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ABSTRACT Blind deblurring of single image is a challenging image restoration problem. Recent various
image priors have been successfully explored to solve this ill-posed problem. In this paper, based on the
non-local self-similarity, we propose a novel method for blind image deblurring, which can simultane-
ously capture the intrinsic structure correlation and spatial sparsity of an image. Specifically, we use the
hyper-Laplace prior to model the structure information of non-local similar patches, and embed it into the
low-rankmodel as a smooth term of the energy equation. Since the established energy function is non-convex,
an effective iterative optimization scheme is designed to effectively implement the proposed algorithm.
In addition, we evaluate the proposed method for non-uniform deblurring problem. Extensive experimental
results on both synthetic and real-world images show that the proposed method performs competitively
against the state-of-the-art methods.

INDEX TERMS Blind deblurring, hyper-laplacian, non-local self-similarity, low-rank matrix approxima-
tion, non-uniform deblurring.

I. INTRODUCTION
As a basic image restoration technique, blind image deblur-
ring is widely used in various image fields. The process of
image blurring can be regarded as the operation of adding
noise after convolution operation of blur kernel and original
clear image, which can be modeled as

B = I ⊗ k + n, (1)

where B, I , k and n denote the observed blurred image,
latent sharp image, blur kernel, and noise, respectively, and
⊗ represents convolution operator. It is a well-known ill-
posed inverse problem to recover the clear image I and the
corresponding blur kernel k rely on the blurred image B due
to the non-uniqueness of solution.

To make this problem well-posed, additional constrains is
required to regularize the solution space. Various methods
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based on the effective statistical prior from natural images
have been successfully proposed for blind image deblur-
ring. Numerous methods focus on the sparsity of image
gradients [1]–[7], such as hyper-Laplacian prior [3], [4],
total variation model [5], [6], normalized sparsity prior [7],
L0-regularized priors [12], [15]. Also, various statistical
priors of natural image are explored, such as dark chan-
nel prior [16], extreme channels prior [18], local maxi-
mum gradient prior [40], Super-Gaussian Fields [29], MRF
prior [45]. As all those priors are based on the assump-
tion that coefficients in the gradient spaces are mutually
independent, those approaches cannot model the complex
structures of natural images. According to the fact that sharp
edges are beneficial in the deblurring process, several blind
deblurring methods exploit the structure of edges for kernel
estimation [9], [19]–[24]. However, these methods are likely
to fail when strong edges do not exist in blurred images.

Most of the above methods consider the relationship
between adjacent pixel pairs or pixel intensity, while
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ignoring the fact that complex structure of the real image
depends on the connection between pixels in a larger
range, and thus cannot effectively restore images with
complex structures. In order to better solve the problem
of image deblurring, patch-based priors were proposed
and achieved excellent performance for restoring complex
structures [13], [34], [50]–[53].

Motivated by the patch-based priors, in this paper,
we propose a novel method from the perspective of struc-
tured information of non-local similar patches for blind
image deblurring. Our method can not only model the com-
plex structures of natural images, but also overcome the
dependence on strong edges. Motivated by the observa-
tion that the distributions of singular values of the matrices
formed by non-local similar patches are heavy-tailed [35],
the hyper-Laplacian distribution is employed to deliver the
intrinsic structure sparsity of non-local patches. Meanwhile,
low-rank prior is adopted to characterize sparsity of the
spatial domain. We then present a hyper-Laplacian regular-
ized non-local low-rank approximation model, which can be
formulated as an integration of the heavy-tailed distribution
of non-local singular values and low-rank characteristics of
non-local similar patches. By using an effective iterative
optimization scheme, our algorithm shows the competitive
performance on both synthetic datasets and real images.
The main contributions of this work can be summarized as
follows:

• We use the adaptive hyper-Laplacian distribution to
depict rich structure information of non-local similar
patches.

• By combining the heavy-tailed distribution of non-local
singular values with low-rank characteristics of
non-local similar patches, we propose an effective
hyper-Laplacian regularized non-local low-rank matrix
approximation model.

• An effective iterative optimization scheme based on
half-quadratic splitting method is derived to solve the
deblurring model. Experimental results on both syn-
thetic datasets and real images demonstrated that the
proposed algorithm performs competitive against the
state-of-the-art methods.

II. RELATED WORK
Blind image deblurring has earned intensive attention in
recent years. As blind image deblurring is an ill-posed opti-
mization problem, additional constraints and prior knowledge
are required to constrain the solution space. Fergus et al. [1]
exploit characteristic of natural image gradient distribution
and sparsity of blur kernel. It is shown in Levin et al. [3]
thatmethods based on variational Bayesian inference perform
better by removing trivial solutions compared to other meth-
ods with naive (maximum a posteriori) MAP formulations.
To optimize the naive MAP framework, Levin et al. [4]
adopt the hyper-Laplacian prior and develop an effective
marginal approximation method for blur kernel estimation.

Moreover, different likelihood functions and image priors
have also been exploited to solve the ill-posed problem [2],
[7]–[10], [12]–[16], [18]. Shan et al. [2] introduce a novel
probabilistic model by using two piece-wise continuous func-
tions to approximate the heavy-tailed natural image prior.
Krishnan et al. [7] propose a normalized sparsity prior, i.e.,
L1 / L2 regularizer. Moreover, L0 sparse representation is
also developed. Xu et al. [12] and Pan and Su [14] employ
L0 sparse expression for kernel estimation. Pan et al. [15]
apply L0-regularized prior on intensity as well as gradient
for text image deblurring task. In [16], dark channel prior is
presented for blind image deblurring algorithm and achieves
superior performance compared to other methods. However,
dark channel prior based method is likely to fail in intermedi-
ate latent image estimation when the image contains a lot of
bright pixels. Yan et al. [18] improve this method by incor-
porating dark channel prior with bright channel prior, which
is named as extreme channels prior to achieve more efficient
restorations. Unlike existing methods that use various priors
to solve the deblurring problem, Pan et al. [32] explore the
phase information in frequency domain to estimate accurate
blur kernels and achieves competitive results.

Based on the idea that sharp edges which provide reli-
able edge information also make a great contribution to
the constraint of solution space, some edge-based meth-
ods [19]–[21] have been proposed and achieve better perfor-
mance on natural blurry images. Those edge-based methods
depend on some heuristic strategy to select salient edges and
remove tiny edges, thus leading to over-sharpening of image
edges. Recently, Yang and Ji [24] proposed a novel varia-
tional expectation maximization method with built-in edge
reweighting, which further prove the importance of edges for
kernel estimation. However, strong structures do not always
exist in blurred images.

Additionally, nonparametric regression is also used for
image deblurring. Fergus et al. [1] propose a nonparametric
estimator of blur kernel, which only impose some mild con-
ditions rather than some prior information on the point spread
function (psf). Kang et al. [49] also suggest a nonparametric
method for estimating the psf without imposing any restric-
tive prior, because spatial blur will significantly affect the
image structure near the edge, while in the continuous area
of image intensity, the image structure will be less affected.

With the success of deep convolutional neural net-
work (CNN) on image restoration problems, Li et al. [25]
propose a discriminative prior which can be learned by a
CNN classifier for deblurring task. Several learning-based
methods [26]–[28] have also been proposed for blind image
deblurring. However, it is difficult to synthesize realistic
blurry images as the training dataset. Therefore, the per-
formances of these methods will degrade on images with
complex motion blurs.

Considering the relationship among similar patches, patch-
based priors have been introduced to solve the problem of
blind image restoration. Michaeli and Irani [13] propose
patch recurrence prior for kernel estimation. Tang et al. [50]
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employ external patch information and combine with sparse
representation to guide the iteration of latent images. Guo and
Ma [53] proposed an adaptive patch prior to recover low-level
features. Xu et al. [51] develop a group sparse representation
prior based on the observation that adjacent patches of the
clear image have similar characteristics, whereas the corre-
sponding patches of the blurred image do not.

Low rank matrix approximation (LRMA) methods, which
based on non-local similar patches, have also been widely
exploited in image restoration [30], [31]. Dong et al. [31]
utilize low-rank prior in image denoising and performs well
against existing methods. Dong et al. [17] propose a valid
algorithm by making use of salient edges and low rank prop-
erty of non-local similar groups. Ren et al. [34] introduce an
enhanced low-rank prior for image deblurring based on the
low-rankness of similar patches from both image intensity
and gradient map. Xu et al. [52] propose a novel low-rank
blind deblurring method that uses the weighted schatten
p-norm minimization and L0-regularized gradient prior. All
these methods have made significant advances in blind image
deblurring. In this work, we embed the heavy-tailed distri-
bution of non-local singular values into low-rank prior for
solving the blind image deblurring problem.

III. PROPOSED METHOD
In this section, we first analyze the problem formulation of
low-rank matrix approximation based on the non-local self-
similarity. Then we use the hyper-Laplace prior to model
the structure information of non-local similar patches, and
propose a hyper-Laplacian regularized non-local low-rank
matrix approximation model for blind image deblurring.

A. NON-LOCAL LRMA
Low rank matrix approximation (LRMA) methods have
shown great advantages for the intermediate latent image
restoration. Under the observation that self-repeating pat-
terns exist across the whole image matrix, the formed data
matrix composed by similar patches exhibits low-rank prop-
erty. To recover the desired low-rank approximation X from
its observation matrix Y , previous works [11] solved this
non-convex problem by using standard nuclear norm ‖·‖∗
as the convex surrogate of the rank, which penalize all the
singular values equally. Gu et al. [37] propose a weighted
nuclear norm minimization (WNNM) algorithm, which is
described as

min
X
‖Y − X‖2F + ‖X‖ω,∗, (2)

where ‖X‖ω,∗ =
∑

i ωiσi(X ) means the weighted nuclear
norm of X , that is, the sum of singular values of matrix X .
σi(X ) denotes the i-th singular value and ω = [ω1, . . . , ωn]T

is the non-negative weights which is inversely proportional
to σi(X ). As analyzed in [37], larger singular values gather
more information and therefore should be shrunk less, which
enhances the robustness of the nuclear norm and achieves
excellent performance in numerous vision tasks.

FIGURE 1. The empirical distributions of the non-local singular values of
diffierent clusters which are labeled by yellow, blue, green and red,
respectively. σ represents non-local singular value of the matrices formed
by non-local similar patches. (a) Natural image. (b)–(e) Heavy-tailed
distributions of the singular values of the matrices formed by non-local
similar patches.

B. HYPER-LAPLACIAN REGULARIZED NON-LOCAL LRMA
MODEL
Despite the great success of LRMA model in image restora-
tion, most methods enforce sparsity constraints only across
the spatial domain which cannot well describe the fine struc-
tures of natural images. One key observation of this work
is that non-local singular values of the matrices formed by
non-local similar patches are distributed with heavy-tails.
Fig. 1 illustrates the empirical distributions of the non-local
singular values of non-local matrices. The patch size is set
as 7 × 7 pixels, and 60 non-local similar patches to a given
patch are collected to form a 49× 60 matrix. Then the singu-
lar values of the non-local matrix are calculated by Singular
Value Decomposition (SVD).

From Fig. 1(b)–(e), we can see that non-local singular
values are distributed with heavy-tails. Wang et al. [35]
proposed a novel regularization of low-rank by parame-
terizing the heavy-tailed distribution of non-local singular
values with generalized Gaussian distribution. Considering
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the computational efficiency, we borrow a type of new
heavy-tailed distribution termed hyper-Laplacian priors to
convey the structure information of non-local similar patches,
which is defined as

p (I ) ∝
n∏
i=1

exp
(
−λiσ (Ii)γ

i
)

(3)

where Ii = [Ii1, Ii2, . . . , IiN ]∈Rn×N denotes i-th cluster
of similar image patches extracted from the image I. n is
the group number. λi is a positive tuning parameter and
γ i(0 < γ i < 1) denotes imposing the lγ -norm-based con-
straint on the distribution of singular values of non-local
similar patches.

To make it clearer, we study the negative logarithm of p(I )
which can be written as

R (σ (Ii)) , − log p (I ) =
∑
i

λi ‖σ (Ii)‖γ
i
. (4)

That is, R (σ (Ii)) can be viewed as the deterministic regular-
ization on the distribution of singular values.

With the constraint of the intrinsic structure sparsity of
non-local patches, we present the following blind image
deblurring model:{

Î , k̂
}
= argmin

I ,k
‖I ⊗ k − B‖22 + η ‖k‖

2
2

+µ
∑
i

λi ‖σ (Ii)‖
γ i

+

∑
i

(
τ ‖RiI − Li‖2F + ρ ‖Li‖ω,∗

)
, (5)

where Li denotes the restored image patches with low rank
property, Ri is the operation matrix of the i-th cluster, µ
and τ are the regularization parameters for structured spar-
sity and low-rank constraints of similar non-local patches,
respectively. η and ρ are weight parameters. The second
term is the constraint which makes the blur kernel k to be
stable. Compared with conventional LRMA algorithm, the
proposed deblurring framework has two prominent advan-
tages. On one hand, hyper-Laplacian regularization could
facilitate to faithfully preserve the structural characteristics
of the constructed matrix, leading to better deblurring result.
On the other hand, adding hyper-Laplacian regularization to
low rank representation model can further improve the local
information preserving ability of model, which enables the
model to better recover image components with low-rank
properties.

IV. OPTIMIZATION
Due to the difficulty to estimate multiple variables directly
of (5), we adopt the alternating minimization algorithm and
split the energy function into two subproblems. That is, inter-
mediate latent images and blur kernels can be obtained by
separately, solving two subproblems as follows,

Î = argmin
I
‖I ⊗ k − B‖22 + µ

∑
i

λi ‖σ (Ii)‖
γ i

+

∑
i

(
τ ‖RiI − Li‖2F + ρ ‖Li‖ω,∗

)
, (6)

and

k̂ = argmin
k
‖I ⊗ k − B‖22 + η ‖k‖

2
2 . (7)

In the following, we further present an effective optimiza-
tion scheme about these two subproblems.

A. ESTIMATE LATENT IMAGE I
In this subproblem, half-quadratic splitting technique [12]
is adopted to solve non-convex minimization problem (6).
We fix the blur kernel k and introduce an auxiliary variable
Gi, then (6) can be reformulated as,

Î = argmin
I
‖I ⊗ k − B‖22 + ζ

∑
i

‖PiI−Gi‖22

+µ
∑
i

λi ‖σ (Gi)‖γi+
∑
i

(
τ ‖RiI−Li‖2F+ρ ‖Li‖ω,∗

)
,

(8)

where ζ is penalty parameter. Pi is the linear operator to
extract non-local similar patches at location i from image I .

The above optimization problem (8) can be solved by
optimizing I , Gi, Li alternatively while fixing others. For the
fixed Gi and Li, we can obtain I by minimizing,

Î = argmin
I
‖I ⊗ k − B‖22 + ζ

∑
i

‖PiI − Gi‖22

+τ
∑
i

‖RiI − Li‖2F . (9)

By introducing another auxiliary variable z for I , the mini-
mization problem (9) can be equivalently written as follows,{
Î , ẑ
}
= argmin

I ,z
‖I ⊗ k − B‖22 + ζ

∑
I

‖Piz− Gi‖22

+τ
∑
i

‖Riz− Li‖2F + β ‖I − z‖
2
2 , (10)

where β is a positive penalty parameter. For (10), we alterna-
tively update the I and z by,

Î = argmin
I
‖I ⊗ k − B‖22 + β ‖I − z‖

2
2 , (11)

and

ẑ = argmin
z
ζ
∑
i

‖Piz− Gi‖22 + τ
∑
i

‖Riz− Li‖2F

+β ‖I − z‖22 . (12)

Both the (11) and (12) have a closed-form solution. In which I
can be solved directly through well-known FFT (Fast Fourier
Transform),

Î = F−1
F (k)F (B)+ βF (z)

F (k)F (k)+ β
, (13)

where F (·) and F−1 (·) denote the FFT and inverse FFT
(Fast Fourier Transform), and F (·) denotes the complex
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conjugate operator. Given I , we can easily obtain the closed-
form solution of (12), i.e.,

ẑ =

ζ
∑
i
PTi Gi + τ

∑
i
RTi Li + βI

ζ
∑
i
PTi Pi + τ

∑
i
RTi Ri + β

. (14)

For a fixed I , the subproblems with respect toGi and Li can
be updated separately by minimizing the following function:

Ĝi = argmin
Gi
ζ ‖PiI − Gi‖22 + µλi ‖σ (Gi)‖

γi , (15)

and

L̂i = argmin
Li
τ ‖RiI − Li‖2F + ρ ‖Li‖ω,∗ . (16)

Note that (15) is a non-convex lγ -norm minimization prob-
lem. The solution of Gi can be derived from the generalized
soft-thresholding (GST) algorithm according to [41], i.e.,

Ĝi = TGST
γ i

(PiI ;
λi

ζ
)

=


0, if |PiI | ≤ τGST

γ i
(
λi

ζ
))

sgn(PiI )SGST
γ i

(|PiI | ;
λi

ζ
)), if |PiI | > τGST

γ i
(
λi

ζ
))

(17)

where SGST
γ i

(|PiI | ; λi
/
ζ ) can be obtained by theo-

rem 1 in [41]. Let λ = λi
/
ζ , the thresholding value τGST

γ i
(λ)

is

τGST
γ i

(λ) = (2λ(1− γ i))
1

2−γ i + λγ i(2λ(1− γ i))
γ i−1
2−γ i . (18)

As for (16), apparently, it is a low-rank matrix approxima-
tion problem which has a closed-form solution, and can be
optimized by the WNNM method in [38].

B. ESTIMATE BLUR KERNEL K
With I known, estimating k becomes a least squares problem.
We solve the blur kernel k by adopting the fast deblurring
method from [23] in gradient domain. Thus, equation (7) can
be modified as

k̂ = argmin
k
‖∇I ⊗ k −∇B‖22 + η ‖k‖

2
2 . (19)

Then, the closed-form solution of k can be solved by FFT
method,

k̂ = F−1(
F (∇I )F (∇B)

F (∇I )F (∇B)+ η
). (20)

Finally, k can be obtained by the inverse transform. After
that, we regularize k to ensure it satisfies the constraints that
elements of k are nonnegative and the sum of all elements is
equal to 1. Similar to the state-of-the-art methods [12], [40],
we use the coarse-to-fine strategy with an image pyramid for
kernel estimation. The main steps of our deblurring algorithm
are shown in Algorithm 1.

C. FINAL LATENT IMAGE ESTIMATION
Once the blur kernel k is obtained, it will be transformed
into a non-blind deconvolution problem. A number of non-
blind deconvolution methods can be used to restore the
final sharp result. In this paper, we employ the non-blind
deblurring algorithm from [15] to recover the final latent
image.

Algorithm 1 Our Deblurring Algorithm
Input: Blurry image B
generate the initial blur kernel k .
for j = 1, 2, . . . , Iter do
I ← B, ζ ← 2µ.

Constructing non-local matrix {Ii}ni=1 from an
initial I : partitioning the non-local similar patches
into clusters via k-NN;
Conducting parameter estimation for each cluster.
for i = 1, 2, . . . , n do
solve Gi by minimizing (15)
solve Li by minimizing (16).

end for
repeat

solve z by minimizing (12).
solve I by minimizing (11).
ζ ← 2ζ .

until ζ > ζmax .
solve the blur kernel k by minimizing (19).
µ← 0.9µ, τ ←0.9τ .

end for
Output: Intermediate latent image I and blur kernel k .

V. EXTENSION TO NON-UNIFORM DEBLURRING
Our model can be directly extended to non-uniform deblur-
ring. Previous studies have confirmed that images, which
caused by camera shake, are mostly non-uniform blurry.
Based on the geometric model of camera motion [33],
[36], a non-uniform blurry image can be represented
as a mixture of a set of projectively transformations
of I:

B =
∑
t

kthtI+ n, (21)

where B, I and n denote blurry image, sharp image and
possible noise in vector form, respectively; t is the index of
camera trajectory, and kt serves as the corresponding weight
of the t-th camera pose; ht denotes a transformation matrix
which applies the t-th camera motion to the sharp image I.
According to [44], equation (21) can be reconstructed as

B = HI+ n = Ak+ n, (22)

where H =
∑

t ktht , A = [H1I, H2I, . . . , HtI] and k =
[k1, k1, . . . , kt ]T. Based on (22), our non-uniform deblurring
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problem is achieved by alternatively minimizing:

Î = argmin
I
‖HI− B‖22 + µ

∑
i

λi ‖σ (Ii)‖
γ i

+

∑
i

(
τ ‖RiI− Li‖2F + ρ ‖Li‖ω,∗

)
, (23)

and

k̂ = argmin
k
‖Ak− B‖22 + η ‖k‖

2
2 . (24)

Similar to the strategies of optimizing uniform deblurring
case, we introduce an auxiliary variable Gi and rewrite (23)
as

Î = argmin
I
‖HI− B‖22 + ζ

∑
i

‖PiI−Gi‖
2
2

+µ
∑
i

λi ‖σ (Gi)‖
γi+

∑
i

(
τ ‖RiI−Li‖2F+ρ ‖Li‖ω,∗

)
,

(25)

where Gi and Li is the corresponding vector forms of Gi and
Li, respectively. Similar to (7), the optimization problem (25)
can be solved by alternatively solving I, G and L. We use
the same approach in (15) and (16) to optimize Gi and Li
by fixing I. As for (24), the evolutionary process of the blur
kernel is similar to the uniform deblurring case.

VI. EXPERIMENTAL RESULTS
In this section, we evaluate the proposed method on both
synthetic and real blurred images and compare it to existing
image deblurring algorithms. All the experiments are imple-
mented with MATLAB. In all experiments, we empirically
set µ = 0.005, τ = 0.01, ρ = 0.01, η = 2, β = 0.025,
ζmax = 2, and the number of iterations Iter= 5. The adaptive
parameter estimation approach described in [35] is employed
to estimate λ and γ . To give an assessment of the restored
image quality, the Peak-Signal-to-Noise Ratios (PSNR) and
the cumulative distributions of error ratio are used as the
performance evaluation on kernel estimations and deblurred
results.

A. EFFECTIVENESS OF PROPOSED PRIOR
As described in Sec. 3, our model relies on two regular-
ized terms including heavy-tailed constraints of non-local
singular values and low-rank constraints of non-local sim-
ilar patches. Compared with the low-rank constraint term,
the role of the heavy-tailed constraint of non-local singular
values seems ambiguous. To better illustrate the effectiveness
of each term, we separately remove the heavy-tailed con-
straint and low-rank constraint in the proposed method for
comparisons. Fig. 2 shows the intermediate kernel estimating
results of an image from kernel updating process which in
the case of only using low-rank constraint and the case of
only using heavy-tailed constraint and proposed method. As
shown in Figs. 2(e)–(g), heavy-tailed constraint and low-
rank constraint both facilitate kernel estimation. Especially,
the proposed method is favorable to generate more reliable

FIGURE 2. Comparisons of intermediate kernel estimating results and
final deblurred results on an image. (a) is the blurry input. (b) and (c) are
the deblurred results by using heavy-tailed constraint and using low-rank
constraint, respectively. (d) is the deblurred result by our method.
(e), (f) and (g) are the intermediate kernel results by using heavy-tailed
constraint, low-rank constraint and our method, respectively. With our
method, estimated kernel is more accurate and the final recovered image
contains fewer artifacts.

kernels. Fig. 2(b)–(d) shows the visual comparisons of final
recovered images. As can be seen, the use of our method
produces a clearer deblurred image, demonstrating the fact
that the proposed method is valid by integrating constraints
with low-rank property and heavy-tailed property.

B. EVALUATIONS ON SYNTHETIC DATASETS
To better demonstrate the effectiveness of our proposed
method, we evaluate the proposed algorithm on two main-
stream benchmark datasets [3], [42].

We first test on the dataset provided by Levin et al. [3],
which contains 32 images from 4 original images with 8 uni-
form blur kernels. Direct calculation of PSNR may result
in inaccurate results due to the relative conversion between
ground-truth and deconvolution result. Therefore, error ratio
is commonly used as performance evaluation for this dataset,
which is proposed in [3], and it is defined as

R =

∥∥Ie − Ig∥∥22∥∥Ik − Ig∥∥22 , (26)

where Ie is the deblurred image with the estimated kernel, Ik
is the deblurred image by with the ground-truth kernel, and Ig
is the ground-truth clear image. The smallerR is, the better the
reconstruction. The percentage of the results with error ratios
below a threshold is defined as the success rate. As Fig. 3(a)
shows, our proposed method performs competitively against
other deblurringmethods [1], [7], [12], [13], [15], [20] on this
benchmark dataset [3]. Fig. 4 shows the deblurring results on
two example images from this dataset, our method provides
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TABLE 1. Comparison of PSNR (dB) and MSSIM values corresponding to the deblurring results in Fig. 5.

FIGURE 3. Quantitative evaluations on the benchmark datasets.
(a) Levin et al. [3]. (b) Sun et al. [42].

the more reliable blur kernels with less noise. This is mainly
because our prior can remove unfavorable details based on
the low-rank attribute of non-local similar patches, which can
better retain reliable information for kernel estimation.

Next, we evaluate our algorithm on the benchmark dataset
by Sun et al. [42], which consists of 640 images generated
by 80 high-resolution natural images of diverse scenes and 8
blur kernels from [3]. Six other state-of-the-art methods [4],
[7], [12], [13], [20], [42] are choose for comparisons. Quan-
titative evaluations in terms of cumulative error ratio are
shown in Fig. 3 (b). Note that the proposed method achieves
favorably preformation against other approaches.

Visual comparisons of deblurring results obtained by the
proposed algorithm and the state-of-the-art methods [4], [7],
[12], [13], [20], [42] are shown in Fig. 5. The deblurred
images by [4] and [7] suffer severe visual artifacts, and the
estimated kernels are noisy. Although the deblurring methods

by [13] [42] perform well on kernel estimation, they also
generate some artifacts or encounter a degree of blur on the
final deblurred images. In contrast, our method provides a
reliable kernel and the recovered image is clearer with fewer
artifacts. For a better comparison, Table 1 also shows the
quantitative results of PSNR and the mean structural simi-
larity index (MSSIM) corresponding to the deblurring results
in Fig. 5, from which we can see that our method yields the
highest PSNR and MSSIM values.

C. EVALUATIONS ON REAL IMAGES
We further evaluate our method on real dataset of
Köhler et al. [43], which contains 12 space-varying blur
kernels and 4 images. The PSNR is used to evaluate the per-
formance. The result of each deblurred image was compared
to 199 clear images captured along the camera motion trajec-
tory, and the highest PSNR values were calculated. As shown
in Fig. 6, the average PSNR value of the restored images by
our method is higher than others. A visual comparison of
an example with severe motion blur is shown in Fig. 7. The
deblurred results of [7], [22] still contain severe motion blur,
and the methods [21], [36] cannot restore visually acceptable
images well, and the deblurring image of [2] contain ringing
artifacts. Although the deblurring method [16] performs
well, the dark pixels are too abrupt due to the dark channel
prior. In contrast, our method generates more visual pleasing
images. Table 2 shows that our method achieves the highest
PSNR and MSSIM values in the deblurring results of Fig. 7.

FIGURE 4. Two examples on the synthetic blurred images from [3]. Our method generates better blur kernels compared to other
methods.
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TABLE 2. Comparison of PSNR (dB) and MSSIM values corresponding to the deblurring results in Fig. 7.

FIGURE 5. Deblurring results on an image from the dataset by Sun et al. [42]. Our recovered image has less ringing artifacts.

FIGURE 6. Quantitative comparison on Köhler dataset [43]. Our method
overall outperform the compared methods.

In addition, we also use the real blurry images from [21]
to test our method against two LRMA-based methods [17],
[34]. Fig. 8 shows the deblurring results. As can be seen,
the method [17] performs well on kernel estimation, but the
deblurred results still contain some artifacts. Our method
performs comparably to themethod [34], which demonstrates
the effectiveness of the proposed algorithm.

Fig. 9 shows the deblurred results on a real face image
which contains few edges or texture. Compared with the
state-of-the-art methods [7], [12], [17], [34], our algorithm
generates the visually better result with sharp characters, and
makes the edges of the clothes clearer and the face smoother.

The implementation by Xu et al. [12] gets a poor deblurring
result. The deblurred results by [7], [17], [34] contain varying
degrees of artifacts.

D. NON-UNIFORM DEBLURRING
We also conduct experiments on two non-uniformly blurred
examples, and compare the results with existing non-uniform
methods [12], [16], [21], [29], [36]. As can be seen in Fig. 10
and Fig. 11, both of the compared methods perform well,
but the regions inside green boxes are still a bit blurred.
In contrast, the proposed method is able to remove blur and
recover comparable and even better images with sharp edges.

E. ROBUSTNESS TO GAUSSIAN NOISE
Noise has a negative impact on the quality of blind image
deblurring. In order to evaluate the robustness of our method
to blurred image with noise, we manually blur an image with
motion filter and add Gaussian noise with the mean value
of 0 and the variance from 1 to 10 to an image. The deblurred
results under different noise levels are shown in Fig. 12. Our
algorithm performs well in the case of weak Gaussian noise,
indicating that our method is robust to weak noise. This is
mainly due to the robustness of non-local similar patches to
weak noise.When the noise level reaches above 4, ourmethod
restores poor visual results and the estimated blur kernel is
noisy. Recently, image denoising has been studied in depth as
an independent branch. Separating the process of denoising
and deblurring is beneficial to obtain better recovery results.
In future work, we will consider developing the blind method
that joint denoising and deblurring.
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FIGURE 7. Deblurring results on an image from the dataset by Köhler et al. [43]. Our method produces more visual pleasing result.

FIGURE 8. Visual comparison of two example images from [21]. (a) Blurry images. (b) Dong et al. [17]. (c) Ren et al. [34]. (d) Our
results. Our method performs comparably, which demonstrates the effectiveness of the proposed algorithm.

FIGURE 9. Deblurred results on a real face image. The proposed method generates visually comparable result.

F. ANALYSIS OF COMPUTATIONAL COMPLEXITY
The computational complexity for iteration at each level
mainly involves: 1) Searching similar patches via k-NN
within a local window of size W × W , while computational

complexity of this step is O(NP(W 2
+ logW 2)), where N

is the number of formed cluster by similar patches, and
P is the number of similar patches. 2) The complexity of
computing Gi and Li is O(NP2h2), where h is the patch
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FIGURE 10. Deblurring results on a non-uniform example with state-of-the-art non-uniform deblurring methods. Our method
generates comparable results (best viewed on high-resolution display with zoom-in).

FIGURE 11. Another non-uniform example with state-of-the-art non-uniform deblurring methods (best viewed on high-resolution
display with zoom-in).

size. Hence, the overall computational complexity of our
method is O(NP(W 2

+ logW 2)+NP2h2). The other steps of
Algorithm 1, such as computing z and I , can be accelerated by
FFTs and inverse FFTs. Compared to the other methods [16]
and [40], which have the computational complexityO(M ) and
O(h2M ) respectively, where M is the number of pixels, the
proposed algorithm needs to search for similar patches and
perform SVD operation, resulting in higher processing cost.

We also tested the running time of the iterative optimization
process on blurred image with different sizes. Table 3 shows
the time comparison of our method and other competing
methods [7], [16]–[18], [34], on a computer with Intel
Core i9-9940 CPU at 3.30 GHz. Our method is relatively
time-consuming compared to methods of [7], [16], and [18].
However, compared to the methods [17] and [34], which also
based on the low-rank prior, our method consumes much less
time.

TABLE 3. Comparison of running time (in second). All methods are
implemented in MATLAB.

G. PARAMETER ANALYSIS
There are four main regularized weight parameters µ, τ ,
ρ, η in the model. We evaluate the impact of these weight
parameter settings on the performance of our algorithm
using dataset [3], and use kernel similarity criterion to
quantitatively evaluate the accuracy of estimated kernel by
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FIGURE 12. Deblurred results under gradual noise level. (a) Ground
truth. (b) Gaussian noise variance is 1, PSNR: 28.11 dB. (c) Gaussian noise
variance is 2, PSNR: 27.98 dB. (d) Gaussian noise variance is 3, PSNR:
27.18 dB. (e) Gaussian noise variance is 4, PSNR: 26.73 dB. (f) Gaussian
noise variance is 5, PSNR: 25.06 dB.

FIGURE 13. Sensitivity analysis of the main parameters µ, τ , ρ, and η in
the proposed algorithm.

changing one parameter while fixing the other three param-
eters. As shown in Fig. 13(a)–(d), it has little effect on the
algorithm when the regularization parameter changes within
a reasonable range.

H. CONVERGENCE PROPERTY
As it includes several auxiliary variables during iterative
optimization process due to the non-linear and non-convex
of the proposed energy function, we analyze convergence
properties of our method using images from the dataset of
Levin et al. [3]. Fig. 14 (a) and (b) show the results in terms
of energy referring to (5) and average kernel similarity [46]
over iterations. Note that the proposedmethod converges well

FIGURE 14. Convergence analysis of the proposed method. We evaluate
the energy value referring to (5), and average kernel similarity over
iterations.

FIGURE 15. Limitation of the proposed model. Our method fails to
restore the clear image due to the variety of rich textures.

within 50 iterations, which demonstrates the effectiveness of
our optimization scheme.

I. LIMITATIONS
Although the proposed method performs well on a variety of
datasets, it is less effective when a blurred image contains
rich textures. In such cases, the property of non-local self-
similarity does not hold due to the lack of non-local similar
patches in the location of rich details. Fig. 15 shows a failure
example of our method. As shown in Fig. 15 (b), the proposed
method fails to restore the clear image and the restored image
contains obvious ringing artifacts.

VII. CONCLUSION
In this work, we propose a novel method for blind image
deblurring. The proposed method employs both heavy-tailed
distribution of non-local singular values and low-rank char-
acteristics of non-local similar patches. Heavy-tailed distri-
bution is used to enforce intrinsic structure information while
the low-rank prior is used to exploit the spatial sparsity.

To recover latent images, we develop an effective opti-
mization scheme based on a half-quadratic splitting method.
We also extend the method to handle non-uniform case. Eval-
uations on both synthetic and real images indicate that our
method is effective in handling the blurred images and can
produce comparable results, both visually and quantitatively.

REFERENCES
[1] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman,

‘‘Removing camera shake from a single photograph,’’ ACM Trans. Graph.,
vol. 25, no. 3, pp. 787–794, Jul. 2006.

VOLUME 8, 2020 136927



X. Chen et al.: Hyper-Laplacian Regularized Non-Local Low-Rank Prior for Blind Image Deblurring

[2] Q. Shan, J. Jia, and A. Agarwala, ‘‘High-quality motion deblurring from a
single image,’’ ACM Trans. Graph., vol. 27, no. 3, p. 73, Aug. 2008.

[3] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, ‘‘Understanding and
evaluating blind deconvolution algorithms,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 1964–1971.

[4] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, ‘‘Efficient marginal
likelihood optimization in blind deconvolution,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2011, pp. 2657–2664.

[5] S. D. Babacan, R. Molina, and A. K. Katsaggelos, ‘‘Variational Bayesian
blind deconvolution using a total variation prior,’’ IEEE Trans. Image
Process., vol. 18, no. 1, pp. 12–26, Jan. 2009.

[6] D. Perrone and P. Favaro, ‘‘A clearer picture of total variation blind
deconvolution,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 6,
pp. 1041–1055, Jun. 2016.

[7] D. Krishnan, T. Tay, and R. Fergus, ‘‘Blind deconvolution using a nor-
malized sparsity measure,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2011, pp. 233–240.

[8] Y. Bai, G. Cheung, X. Liu, and W. Gao, ‘‘Graph-based blind image
deblurring from a single photograph,’’ IEEETrans. Image Process., vol. 28,
no. 3, pp. 1404–1418, Mar. 2019.

[9] Z. Dou, K. Gao, X. Zhang, and H. Wang, ‘‘Fast blind image deblur-
ring using smoothing-enhancing regularizer,’’ IEEE Access, vol. 7,
pp. 90904–90915, 2019.

[10] J.-F. Cai, H. Ji, C. Liu, and Z. Shen, ‘‘Framelet-based blind motion deblur-
ring from a single image,’’ IEEE Trans. Image Process., vol. 21, no. 2,
pp. 562–572, Feb. 2012.

[11] J.-F. Cai, E. J. Candès, and Z. Shen, ‘‘A singular value threshold-
ing algorithm for matrix completion,’’ SIAM J. Optim., vol. 20, no. 4,
pp. 1956–1982, Jan. 2010.

[12] L. Xu, S. Zheng, and J. Jia, ‘‘Unnatural l0 sparse representation for natural
image deblurring,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2013, pp. 1107–1114.

[13] T. Michaeli and M. Irani, ‘‘Blind deblurring using internal patch recur-
rence,’’ in Proc. Eur. Conf. Comput. Vis., Zürich, Switzerland, Jun. 2014,
pp. 783–798.

[14] J. Pan and Z. Su, ‘‘Fast l0-regularized kernel estimation for robust motion
deblurring,’’ IEEE Signal Process. Lett., vol. 20, no. 9, pp. 841–844,
Sep. 2013.

[15] J. Pan, Z. Hu, Z. Su, and M.-H. Yang, ‘‘L0-regularized intensity and
gradient prior for deblurring text images and beyond,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 2, pp. 342–355, Feb. 2017.

[16] J. Pan, D. Sun, H. Pfister, and M.-H. Yang, ‘‘Blind image deblurring using
dark channel prior,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 1628–1636.

[17] J. Dong, J. Pan, and Z. Su, ‘‘Blur kernel estimation via salient edges and low
rank prior for blind image deblurring,’’ Signal Process., Image Commun.,
vol. 58, pp. 134–145, Oct. 2017.

[18] Y. Yan, W. Ren, Y. Guo, R. Wang, and X. Cao, ‘‘Image deblurring via
extreme channels prior,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Jul. 2017, pp. 4003–4011.

[19] N. Joshi, R. Szeliski, and D. J. Kriegman, ‘‘PSF estimation using sharp
edge prediction,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2008, pp. 1–8.

[20] J. Pan, R. Liu, Z. Su, and X. Gu, ‘‘Kernel estimation from salient structure
for robust motion deblurring,’’ Signal Process., Image Commun., vol. 28,
no. 9, pp. 1156–1170, Oct. 2013.

[21] D. Gong, M. Tan, Y. Zhang, A. Van Den Hengel, and Q. Shi, ‘‘Blind
image deconvolution by automatic gradient activation,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 1827–1836.

[22] S. Cho and S. Lee, ‘‘Fast motion deblurring,’’ ACM Trans. Graph., vol. 28,
no. 5, p. 145, Dec. 2009.

[23] L. Xu and J. Jia, ‘‘Two-phase kernel estimation for robust motion deblur-
ring,’’ in Proc. Eur. Conf. Comput. Vis., Sep. 2010, pp. 157–170.

[24] L. Yang and H. Ji, ‘‘A variational EM framework with adaptive edge
selection for blind motion deblurring,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 10159–10168.

[25] L. Li, J. Pan, W.-S. Lai, C. Gao, N. Sang, and M.-H. Yang, ‘‘Blind image
deblurring via deep discriminative priors,’’ Int. J. Comput. Vis., vol. 127,
no. 8, pp. 1025–1043, Jan. 2019.

[26] C. J. Schuler, M. Hirsch, S. Harmeling, and B. Scholkopf, ‘‘Learning
to deblur,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 7,
pp. 1439–1451, Jul. 2016.

[27] K.-H. Liu, C.-H. Yeh, J.-W. Chung, and C.-Y. Chang, ‘‘A motion deblur
method based on multi-scale high frequency residual image learning,’’
IEEE Access, vol. 8, pp. 66025–66036, 2020.

[28] X. Xu, J. Pan, Y.-J. Zhang, and M.-H. Yang, ‘‘Motion blur kernel esti-
mation via deep learning,’’ IEEE Trans. Image Process., vol. 27, no. 1,
pp. 194–205, Jan. 2018.

[29] Y. Liu, W. Dong, D. Gong, L. Zhang, and Q. Shi, ‘‘Deblurring natural
image using super-Gaussian fields,’’ in Proc. 15th Eur. Conf. Comput. Vis.,
Sep. 2018, pp. 452–468.

[30] X. Cao, Y. Chen, Q. Zhao, D. Meng, Y. Wang, D. Wang, and Z. Xu, ‘‘Low-
rank matrix factorization under general mixture noise distributions,’’ in
Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1493–1501.

[31] W. Dong, G. Shi, and X. Li, ‘‘Nonlocal image restoration with bilateral
variance estimation: A low-rank approach,’’ IEEE Trans. Image Process.,
vol. 22, no. 2, pp. 700–711, Feb. 2013.

[32] L. Pan, R. Hartley, M. Liu, and Y. Dai, ‘‘Phase-only image based kernel
estimation for single image blind deblurring,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 6027–6036.

[33] Y.-W. Tai, P. Tan, and M. S. Brown, ‘‘Richardson-Lucy deblurring for
scenes under a projective motion path,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 8, pp. 1603–1618, Aug. 2011.

[34] W. Ren, X. Cao, J. Pan, X. Guo, W. Zuo, and M.-H. Yang, ‘‘Image
deblurring via enhanced low-rank prior,’’ IEEE Trans. Image Process.,
vol. 25, no. 7, pp. 3426–3437, Jul. 2016.

[35] S. Wang, L. Zhang, and Y. Liang, ‘‘Non-local spectral prior model
for low-level vision,’’ in Proc. 11th Asian Conf. Comput. Vis., 2012,
pp. 231–244.

[36] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce, ‘‘Non-uniform deblurring
for shaken images,’’ Int. J. Comput. Vis., vol. 98, no. 2, pp. 168–186,
Jun. 2012.

[37] S. Gu, L. Zhang,W. Zuo, and X. Feng, ‘‘Weighted nuclear normminimiza-
tion with application to image denoising,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2014, pp. 2862–2869.

[38] S. Gu, Q. Xie, D.Meng,W. Zuo, X. Feng, and L. Zhang, ‘‘Weighted nuclear
normminimization and its applications to low level vision,’’ Int. J. Comput.
Vis., vol. 121, no. 2, pp. 183–208, Jan. 2017.

[39] Y. Zhou and N. Komodakis, ‘‘A map-estimation framework for blind
deblurring using high-level edge priors,’’ in Proc. Eur. Conf. Comput. Vis.,
Jun. 2014, pp. 142–157.

[40] L. Chen, F. Fang, T. Wang, and G. Zhang, ‘‘Blind image deblurring with
local maximum gradient prior,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 1742–1750.

[41] W. Zuo, D. Meng, L. Zhang, X. Feng, and D. Zhang, ‘‘A generalized
iterated shrinkage algorithm for non-convex sparse coding,’’ in Proc. IEEE
Int. Conf. Comput. Vis., Dec. 2013, pp. 217–224.

[42] L. Sun, S. Cho, J. Wang, and J. Hays, ‘‘Edge-based blur kernel estimation
using patch priors,’’ in Proc. IEEE Int. Conf. Comput. Photogr. (ICCP),
Apr. 2013, pp. 1–8.

[43] R. Köhler, M. Hirsch, B. Mohler, B. Schölkopf, and S. Harmeling,
‘‘Recording and playback of camera shake: Benchmarking blind decon-
volution with a real-world database,’’ in Proc. Eur. Conf. Comput. Vis.,
Oct. 2012, pp. 27–40.

[44] L. Zhong, S. Cho, D. Metaxas, S. Paris, and J. Wang, ‘‘Handling noise
in single image deblurring using directional filters,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2013, pp. 612–619.

[45] N. Komodakis and N. Paragios, ‘‘MRF-based blind image deconvolution,’’
in Proc. Asian Conf. Comput. Vis., 2013, pp. 361–374.

[46] Z. Hu and M.-H. Yang, ‘‘Good regions to deblur,’’ in Proc. Eur. Conf.
Comput. Vis., Oct. 2012, pp. 59–72.

[47] T. Yue, S. Cho, J. Wang, and Q. Dai, ‘‘Hybrid image deblurring by fusing
edge and power spectrum information,’’ in Proc. Eur. Conf. Comput. Vis.,
Jun. 2014, pp. 79–93.

[48] P. Qiu, ‘‘A nonparametric procedure for blind image deblurring,’’ Comput.
Statist. Data Anal., vol. 52, no. 10, pp. 4828–4841, Jun. 2008.

[49] Y. Kang, P. S. Mukherjee, and P. Qiu, ‘‘Efficient blind image deblurring
using nonparametric regression and local pixel clustering,’’ Technometrics,
vol. 60, no. 4, pp. 522–531, Jun. 2018.

[50] Y. Tang, Y. Xue, Y. Chen, and L. Zhou, ‘‘Blind deblurring with sparse
representation via external patch priors,’’ Digit. Signal Process., vol. 78,
pp. 322–331, Jul. 2018.

[51] Z. Xu, H. Chen, and Z. Li, ‘‘Blind image deblurring using group sparse rep-
resentation,’’ Digit. Signal Process., vol. 102, Jul. 2020, Art. no. 102736.

136928 VOLUME 8, 2020



X. Chen et al.: Hyper-Laplacian Regularized Non-Local Low-Rank Prior for Blind Image Deblurring

[52] Z. Xu, H. Chen, and Z. Li, ‘‘Blind image deblurring via the weighted
schatten p-norm minimization prior,’’ Circuits, Syst., Signal Process.,
to be published, doi: 10.1007/s00034-020-01457-z.

[53] Y. Guo and H.Ma, ‘‘Image blind deblurring using an adaptive patch prior,’’
Tsinghua Sci. Technol., vol. 24, no. 2, pp. 238–248, Apr. 2019.

XIAOLE CHEN received the B.S. degree in elec-
tronic science and technology from the North Uni-
versity of China, Taiyuan, in 2016, where she
is currently pursuing the Ph.D. degree in instru-
ment science and technology. Her research inter-
ests include image processing, machine learning
(including deep learning), and its applications to
computer vision tasks.

RUIFENG YANG received the B.S., M.S., and
Ph.D. degrees in measurement technologies and
instruments from the North University of China,
Shanxi, in 1992, 1999, and 2005, respectively.
From 2010 to 2012, he has studied with the Post-
doctoral Center for Control Engineering, Beijing
University of Aeronautics and Astronautics. He is
currently a Professor with the School of Instrument
and Electronics, North University of China, and
the Director of the Automatic Test Equipment and

System Engineering Research Center of Shanxi Province. His research inter-
ests include equipment test and system integration, automated testing and
control, intelligent instruments, image processing, and machine vision.

CHENXIA GUO received the B.S. degree in
automation from the North University of China,
Taiyuan, in 2001, the M.S. degree in test measure-
ment technology and instrument, in 2006, and the
Ph.D. degree in instrument science and technology
from the North University of China, in 2014. She
is currently an Associate Professor with the School
of Instrument and Electronics, North University
of China. Her research interests include visual
measurement, automated testing and control, and

complex electromechanical system design and integration.

SHUANGCHAO GE received the B.S. degree in
electronic science and technology from Tianjin
University, Tianjin, in 2009, the M.S. degree in
solid geophysics from the Institute of China Seis-
mological Bureau Crustal Stress, Beijing, in 2012,
and the Ph.D. degree in earth exploration and infor-
mation technology from the China University of
Geosciences, Beijing, in 2016. Since 2016, she has
been a Lecturer with the Department of Instrument
and Electronics, North University of China. Her

current research interests include data acquisition and processing, automated
testing, and intelligent control.

ZHIHONG WU received the B.S. and M.S.
degrees in measurement and control technology
and equipment from the North University of
China, Taiyuan, in 2017 and 2020, respectively,
where he is currently pursuing the M.S. degree
in instrumentation engineering. His research inter-
ests include automated test and control technology,
vision-based control, and information fusion.

XIBIN LIU received the B.S. and M.S. degrees in
electronic science and technology from the North
University of China, Taiyuan, in 2014 and 2019,
respectively. His research interests include image
processing, and target recognition and tracking.

VOLUME 8, 2020 136929

http://dx.doi.org/10.1007/s00034-020-01457-z

