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ABSTRACT The Unequal Area Facility Layout Problem (UA-FLP) is a relevant optimization problem
related to industrial design, that deals with obtaining the most effective allocation of facilities, that make up
the rectangular manufacturing plant layout. The UA-FLP is known to be a hard optimization problem, where
meta-heuristic approaches are a good option to obtain competitive solutions. Many of these computational
approaches, however, usually fall into local optima, and suffer from lack of diversity in their population,
mainly due to the huge search spaces and hard fitness landscapes produced by the traditional representation
of UA-FLP. To solve these issues, in this paper we propose a novel hybrid meta-heuristic approach, which
combines a Coral Reefs Optimization algorithm (CRO) with a Variable Neighborhood Search (VNS) and
a new representation for the problem, called Relaxed Flexible Bay Structure (RFBS), which simplifies the
encoding and makes its fitness landscape more affordable. Thus, the use of VNS allows more intensive
exploitation of the searching space with an affordable computational cost, as well as the RFBS allows better
management of the free space into the plant layout. This combined strategy has been tested over a set of
UA-FLP instances of different sizes, which have been previously tackled in the literature with alternative
meta-heuristics. The tests results show very good performance in all cases.

INDEX TERMS Coral reefs optimization, meta-heuristics, relaxed flexible bay structure, unequal area
facility layout problem, variable neighborhood search.

I. INTRODUCTION
The Unequal Area Facility Layout Problem (UA-FLP), deals
with the arrangement of spaces, machinery, or any kind
of facilities in a limited area with known dimensions, and
complying with a set of requirements or constraints [1].
In general, the facilities layout planning objectives are the
minimization of materials handling costs, optimize the use
of labor, or improve workers’ safety, among others. Material
handling costs can account for 20% to 50% of a company
budget, so an efficient arrangement of departments can reduce
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production costs substantially [2], [3]. Moreover, other pos-
sible constraints could be: a pair of departments should be
near or adjacent to each other due to material handling; a
pair of departments need to be far from each other, due to
safety, health, or hygiene reasons, among others; a specific
department has to be in a specific position due to aesthetic,
production logic, federal regulations, etc. [4]. The general
problem of facility layout consists of allocating the facilities
within the available space in such a way that the material
handling costs are minimized as formulated in (1)

n∑
i=1

n∑
j=1,i 6=j

cij · fij · dij (1)
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where n is the number of facilities, cij is the per unit handling
cost between facility i and facility j, fij is the logistics quantity
between facility i and facility j, and dij is the distance between
facility i and j [5]. In some cases, cij · fij is expressed in a
simplified way as just fij [6].
The general problem of facility layout is known to be

NP-hard, so exact methods have extremly high computa-
tional costs when the problem size is large [7], and many
heuristic approaches have been proposed consequently [8].
Examples of exact methods are the quadratic assignment
problem, linear integer programming, mixed-integer pro-
gramming, graph-theoretic formulations [9], branch and
bound [10]–[13], cutting plane algorithms [14], and tabu
search [15], among others. In an attempt to obtain good
enough solutions without high computational cost, approx-
imated approaches appeared, such as improvement algo-
rithms. This kind of algorithms start with an initial solution
that is improved modifying the position of the facilities until
the solution cannot be improved anymore, ‘‘computerized
relative allocation of facilities technique’’: CRAFT [16];
and ‘‘computerized facility aided design’’: COFAD [17].
Other classes of approximated approaches are construction
algorithms. These algorithms build a solution by selecting
successively one facility after other and positioning them on
the empty space until all of them are placed. Examples of
them are ‘‘automated layout design program’’ (ALDEP) [18],
‘‘computerized relationship layout planning’’ (CORELAP)
[19]; and ‘‘programming layout analysis and evaluation tech-
nique’’ (PLANET) [20]. All these algorithms have an issue in
common: It is difficult to obtain optimal solutions due to only
one solution is proposed in each execution [21], so heuristic
and meta-heuristic methods with population of solutions took
place among the most popular approaches.

Among heuristic andmeta-heuristicmethods, genetic algo-
rithms have been frequently used to solve the UA-FLP
[22]–[25], as well as Simulated Annealing [26]–[30], Tabu
Search [15], [31]–[33], Ant Colony Optimization [34], [35],
Particle Swarm Optimization [36], [37], or Clonal Selection
[38]. Nevertheless, most of these methods have the problem
of getting stuck in local optima. To avoid it, the variable
neighborhood search (VNS) has been recently used. On the
contrary to other meta-heuristics, VNS explores increasingly
distant neighborhoods of the current solution and jumps to
a new one if there is an improvement, allowing a more
intensive exploration of the search space [39]. In this way,
it keeps favorable characteristics of the current solution and
obtain promising neighboring solutions. By allowing the use
of different neighborhood search methods, the VNS can eas-
ily escape local minima and move towards global optimum
[40]–[42]. In the last years, the use of new meta-heuristic
strategies has been raising. Specifically, the coral reef opti-
mization (CRO) algorithm has been successfully used in
different kind of problems as, for example, the optimal layout
of turbines in wind farms [43], wind speed prediction [44],
solar radiation prediction [45], prediction of the total energy
demand of a nation [46], optimal distribution of different

FIGURE 1. CRO and VNS algorithms hybridization.

services in mobile communications systems [47], maximiza-
tion of the network coverage [48]; minimization of the instal-
lation cost, andminimization of the electromagnetic pollution
caused by the installation of new base stations [49], image
thresholding [50], and wifi channel assignment [51], among
others. In this context, the CRO has been recently applied to
the UA-FLP successfully, improving most of the previously
known results by means of combining the CRO with island
evolution [52] and multiobjective interactive evolution [53].

A. SPECIFIC UA-FLP FORMULATION
The UA-FLP has the goal of finding the optimal positioning
of a set of n facilities in a surface associated with a production
plant area, in the way that one or more criteria are fulfilled
and optimized if possible. Some examples of these criteria
are material handling cost (MHC), adjacency requests and
distance or closeness requirements between facilities. Log-
ically, the sum of the facilities’ areas to place on the plant’s
surface cannot surpass the area of the plant determined by its
width and height (W × H ). This constraint is expressed in
Equation (2) where Ai is the area of the facility i, W is the
plant’s width and H its height.

n∑
i

Ai ≤ W × H (2)

Though several criteria can be used in order to optimize
a plant’s layout, this work is focused only in the material
handling cost (material flow) between facilities optimization
for solution evaluation, as in [6]. However, in a real world
context, the use of this criterion is not enough given that the
easier way to reduce material flow is putting all facilities next
to each other, ‘‘stacking’’ and stretching them in an unfeasible
way. Tate and Smith [6] proposed a way to integrate material
flow reduction and a penalization for solutions that have
those undesirable ‘‘stretched’’ facilities. Thus, it is needed for
each facility to have associated a shape constraint, let it be
maximum aspect ratio allowed α (see Equations (3) and (4))
or minimum side length (minSide), that determines when a
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facility is feasible or not. So, if a plant layout is composed of
facilities that do not fulfill their shape constraint, its fitness
value equals to the material flow value plus a penalty value
proportional to the number of unfeasible facilities. With all
this in mind, the objective function (fitness) for the UA-
FLP is expressed in Equation (5), where t corresponds to a
particular layout, n is the number of facilities to place on the
plant’s surface, fij corresponds to material flow between two
facilities i and j, dij the distance separating them (rectilinear
or euclidean), Dinf the number of unfeasible facilities, k
a penalty parameter that controls the penalization’s gravity
(set to 3, following the recommendation in [6]), Vfeas the
minimum fitness value from all non-penalized solutions and
Vall best fitness value found overall.

Ai = wi × hi (3)

αi =
max(wi, hi)
min(wi, hi)

(4)

Vt =
n∑
i

n∑
j

fijdij + (Dinf )k (Vfeas − Vall) (5)

B. CONTRIBUTIONS OF THIS WORK
In this paper, a combination of the CRO with VNS (CRO-
VNS ensemble) is proposed, in order to improve the solu-
tions’ searching process. The idea of the proposed algorithm
is to merge different local and global search procedures,
to obtain a final powerful multi-method ensemble approach,
able to obtain excellent performance in the UA-FLP. The con-
cept of ensemble in optimization refers to the use of a combi-
nation of algorithms, search strategies, operators or parameter
values to tackle a set of optimization problems [54]. The idea
is that the ensemble strategy can obtain better results than
a single strategy for the same problems, specifically, better
than the ensemble composites working on their own, when
applied to the optimization problem. Our proposed multi-
method ensemble tries to exploit the possibilities of finding
better solutions by means of the VNS, which explores the
neighborhood of the candidate solutions, before passing them
to the next generation of the global search procedure (the
CRO in this case). The CRO applies then different other
searching mechanisms (adapted to the UA-FLP), to generate
new solutions, in which the VNS can be further applied.

C. STRUCTURE OF THE PAPER
The rest of the paper is structured as follows: Section II gives
details on the proposed approach, including the hybridiza-
tion of the VNS and CRO-SL and the new representation
for the problem introduced in this paper (Relaxed Flexible
Bay Structure (RFBS)). Section III shows the computational
experiments carried out and the results obtained in a number
of UA-FLP instances of different size. Comparison with a
good number of alternative approaches for this problem is
carried out, in order to show the effectiveness of the proposed
hybrid approach for this problem. Finally, Section IV closes

the paper by giving some conclusions and final remarks on
the research carried out.

II. PROPOSED APPROACH
In this section we first detail the proposed relaxed FBS encod-
ing for the UA-FLPs use in this paper. We also describe the
Variable Neighborhood Search Algorithm (VNS) along with
the neighborhood structures considered and the final CRO-
VNS algorithm, that hybridizes the Coral Reef Optimization
algorithm with the VNS.

A. FACILITY LAYOUT ENCODING
To represent a given solution for the UA-FLP (phenotype),
a particular encoding (genotype) called Relaxed Flexible Bay
Structure is used. This encoding is composed of two parts:

1) Facility ordering: A permutation vector of the total
number of facilities present in the plant.

2) Bay cuts: A boolean vector that indicates what facilities
are the last per bay.

The relaxed interpretation of the genotype described by
both vectors has the objective of making a better use of
the available space (if existent), improving material handling
cost (MHC or simply, material flow). Following Kulturel-
Konak’s proposal [55], each facility i has a maximum and
minimum acceptable side length that is defined by their shape
constraint. Equations (6) and (7) correspond to the case of
a aspect ratio constrained facility, whereas Equations (8)
and (9) refer to the minimum side restriction.

lmini =

√
Ai
αi

(6)

lmaxi =

√
Ai × αi (7)

lmini = minSidei (8)

lmaxi =
Ai

minSidei
(9)

This way, a bay’s widthwj is adjusted in the following case-
scenarios:

1) Bay width is narrower than the maximum of the mini-
mum side lengths of the facilities belonging to the bay
(wj < max{lmini } ≤ min{lmini } ∀i ∈ Dj). In this case,
the adjustment to perform will increase the bay width,
up to the maximum of the minimum side lengths, lead-
ing to the existence of empty space at the top and the
bottom of the bay (the space is equally split).

2) Bay width is larger than the maximum side length
of one or more facilities in the bay (max{lmini } ≤

min{lmini } < wj ∀i ∈ Dj). The adjustment to perform
in this case will consist of two parts: first, the dimen-
sions of those facilities whose maximum side length is
less than the bay width are adjusted to their maximum
permitted (lmaxi × lmini ) and the new bay width is com-
puted by excluding the previously mentioned facilities.
As a result, empty spaces in the bay will be placed
equally on both sides of the excluded facilities.
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FIGURE 2. Example of FBS and RFBS encodings for an UA-FLP solution;
(a) FBS; (b) Relaxed FBS (b) for a certain chromosome.

Fig. 2 shows an example comparison between the classical
FBS representation of a plant and its relaxed counterpart,
when empty space is available and they share the same geno-
type, which is also shown.

B. VARIABLE NEIGHBORHOOD SEARCH
Variable Neighborhood Search (VNS) is an advanced search
and optimization method based on the systematic change
of neighborhood structures, with the goal of escaping local
optima and, therefore, exploring more efficiently the search
space [56]. Consider an initial solution x and an environment
N (x) which is composed of all the neighbor solutions of x,
that is, those solutions that can be obtained from a single
transform operation applied to x. The environment of a solu-
tion is completely determined by the operator chosen to alter
it and the use of a single operator is one of the factors that
leads to stagnancy in local optima. VNS proposes the usage
of several neighborhood operators, so that when a solution
cannot be outperformed by one of the neighbors produced by
one operator, it is changed so a new neighborhood is gener-
ated and the search continues in the new context. If none of the
new neighbors is capable of improving the initial solution the
context would be changed again with another operator, until
no one is left. The process is shown in Algorithm 1. There are
essentially two criteria to put an end to the exploration of a
solution’s environment:

1) First improvement: The exploration concludes the
moment a solution better that the one of departure is
found, regardless of the magnitude of the improvement.

2) Best improvement: The best neighbor has to be found
in the neighborhood set, so all solutions contained in it
have to be evaluated.

1) NEIGHBORHOOD STRUCTURES
Given the fragmented encoding of the UA-FLP solutions,
a single neighborhood may not be effective for exploring the
search space. Thus, three neighborhood structures are defined
(see Fig. 3 for graphic examples):

1) Facility Order Swap (FOS): The neighbors generated
by this operator are created by means of an exchange of
the values of two positions in the facility order vector.

Algorithm 1 VNS Algorithm
Input Initial solution, Neighborhood operators
Output Refined solution
1: procedure vns(init_sol, neigh_ops) F Variable

Neighborhood Search algorithm
2: curr_sol ← init_sol
3: op_idx ← 0
4: repeat
5: curr_op← neigh_ops[op_idx] F Current

neighborhood operator
6: repeat
7: candidate_set ← Generate neighbors of
curr_sol using curr_op

8: final_sol ← exploration(candidate_set) F

First/Best improvement
9: if final_sol is better than curr_sol then
10: curr_sol ← final_sol
11: end if
12: until curr_sol is not improved
13: op_idx ← op_idx + 1 F Use the next

neighborhood operator
14: until all neigh_ops have been used
15: return curr_sol
16: end procedure

FIGURE 3. Neighborhood operator examples for the UA-FLP. (a) Initial.
(b) FOS. (c) BSWP. (d) BInv.

2) Bay Swap (BWSP): Changes what facilities mark the
end of a bay, without changing the number of bays from
the initial solution.

3) Bit Inversion (BInv): Inverts the boolean value of the
bay cuts vector.

C. THE CORAL REEF OPTIMIZATION ALGORITHM
ENHANCED WITH VNS
This section describes the proposed hybrid algorithm for
solving the UA-FLP. The basic procedure is the same as in
the CRO algorithm [57], [58], but we introduce a larvae opti-
mization with the search method proposed (based in VNS)
that will be applied when a larva gets to settle on the reef.
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Thus, we hybridize a global search optimization approach
(CRO), with a powerful local search heuristic VNS, to obtain
a complete hybrid approach able to obtain a high performance
in the UA-FLP.

Let 3 be a model representing a rectangular-shaped reef,
similar to a two-dimensional matrix of size M × N . Each
position 3(i, j) is able to hold a coral Xk (i, j) (potential
solution to the UA-FLP) or stay empty, where i and j are
the coordinates that point to the position of the coral Xk in
the reef. The evolutionary process followed by the CRO is
described below:

1) Initialization: An initial population of corals of size
ρ0× (M ×N ) is randomly generated and each solution
is placed in the reef choosing any free spot available.
Usually the positioningmethod is based in randomness.

2) Evolution: Upon reef population, the evolution starts.
Five phases take place in the process:
a) Sexual reproduction: This phase leads to the

creation of a new set of corals (larvae set) that will
compete for a space in the reef in the next step.
The way the larvae are created is by combining
corals settled in the reef at the moment. Two
different forms of combination are contemplated:
external sexual reproduction and internal sexual
reproduction. Therefore a percentage Fb of the
reef members is selected to pair and perform the
external reproduction (also known as Broadcast
spawning) and the rest (100 − Fb)% will repro-
duce in terms of internal reproduction (brooding).
The reproduction processes are described below:
i) Broadcast spawning: Corals are coupled ran-

domly without replacement so a given coral
can be a parent just once per generation. Each
couple produces a larva (child) and release
it to the water, building the larvae set previ-
ously presented. The crossover operator used
in this work is PMX [59] for facility order and
2-point crossover for bay cuts.

ii) Brooding: Equivalent to a random mutation
in classic evolutionary algorithms. Again, all
the produced larvae are released to the water.
The mutation operators used for an UA-FLP
individual are TWORS [60] for facility order
vector and 1-bit-swap [60] for bay cuts.

b) Larvae setting: In this step, all the larvae released
to the water during the sexual reproduction phase
try to settle in the reef up to three times. After that,
if it has not been able to settle, it gets discarded
(eaten by fish). Reef coordinates (i, j) are chosen
randomly and the larva will settle in that spot if
one of these two conditions is fulfilled:
i) The spot is empty.
ii) The larva has a better health function (fitness)

that the coral that currently occupies the spot.
In case a larva finds a suitable spot to stay,
the VNS algorithm comes into play, since this

version of the algorithm ensures the best possible
version of a coral occupies the reef. Once it is
decided that a larvawill occupy a certain spot, that
larva goes through the process of ‘‘refinement’’
provided by the VNS algorithm described in pre-
vious subsections.

c) Asexual reproduction: In this phase (also named
budding) the top Fa% reef members duplicate
themselves and, after a small random mutation,
try to settle in the reef as in the previous step.
Unlike the previous phase, these larvae are not
improved if they find a suitable spot.

d) Depredation: Lastly, the Fd%worst corals in the
reef are considered to be predated (erased from
the reef) with a low probability (Pd ).

Algorithm 2 shows an outline of the whole process with a
pseudocode.

Algorithm 2 CRO-VNS Algorithm
Input Algorithm’s control parameters
Output Feasible solution with best fitness
1: procedure cro-vns(n,m, ρ0, fb, fa, fd , pd ) F Coral Reef

Optimization algorithm
2: initialize reef with size n×m and occupation rate ρ0
3: repeat
4: reproduce corals fraction fb by broadcast spawn-

ing
5: reproduce corals fraction 1− fb by brooding
6: larvae evaluation
7: larvae setting � VNS
8: reproduce best corals fraction fa by asexual

reproduction
9: depredation of fd worst reef corals with pd prob-

ability
10: until stop condition
11: return best feasible solution
12: end procedure

III. COMPUTATIONAL EXPERIMENTS AND RESULTS
A. DESCRIPTION OF BENCHMARK UA-FLPs
This subsection describes the most relevant information
and properties of the UA-FLP benchmarks selected to test
the proposed CRO-VNS approach. A total of 21 UA-FLP
instances have been employed for validating our proposal.
All of them have been previously solved using FBS as
layout representation. These UA-FLPs are of different size
and characteristics, in order to cover the entire spectrum of
different possible alternatives. Table 3 details the following
data for each UA-FLP instance: UA-FLP instance name,
number of facilities that compose the instance, plant layout
dimensions, shape constraint (aspect ratio or minimum side),
distance metric and reference where data of each particular
UA-FLP was taken. Specifically, the UA-FLPs benchmarks
which have been considered for testing are: Slaughterhouse
from [61]; CartonPacks and ChoppedPlastic taken from [62];
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O7 and O8 detailed in [63]; O9 explained by [64]; Vc10Ra
(aspect ratio constraint) and Vc10Rs (minimum side require-
ment) described by [65]; F10 taken from [66]; Ba12 stated
in [67]; MB12 detailed by [68]; Ba14 taken from [69];
AB20 defined by [70] and considering different aspect ratio
values which are 3, 5, 7, 10, 15 and 50; Tam30 from [66];
SC30 and SC35 explained in [71]. Note that of the total set of
problems that have been used to validate our proposal, 3 of
them have been taken from real industries located in Córdoba,
Spain. Specifically, these are Slaughterhouse, Carton Packs
and Chopped Plastic.

The CRO-VNS algorithm’s parameters have been tuned in
two phases. First, the neighborhood exploration strategy was
determined running several independent VNS executions,
starting with a certain solution and comparing the perfor-
mance achieved by the first improvement and best improve-
ment schemes. The best results were obtained using the first
improvement strategy in all 10 runs, so that it is the one used
in the rest of the experiments performed. The tuning was
divided by problem size. Three UA-FLPs have been selected
as representatives of the sizes small (S), medium (M) and
large (L), which are O9, Ba14 and SC30, respectively.

The second phase of parameter tuning was carried out
by the use of an exhaustive grid search. Table 1 collects
the parameter values that have been considered for reef size
(N × M ), initial occupation rate (ρ0), fraction of broadcast
spawners (Fb) and asexual reproduction (Fa), depredation
fraction (Fd ) and depredation probability (Pd ). The selected
combination of parameters for the problem of a certain size is
the one that has obtained the solution with better fitness. Note
that following the tuning experimentation performed by [69],
each combination of parameters has been repeated 5 times
for each representative UA-FLP, considering a maximum
number of iterations of 1000 and 500 the admissible number
of iterations without improvement. Finally, Table 2, offers the
final parameters used per problem size.

TABLE 1. Grid search parameters.

TABLE 2. Selection of parameter values according to problem size.

Regarding software and computational requisites, the
CRO-VNS algorithm has been developed under Python ver-
sion 3.5. The full experimentation was carried out using a PC
with an Intel Core i5 6200U (2.30 GHz× 4), 8GB RAM and
a Linux-based operating system.

B. RESULTS AND COMPARISONS
We present here the results obtained by the hybrid CRO-
VNS, and compare them with that of previous proposals over

TABLE 3. Description of benchmark UA-FLPs.

TABLE 4. Best solutions reached in the benchmark UA-FLP instances
considered by the proposed CRO-VNS algorithm and other previous
approaches.

the well-known UA-FLPs. All results obtained are shown
in Tables 4 and 5. In particular, the CRO-VNS is compared
with existing algorithms: [52] (IMCRO in Table 4), [31], [72]
and [55].

Analyzing the results in Table 4, it is possible to see
that the proposed CRO-VNS shows a high performance in
the UA-FLP, since it is able to achieve the best solution
in 20 instances out of the 21 UA-FLPs which have been
tested. The proposed approach has shown an excellent per-
formance when solving UA-FLPs in all size categories. This
way, CRO-VNS reaches or overcomes the best known solu-
tion values in all UA-FLPs with less than twelve facilities.
Specifically, these UA-FLPs are: Slaughterhouse, Carton-
Packs, ChoppedPlastic, O7, O8, O9, F10, BA12,MB12. Also,
the CRO-VNS is able to achieve or improve the best solution
values for UA-FLPs that are composed between 14 and
20 departments. In this case, we are talking about the fol-
lowing UA-FLPs: Ba14, AB20_ar3, AB20_ar5, AB20_ar7,
AB20_ar10, AB20_ar15, AB20_ar50. Finally, our proposal
is capable to reach or win the best known solution values in
most tested UA-FLPs with more than thirty facilities, these
UA-FLPs are Tam30 ans SC35. There is only a particular
case, SC30, where our approach could not reach exactly the
best known solution, but it was able to obtain a very similar
solution.
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FIGURE 4. Best solutions found for some of the tested UA-FLP
instances.

FIGURE 5. Best solutions found for some of the tested UA-FLP instances.

Continuing with analysis of Table 4, we can affirm that
our proposal is able to win all previous approaches in every
tested UA-FLP, except in an UA-FLP instance (SC30) in the
work of [55]. Specifically, it can extracted from the 4 that
the CRO-VNS proposal is able to reach or improve (in 9
instances) every UA-FLP instance (19 well-known problems)
when it is compared with the IMCRO proposal [52]. This
fact is repeated regarding [72], that is to say, our approach
overcomes (in 12 UA-FLPs) or equalizes the solution results

TABLE 5. Solutions and layouts obtained by the CRO-VNS.

in all of the 16 UA-FLP instances. Focusing on [31], it can
be stated that our system can achieve or win (in 3 well-
known problems) their results in all of the 4 tested UA-FLPs.
Finally, comparing our approach with [55], the suggested
proposal surpasses their design solutions in almost all the
tested UA-FLPs, specifically in 7 out of the 8 tested instances,
reaching in 5 of them the best-known result. Only in
an instance, that is SC30, the proposal of [34] slightly
exceeds the best solution value achieved by our proposed
approach.

In addition, Table 5 presents a comparison of the best
results obtained by the CRO-VNS against the best-known
results obtained by previous algorithms. The information
detailed in Table 5 is referred to the best solution result
reached by our CRO-VNS, the percent difference of the best-
known solution reached by the best alternative algorithm in
the literature and the best one achieved by the CRO-VNS,
and the chromosome layout of the best solution obtained.
In order to complete important information described in
Tables 4 and 5, those solutions achieved by the CRO-VNS
that overcomes previous results are shown in Figs. 4 and 5.

IV. CONCLUSIONS
This paper presents a hybrid Coral Reefs Optimization algo-
rithm with Variable Neighborhood Search (CRO-VNS), as a
new ensemble meta-heuristic to solve the Unequal Area
Facility Layout Problem (UA-FLP). The proposed approach
introduces two main novel strategies to obtain a high per-
formance behavior in the UA-FLP: enhancing the searching
process by combining the global and local search capaci-
ties of the CRO and VNS, and improving the representa-
tion of solutions using the Relaxed Flexible Bay Structure
codification.

Specifically, the VNS combines up to three searching
strategies, so the neighborhood exploration improves sub-
stantially the efficiency of the algorithm in the local search
process. The combination of the CRO and the VNS is carried
out after the coral’s settlement procedure of the CRO. In turn,
the Relaxed Flexible Bay Structure used in this paper is useful
to avoid unfeasible solutions and to obtain better fitness
values, bymanaging the available space into the layout design
according to aspect ratio restrictions of the facilities.
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The combined effect of both of these strategies produces
a high performance hybrid search approach for the UA-FLP,
which has obtained a substantial improvement over previous
existing algorithms for this problem. The results obtained
over well-known benchmark UA-FLP instances show that
the strategy designed has reached, in general, better solutions
than the previous proposed algorithms. So, even though the
introduction of the hybrid strategy with the VNS add some
extra computational cost, it is worthy to do it, due to inmost of
the problems tested, the solutions found improved or matched
the previously known, with improvement rates of the fitness
values that can reach up to 56.85% and only in one case the
best solution known wasn’t improved.

Further research could take into account the integration
of the subjective preferences of the designer, as well as the
well-known Slicing Tree Structure to obtain better and more
realistic solutions in order to put into practice in real industrial
facilities layout problems.
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