of the concept
of reactive power and its non-power units, enables evidence-
based decisions on matters such as cost allocation and
whether mitigation of relatively inefficient power delivery
is justifiable, and has profound implications for the defini-
tions of power quantities in engineering standards, mitigation
equipment design, power system analysis, electricity regula-
tion, and education and further research.

APPENDIX
The contents of selected cells from Examples 1 and 2 are
listed, identified by the row and column in Tables 4 and 5.
These Excel formulae in rows 19 to 84 of the spreadsheet are
the arithmetic symbol representation of the equations in the
linear algebra.

C19 = C4∗C9∗COS(RADIANS(D4-D9))

+C5∗C10∗COS(RADIANS(D5-D10))

+C6∗C11∗COS(RADIANS(D6-D11))

+C7∗C12∗COS(RADIANS(D7-D12))

C20 = C19+ E19+ F19+ H19

C21 = C9^2∗C15+ C10^2∗C16+ C11^2∗C17

+C12^2∗C18

C22 = C21+ E21+ F21+ H21

C23 = SQRT(C22)

C24 = C19+ C21

C25 = C24+ E24+ F24+ H24
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C26 = ((C9^2+ C10^2+ C11^2+ C12^2)

+ (E9^2+ E10^2+ E11^2+ E12^2)

+ (F9^2+ F10^2+ F11^2+ F12^2)

+ (H9^2+ H10^2+ H11^2+ H12^2)

+ (K9^2+ K10^2+ K11^2+ K12^2))^0.5

C27 = ((C4^2+ C5^2+ C6^2+ C7^2)

+ (E4^2+ E5^2+ E6^2+ E7^2)

+ (F4^2+ F5^2+ F6^2+ F7^2)

+ (H4^2+ H5^2+ H6^2+ H7^2)

+ (K4^2+ K5^2+ K6^2+ K7^2))^0.5

C28 = C26∗C27

C29 = C20/C28

C31 = IMABS(COMPLEX((C4∗COS(RADIANS(D4))

+C9∗COS(RADIANS(D9))∗C15

−C9∗SIN(RADIANS(D9))∗D15),

(C4∗SIN(RADIANS(D4))

+C9∗SIN(RADIANS(D9))∗C15

+C9∗COS(RADIANS(D9))∗D15)))

D31 = IMARGUMENT(COMPLEX

((C4∗COS(RADIANS(D4))

+C9∗COS(RADIANS(D9))∗C15

−C9∗SIN(RADIANS(D9))∗D15),

(C4∗SIN(RADIANS(D4))

+C9∗SIN(RADIANS(D9))∗C15

+C9∗COS(RADIANS(D9))∗D15)))∗180/PI()

C36 = IMABS(COMPLEX((C31/C15)∗

COS(RADIANS(D31))

+ (C32/C16)∗COS(RADIANS(D32))

+ (C33/C17)∗COS(RADIANS(D33))

+ (C34/C18)∗COS(RADIANS(D34)),

(C31/C15)∗SIN(RADIANS(D31))

+ (C32/C16)∗SIN(RADIANS(D32))

+ (C33/C17)∗SIN(RADIANS(D33))

+ (C34/C18)∗SIN(RADIANS(D34))))/

(1/C15+ 1/C16+ 1/C17+ 1/C18)

D36 = IMARGUMENT(COMPLEX((C31/C15)∗

COS(RADIANS(D31))

+ (C32/C16)∗COS(RADIANS(D32))

+ (C33/C17)∗COS(RADIANS(D33))

+ (C34/C18)∗COS(RADIANS(D34)),

(C31/C15)∗SIN(RADIANS(D31))

+ (C32/C16)∗SIN(RADIANS(D32))

+ (C33/C17)∗SIN(RADIANS(D33))

+ (C34/C18)∗SIN(RADIANS(D34))))∗180/PI()

C38 = IMABS(COMPLEX(C31∗COS(RADIANS(D31))

−C36∗COS(RADIANS(D36)),

C31∗SIN(RADIANS(D31))

−C36∗SIN(RADIANS(D36))))

D38 = IMARGUMENT(COMPLEX(C31∗

COS(RADIANS(D31))

−C36∗COS(RADIANS(D36)),

C31∗SIN(RADIANS(D31))

−C36∗SIN(RADIANS(D36))))∗180/PI()

C43 = C38^2/C15+ C39^2/C16

+C40^2/C17+ C41^2/C18

C44 = C43+ E44+ F44+ H44

C46 = C44^0.5

C47 = (1/2∗(SQRT(C44)− SQRT(C44− 4∗C20)))^2

C48 = SQRT(C47/C22)

C49 = C23∗C46

C50 = C22− C47

C52 = C20+ C47

C53 = C52/C44

C54 = C53∗C38/C15

D54 = D38

C59 = C54^2∗C15+ C55^2∗C16+ C56^2∗C17

+C57^2∗C18

C60 = C59+ E59+ F59+ H59

C62 = IMABS(COMPLEX(C31∗COS(RADIANS(D31))

−C54∗C15∗COS(RADIANS(D54))

+C54∗D15∗SIN(RADIANS(D54))

− (C34∗COS(RADIANS(D34))

−C57∗C18∗COS(RADIANS(D57))

+C57∗D18∗SIN(RADIANS(D57))),

C31∗SIN(RADIANS(D31))

−C54∗C15∗SIN(RADIANS(D54))

−C54∗D15∗COS(RADIANS(D54))

− (C34∗SIN(RADIANS(D34))

−C57∗C18∗SIN(RADIANS(D57))

−C57∗D18∗COS(RADIANS(D57)))))

D62 = IMARGUMENT(COMPLEX(0.00000001

+C31∗COS(RADIANS(D31))

−C54∗C15∗COS(RADIANS(D54))

+C54∗D15∗SIN(RADIANS(D54))

− (C34∗COS(RADIANS(D34))

−C57∗C18∗COS(RADIANS(D57))

+C57∗D18∗SIN(RADIANS(D57))),

C31∗SIN(RADIANS(D31))

−C54∗C15∗SIN(RADIANS(D54))
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−C54∗D15∗COS(RADIANS(D54))

− (C34∗SIN(RADIANS(D34))

−C57∗C18∗SIN(RADIANS(D57))

−C57∗D18∗COS(RADIANS(D57)))))∗180/PI()

C66 = C62∗C54∗COS(RADIANS(D62− D54))

+C63∗C55∗COS(RADIANS(D63− D55))

+C64∗C56∗COS(RADIANS(D64− D56))

+C65∗C57∗COS(RADIANS(D65− D57))

C67 = C66+ E66+ F66+ H66

C68 = C38∗C54∗COS(RADIANS(D38− D54))

+C39∗C55∗COS(RADIANS(D39− D55))

+C40∗C56∗COS(RADIANS(D40− D56))

+C41∗C57∗COS(RADIANS(D41− D57))

C69 = C68+ E68+ F68+ H68

C71 = IMABS(COMPLEX(C9∗COS(RADIANS(D9))

−C54∗COS(RADIANS(D54)),

C9∗SIN(RADIANS(D9))

−C54∗SIN(RADIANS(D54))))

D71 = IMARGUMENT(COMPLEX(C9∗

COS(RADIANS(D9))

−C54∗COS(RADIANS(D54)),

C9∗SIN(RADIANS(D9))

−C54∗SIN(RADIANS(D54))))∗180/PI()

C77 = C71^2∗C15+ C72^2∗C16+ C73^2∗C17

+C74^2∗C18

C78 = C77+ E77+ F77+ H77

C79 = 2∗(C54∗C71∗COS(RADIANS(D54− D71))∗C15

+C55∗C72∗COS(RADIANS(D55− D72))∗C16

+C56∗C73∗COS(RADIANS(D56− D73))∗C17

+C57∗C74∗COS(RADIANS(D57− D74))∗C18)

C80 = C79+ E79+ F79+ H79

C81 = C78+ C80

C82 = C52/C49

C83 = SQRT(C47)

C84 = C83/C23
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