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ABSTRACT Microgrids (MGs) offer a new paradigm for the operation of electricity networks, allowing
end users to significantly improve the power quality and, more importantly, reliability of their power supply
systems. While it is clear that MGs offer a significant advantage by providing electricity to customers
who would otherwise be disconnected during outages, there are numerous issues with the safe, secure,
and efficient operation of MGs, the most basic being integrated management and coordinated control of all
resources in grid-connected and off-grid modes. A valuable component that can provide new opportunities
for increased reliability of the system and reduced vulnerability to faults is the electric vehicle (EV). One of
the major benefits of utilizing EV energy storage is the mobility feature of EVs, which can add great value
to the restoration of the power distribution system. The main aim of this work is to understand and model
how EV batteries can be used as an intelligent energy reservoir, utilizing both controllable loads (home-
to-vehicle and grid-to-vehicle) and controllable energy storage (vehicle-to-home and vehicle-to-grid). This
requires modeling the stochastic behavior of EV driving and charging/discharging as well as quantifying the
impact of utilizing EV energy storage to restore service to customers. This paper proposes an EV Markov
adequacy model that evaluates the reliability of an MG distribution system utilizing EVs and investigates
EV mobility and available capacity modeling and EV system adequacy analysis, including the effects on the
system reliability of the EV capacity, driving behavior, recharging mode, and EV penetration.

INDEX TERMS Electric vehicles, Markov models, reliability.

NOMENCLATURE
α Percentage/Penetration
αD Percentage of de-rated level
αR Percentage of reserved level
αHO Percentage of home-only electric vehicles

(EVs)
αHW Percentage of home–work EVs
αHWP Percentage of home–work–park EVs
Dc Charging duration
E EV total available energy
f Frequency of failures
λ System failure rate
µ System repair rate
µn Mean of the normal distribution
NC Number of customers
NR Number of customers restored
NEV Total number of EVs
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P(t) Time-dependent probability
Pc Charging power
Pd Discharging power
π Steady-state probability
πHF Steady-state probability for state HF

πHD Steady-state probability for state HD

πPF Steady-state probability for state PF
πPD Steady-state probability for state PD
σij Transition rate from state i to j
σ Transition rate during normal operating

mode
σ ′ Transition rate during emergency operation

mode – in-area EV
σ ′′ Transition rate during emergency operating

mode – out-of-area EV
SOCi State-of-charge during period i
SOCmax Maximum state-of-charge
SOCmin Minimum state-of-charge
SOCD De-rated state-of-charge
SOCR Reserved state-of-charge
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σ 2
n Variance of the normal distribution
u Number of regions/feeders in the system

I. INTRODUCTION
Increasing requirements to decarbonize and improve the effi-
ciency of the energy supply will impact future electricity
networks (i.e., smart grids), leading to significant increases
in renewable energy generation; larger numbers of elec-
tric vehicles (EVs); radical transformation of transmission
and distribution networks; and the introduction of intelli-
gent and automated control, monitoring, and communication
infrastructures [1]. This is necessary in order to reduce depen-
dency on fossil fuels and related CO2 emissions while main-
taining the highest possible levels of security, sustainability,
and affordability of the electricity supply. It is widely rec-
ognized, however, that supply-side solutions alone will not
be sufficient to tackle these challenging tasks. Additional
support and contributions are needed from the demand side,
with the demand for electricity being actively controlled
and coordinated. This will increase opportunities for more
direct and proactive system support and result in profound
changes in the levels and nature of system–user interactions,
shifting actual system operating and loading conditions well
outside the traditionally assumed ranges, limits, and phys-
ical boundaries. One example of such changes are micro-
grids (MGs), which offer a genuinely new and previously
unseen approach to the operation of electricity networks by
allowing end users to significantly improve the power qual-
ity and, more importantly, reliability of their power supply
systems. Essentially, MGs allow end users to install, oper-
ate, and balance their own generation, storage, and control-
lable load resources, providing continuity of supply when
the main grid supply is interrupted (for example, due to a
system fault). Evaluating the reliability of MGs is a chal-
lenging task due to the expected networked connections and
the stochastic behavior of EV-based and renewable-based
resources.

Electrification of the transportation sector is another chal-
lenge for the operation of future distribution systems. EVs,
which can be hybrid or fully electric, are viewed as a new,
promising technology that can be utilized by customers or
aggregators of MGs to boost MG reliability [2]–[5]. EVs
provide a range of new functionalities, as they can be uti-
lized as a controllable load (home-to-vehicle [H2V] and
grid-to-vehicle [G2V]) as well as distributed energy stor-
age (vehicle-to-home [V2H] and vehicle-to-grid [V2G]),
which could significantly enhance the reliability and uti-
lization of the grid’s power. However, the availability of
EVs ultimately depends on the ability and willingness of
EV owners to share their stored energy as well as the
availability of the infrastructure to charge and control EVs.
Another main challenge in integrating these energy storage
devices is determining accurate modeling of the charging
and discharging rates based on different operating modes.

In [6], a mobility-aware control algorithm (MACA) for V2G
was proposed that takes into consideration the mobility of
EVs and the estimated/actual demands of microgrids. The
work in [7] proposed an intelligent optimization approach
based on multimodal approximate dynamic programming
(MM-ADP) for the optimal charging/discharging vehicle
schedule of a grid-connected charging station, while incor-
porating price variations in electricity and available solar
energy.

EVs can be an adequate energy storage resource that can
boost the reliability of the system during outages. Several
studies have explored the positive impact of EVs on service
restoration and proposed different V2G strategies [8]–[10].
In [11], an interruptible full EV charging load model was
used to evaluate the reliability of an urban distribution system
in China. The reliability of the distribution power system
was also assessed in [12] with consideration of the V2H and
V2G charging schemes, while the battery exchange mode
was considered in [13] to model the full EV charging load.
In [14], the impact of EV penetration level on the reliability
of a distribution system was evaluated for scheduled and
unscheduled V2G discharging modes. The work in [11]–[15]
focused on the evaluation of EV charging load in a distri-
bution system. Moreover, the focus was on assessing power
system facilities’ provision of energy to end users while
satisfying the minimum allowable range of service continuity
without considering the supply–demand balance. Although
the effects of EVs will be most clearly seen in distribution
systems, the increasing penetration of EVs will also have a
cumulative effect on the entire grid. This additional load will
affect power systems’ reliability at both the transmission and
generation levels.

EVs can also negatively affect power systems’ reliability
because of the energy demand to charge EV batteries, which
creates a heavy burden on the electrical grid and is already
being discussed by system operators [16]. As the number of
EVs is presently small, their effect on the power system is
minimal. However, a rapid increase in the number of EVs
and their widespread integration will have a heavier impact
on the reliability of power systems. Moreover, increased
charging loads may lead to under-voltages, higher losses,
phase unbalances, load peaking, and line and transformer
overloads. To mitigate these problems, research has been ini-
tiated to evaluate the effects that EVs could have on existing
power systems. Several studies have focused on develop-
ing EV charging load models and their implementation to
study this impact and alleviate various power system prob-
lems [17]. For example, many researchers have investigated
the integration of EVs into distribution power systems with
respect to the dynamic behavior of a power system [18]–[19],
economic and financial analyses [20], short- and long-
term planning issues [21], [22], and market policies and
opportunities [22], [23].

In order to analyze the extent of the expected changes and
to assess new conditions on the demand side, new modeling
tools and methodologies for planning power supply systems
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must be developed and implemented to ensure the highest
possible levels of reliability, continuity, and quality of supply.
However, the reliability assessment of a power system inte-
grating EVs has yet to be given much attention. Because
EVsmainly affect local distribution systems, previous studies
have mostly tried to determine how different distribution
system characteristics will be affected by EVs. Analyzing
the reliability of distribution systems incorporating EVs is a
challenging issue, especially considering the increased uti-
lization of EVs. Few studies have investigated the impact of
EVs on distribution system reliability. Another main chal-
lenge in integrating these energy storage devices is deter-
mining accurate modeling of the charging and discharging
rates based on different operating modes. However, while
other MG-related research has almost exclusively concen-
trated on the use of renewable-based generation (e.g., solar
or wind), which require dedicated energy storage systems due
to varied outputs, this paper considers the use of EVs as MG
energy sources that can be used to enhance the MG system’s
reliability.

The presence of EV fleets in the distribution system may
improve system reliability as a result of supplying loads in
islanded operation, but EV fleets may not be able to fill the
demand completely during islanded mode. This is due to
the availability and capacity of EVs, which are affected by
driving behavior. However, limited research has been con-
ducted to evaluate the impact of EVs on the reliability of the
distribution system, and no detailed model exists at present
for analysis of related EV impact. The literature does not offer
an automated generalized algorithm to evaluate the reliability
of a networked power distribution system that includes EVs.
Most of the EV reliability studies in the literature were for-
mulated and applied to specific study systems or to radial net-
works. In order to fill this gap, this paper presents a detailed
Markov model of EVs specifically aimed at assessing the
reliability of a distribution power system. This work provides
a novel contribution to the study of the anticipated transfor-
mation of existing electricity networks into future smart grids.
A detailed probabilistic model of the stochastic behavior
of EVs during normal and emergency operating modes is
proposed. Moreover, a novel Markov model also proposed,
representing all operating and driving modes considered
in this work, was successfully integrated in the reliability
model.

Given actual EV and driving behavior data, the model
practicality is sound, and the reader can easily relate the
simulation to a real case scenario. Moreover, we distinguish
our work by the fact that the proposed model takes into
account several practical factors such as operating modes
(H2V, V2H, G2V, and V2G), driving modes (home-only
mode [HO], home–work mode [HW], and home–work–park
mode [HWP]), and emergency modes (in-area and out-of-
area). We propose wider driving modes and classifications to
generalize the concept of theMG in accommodating different
operating modes and a different range of customers with
different driving patterns.

II. RELIABILITY OF DISTRIBUTION SYSTEMS
INCORPORATING EVs
A. DISTRIBUTION RELIABILITY ASSESSMENT
Reliability is a subject of great interest in most manufacturing
and services applications [25]. Power distribution engineers
have commonly used indexes to count or otherwise quantify
the reliability of electric services, the most common being
the System Average Interruption Frequency Index (SAIFI)
and System Average Interruption Duration Index (SAIDI).
Analyzing and evaluating the distribution system’s reliability
is important for improving the operational and maintenance
performance of the system and providing highly reliable and
high-quality electricity. In practice, all reliability studies are
conducted in relatively small local subsystems because the
complete network from the source to the load is enormous.
Additionally, it is difficult to collect the necessary data for
reliability evaluations; utilities are conservative or sometimes
reluctant to release actual reliability data and failure rates.
Thus, [26] and [27] investigated methods to collect and cate-
gorize data that can be used in reliability studies.

Moreover, the distribution system is in a rapid transition
phase, wherein the system is moving from the passive unidi-
rectional mode to becoming more active, with the possibility
of bidirectional power flow. One of the main goals of future
power systems, or smart grids, is to enhance the reliability
of the power system by integrating small-scale resources
and reconfiguring the distribution system. The complexity
of future distribution systems will require enhanced tech-
niques to evaluate their reliability andminimize the frequency
and duration of outages. Conventional methods to evaluate
the reliability of future secondary distribution networks are
complicated and time consuming. Furthermore, technical and
technological changes (emergence of new types of genera-
tion, storage, and loads) necessitate both the development
of new models and the improvement of traditional reliabil-
ity approaches, as they might not be (directly) applicable
to the future distribution system. In addition, the difficulty
of implementing self-restoration in MG-enabled distribution
networks is a new initial condition that could varywidelywith
each outage due to the variability of loads, available renew-
able energy resources, and levels of stored energy [28], [29].

B. IMPACT OF EVs ON MICROGRID RELIABILITY
In general, EVs cover a wide range of different technologies,
with various engines and forms of power. Plug-in EVs have
an electric motor and a battery that must be charged from
the electrical grid, while plug-in hybrid EVs have both a
combustion engine and an electric motor run by energy from a
battery that can be charged from the grid. In this paper, and as
shown in Fig. 1, the interface between an EV and the electrical
system is assumed to follow four different modes: H2V, V2H,
G2V, and V2G. Both plug-in hybrid and plug-in EVs have
the option to stay connected to the electrical grid while the
battery is being charged, thus behaving as an electric load
(H2V, G2V), or while the battery is discharged, thus behaving
like a generator (V2G and V2H).
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FIGURE 1. Different EV operating modes. EV = electric vehicle.

The charging behavior of EVs is affected by different
factors, such as the type of connection (unidirectional or
bidirectional), geographic location, the number of EVs being
charged in a given vicinity, charging voltage and current lev-
els, battery status and capacity, charging duration, and more.
Furthermore, the V2G and V2Hmodes, increased availability
of EVs, and stochastic nature of driving could all introduce
reliability benefits and challenges to the system. The main
direct contribution of EVs to reliability under the V2G and
V2H modes is on the customer side rather than on the utility
or system side. The base level of reliability is always provided
by the utility, and the EV’s role is to boost the level of
reliability by supplying the local load during interruptions.

This paper is particularly focused on the reliability and
resilience aspects of MGs. For example, off-grid operation
of MGs would require fully redefining traditional reliability
indexes because the number of interrupted customers and
length of interruption time (i.e., standard SAIFI and SAIDI
reliability indexes) have to be reassessed due toMG-provided
supply to those customers. This will change theways inwhich
network operators report both frequencies and durations
of supply interruption to energy regulators; typically, their
low-voltage networks are used for MG operation if the main
supply (e.g., from the primary medium-voltage network) has
been interrupted. An additional issue is the correct assessment
of total interrupted customers and energy not supplied (ENS)
because neither all loads nor all customers will be supplied by
MGs operating in the off-grid mode (depending on available
generation/storage resources).

C. MARKOV MODELING RELIABILITY ASSESSMENT
To evaluate the reliability of a system, a mathematical or
graphical model of the system should be used and designed to
reflect its reliability characteristics. The model can be either
analytical or a simulation. Analytical models represent the
system through a set of exact or approximate mathematical
models and evaluate reliability based on this mathematical
representation of each state. The Markov model is one of
the popular analytical techniques to evaluate the reliability
of a power system. All transition rates between the states
are assumed, making it possible to evaluate the steady-state
probability of the states. The Markov chain is one of the best
models for representing the dynamic behavior of a system
but constructing the transition matrix for a large number of
components is also very complicated.

Another widely used technique for reliability assess-
ment in many fields is the Monte Carlo (MC) simulation.

InMC simulation, the reliability is evaluated repeatedly using
parameters drawn from random distributions to simulate
stochastic problems [30]–[32]. Usually, the MC simulation
is used when other deterministic methods do not apply, and
it can be useful for evaluating the mean time to failure in
very complicated or large-scale systems. The advantage of
the MC simulation is that it can simulate almost any system
and any failure mode. The disadvantages are that it requires
long runs (i.e., many samples) and that the accuracy of the
output may depend on the number of runs and variables in
the system. In applications of complex systems, analytical
techniques usually include some simplifications or assump-
tions. Conversely, the simulation technique can simulate and
include any system behavior with less approximation.

To evaluate the reliability of the distribution system using
Markov models, first, the time-dependent probabilities are
found by solving the Markov differential equations [32]. The
general format for the differential equations is as follows:

−

i∑
j=2

σ1j σ21 . . . σi1

σ12 −

i∑
j = 1
j 6= 2

σ2j . . . σi2

: : . . . :

σ1i σ2i . . . −

i−1∑
j=1

σij




P1(t)
P2(t)
:

Pi(t)



=


P′1(t)
P′2(t)
:

P′i(t)

 (1)

where Q is the coefficient matrix that can be formed from the
transition rates matrix (σ -matrix). Long run (or steady-state)
probabilities can be found by solving the set ofMarkov differ-
ential equations (Kolmogorov equations) with the conditions
that the sum of all probabilities are equal to 1 and all time
derivatives of the probabilities equal 0 [32]. The derivatives
can be replaced with a 0 value to solve the set of equations
simultaneously:

Q


π1
π2
:

πi

 = 0 (2)

i∑
j=1

πj = 1 (3)

Equations (2) and (3) are solved to find the steady-
state probabilities for all states. The states can be classified
based on the system connection as up (working) or down
(not working). Then, the steady-state probabilities can be
added together for each group to calculate the availability or
unavailability of the system.
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In addition to finding the steady-state probabilities of the
system, it is also useful to find the frequency of occurrence
of the down states of the system. To find the expected time
of residence for state i, all other states are considered as
absorbing states. The expected frequency can then be written
as

fi = πi
∑n

j=2
σij. (4)

Equation (4) shows that the expected frequency of any state
is the probability of being in that state multiplied by the rates
of departure from the same state. Finally, the load and system
indexes—such as SAIDI, SAIFI, and ENS—are calculated
using the equations in Table 1.

TABLE 1. Charging/discharging modes by location.

III. PROPOSED ADEQUACY MODELING OF EV
The paradigm of highly efficient and flexible smart grid
networks with adaptable two-way energy flows is perhaps
best illustrated by EV chargers and batteries, which may be
implemented both as a controlled demand (i.e., for charging
of batteries in H2V and G2V applications) and as controlled
energy storage (i.e., for discharging stored energy in V2H and
V2G applications). In this paper, only residential customers
are considered in the distribution system. Accordingly, two
distinctive scenarios are considered in this work:

1) Distributed EV charging/interfacing, where individual
EVs will charge/discharge at households and similar
domestic premises with a dedicated single charging
point (e.g., in a private garage).

2) Centralized EV interfacing, where groups and larger
numbers of EVs will charge/discharge within shared
parking space facilities.

The former case represents homeowners, while the latter
represents the development of a wider work-related charging
infrastructure, both of which are analyzed in this work in
the context of evolving smart grid functionalities. The main
aim of this work is to understand how the use of EV storage
technologies could provide genuinely new opportunities for
increased reliability of the system and reduced vulnerability
to faults without reducing end users’ comfort.

MGs can operate in two basic modes: grid-connected
(normal) and off-grid (emergency). In the off-grid mode,

MGs operate autonomously, without connection to the util-
ity grid, while in the grid-connected mode, MGs trade
power with the utility grid. Because of certain MG char-
acteristics (e.g., two-way power transfer, the presence of
distributed generations, demand side management, and the
considerable presence of power electronics), control of the
MG in each operating mode and switching between modes
are challenges that need to be solved in order to oper-
ate MGs efficiently and realize their full potential and
benefits.

As shown in Fig. 2, the load is supplied by the utility
during normal operation. However, during an emergency,
the load is supplied by the EV battery storage. The EV battery
restoration capability has two main components: physical
availability and state-of-charge (SOC) availability. Physical
availability refers to the availability of the car on-site where
the restoration is needed. SOC availability refers to the avail-
ability of the power in the EV battery. Both are described in
this section.

FIGURE 2. Power supply alternatives as seen from the customer side.
EV = electric vehicle; SOC = state-of-charge.

For modeling the stochastic behavior of EV driving and
changes in MG loads, Markov chain models and MC simu-
lations are used in this work. The stochastic nature of loads
and EVs can be adequately described by a Markov process,
which is a collection of continuous-time random variables
taking discrete values in the state space. This approach is
expanded and strengthened by implementing complemen-
tary MC simulations targeting specific scenarios and study
cases to evaluate stochasticity in the operational performance
of the technologies under consideration, behavior of end
users, availability of EV storage, and random occurrence of
faults and emergency supply conditions. In MC simulations,
the states are sampled based on their occurrence in time,
which allows for direct correlation with certain changes;
for example, in the EV travel distance and duration. In this
paper, the effect of EV energy storage on the reliability
and smart restoration of MGs is studied by applying both
Markov chain modeling and MC simulations. This allows for
the calculation of new system and load reliability indexes
that are more appropriate/accurate to the analysis of MG
operation. Three different models are proposed in this work:
the EV mobility, EV available capacity, and EV adequacy
models.
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A. EV MOBILITY MODEL
EVs have led to concerns about how people must adapt their
behaviors to this new technology. These concerns include
charging the EV, the limited travel range before charging is
needed, adaptations in driving behavior to prevent battery
degradation, and changes in energy payments. One of the
major benefits of utilizing EV energy storage in power distri-
bution system restoration is the mobility feature of EVs. The
role of an EV during interruptions is to supply the demand,
and the capability of an EV to contribute is related to driving
behavior, SOC characteristics, and the uncertainty of system
failures. The availability of an EV supply depends on both
physical and storage availabilities. It is a common practice in
reliability analyses to assume that the mechanical and electri-
cal systems of the EV battery are 100% reliable. Otherwise,
the reliability of the physical EV battery system has to be
modeled and reflected as success and failure probabilities.

Due to the uncertain behavior of drivers, several factors
affect the available storage capacity of an EV, such as the
distance traveled, engine consumption, and the departure and
arrival times. The battery capacity of EVs depends on the
type of EV and can range from 12 kWh up to 100 kWh.
In this study, an average of 24.1 kWh is considered in the
base case scenario. Based on the penetration of EVs in the
system, and under the assumption that each customer has only
one vehicle, the total number of EVs in the system can be
calculated by

NEV =
u∑
i=1

αiNc.i (5)

The driving behavior of EV owners is a highly stochas-
tic element that is affected by many social, economic, and
psychological factors. In this work, the EV is assumed to be
located in three different locations, or states, which are

1) home (H), where daily trips start and end;
2) away (A), where the EV is away from home and not in

a parking lot; and
3) parking lot (P), where the EV is parked and can charge

or discharge.

Three different EV types (trip modes) are also adopted in
this work, which reflect charging/discharging EV behaviors.
The classification of these three types reflects the behavior of
the majority of EV drivers:

1) Home-only (HO): This mode represents the EVs that
are used for non-work-related trips. The EVs recharge
only at home (H).

NHO.i = αHO.iNEV .i (6)

2) Home–work (HW): This mode represents the EVs that
are used for work-related trips but recharge only at
home (H).

NHW .i = αHW .iNEV .i (7)

3) Home–work–park (HWP): This mode represents the
EVs that are used for work and can charge at home (H)
and/or at a workplace parking lot (P).

NHWP.i = αHWP.iNEV .i (8)

Moreover, two grid modes—normal and emergency—are
considered in this work. The normal operating mode repre-
sents the state of the system/customer when connected to the
utility, whereas the emergency mode represents the state of
the system when there is a failure and the system/customer is
operating in islandedmode. The system is assumed to operate
either in normal or emergency operating modes. The normal
operating mode is when the system is healthy and does not
experience any outages/contingencies and the EV operates
in the H2V or G2V modes. During emergencies, either the
EV will be in the area where the interruption occurs and will
discharge in V2H or V2G mode, or the EV is out of the area
where the interruption is and the EV will support the affected
area in V2G mode.

The transition from the normal to emergency mode can be
represented by the failure rate λ, and the transition back can
be represented by the repair rate µ. Both can be calculated by
analyzing the system topology and considering all the failure
and repair rates of all components as viewed by the customer.

The transitions between the grid states are depicted
in Fig. 3. During normal operating mode, the EV can move
from H to A with a transition rate of σHA and back with a
transition rate of σAH or move from H to A with a transition
rate of σHA and then to P with a transition rate of σPA and
back (σPA, σAH). Note that A represents the state where
the EV is in movement or in a non-parking lot destination.
During emergency mode, if the EV is away and within the
interrupted area (in-area), the EV is assumed to return to H
with a transition rate of σ ′AH, as the local V2H restoration
mode has a higher priority. If the EV is in a parking lot, the
priority will be to support the system and discharge to the grid
(V2G). If the system interruption is in a different area (out-
of-area), the priority is to head to A with a transition rate of
σ ′′HA and then to P (in the affected area) with a transition rate
of σ ′′AP to participate in the centralized V2G restoration.

FIGURE 3. Electric vehicle driving behavior model during normal and
emergency modes.

To calculate the transition rates shown in Fig. 3,
EV drivers’ behavior must be analyzed and modeled fol-
lowing two main steps. First, the probability density func-
tions (PDFs) of the departure time, trip duration, arrival time,
travel distance, and probability to go to P must be extracted
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from the EV dataset. Most of the above parameters stochasti-
cally follow the normal orWeibull distribution [33]–[35]. The
PDF of the normal and Weibull distributions are represented
by the following formula:

pdf normal : f (x) =
1√
2πσ 2

n

e
−

(x−µn)2

2σn2 (9)

Then, sequential MC simulation can be used to simulate
the driving behavior and calculate transition rates between
the proposed states in both the normal and emergency modes,
as follows:

σXY =
Number of EV trips from X to Y

Total time spent in X
(10)

where X and Y can be H, A, or P.

B. EV AVAILABLE CAPACITY MODEL
EVs can be charged using several modes with varying power.
The first option is the use of regular single-phase outlets.
A second alternative is three-phase charging, where the third
is the fastest mode of charging at the highest power. The
battery charging time will depend on the storage capacity,
the charging outlet, and the SOC at the beginning of charging.
If charging at H, the driver could charge during parked hours,
and the energy cost could be added to the regular electricity
bill. If charging at P, the driver could charge faster using either
the three-phase charger or fast charging stations. During
emergencies, the EV can discharge power to H for personal
load restoration or to the grid at P to support the system, with
the assumption that the EV owner will be compensated.

During normal operating mode, all trip modes can charge
at H, and only HWP can charge at P. During emergencies,
if the interruption is local (in-area), EVs that are located
at H will operate in V2H mode. If the car is located at P
(HW and HWP), the priority will be to support the local
grid from the centralized parking lot. If the interruption is
outside the area (out-of-area), the priority will be to support
the neighborhood grid in V2G mode. The total number of
EVs participating in in-area and out-of-area restoration can
be calculated as follows:

For in-area restoration in region i,

NIA.i = αIA.HO.i.NHO.i+αIA.HW .i.NHW .i+αIA.HWP.i.NHWP.i
(11)

For out-of-area restoration in region i,

NOA.i=αOA.HO.i.NHO.i+αOA.HW .i.NHW .i+αOA.HWP.i.NHWP.i
(12)

Table 1 shows the capability of each location to perform
the different EV operating modes.

1) NORMAL OPERATING MODE
During normal operating mode, the consumption of electric
energy occurs when the car is away. The SOCi (i.e., the energy
level in the battery) declines during the away period, depend-
ing on the distance driven DD and the consumption when

driving C . The charging of the EV will occur when the
consumer is at H or P. When charging at a power station
of Pc, depending on the charging duration Dc, the SOCi will
increase until the battery is fully charged (SOCi = SOCmax)
or until the consumer decides to use the car again [36].
To avoid decreasing the lifetime of the battery, the SOC will
be limited to a minimum level, which is decided by SOCmin.

The starting and returning time of a trip using the EV is
decided by the time use data as well as the charging time,
which takes place when the car is parked at H or P, connected,
and not yet fully charged. The power for charging at H is Pch
and at P is Pcp. The duration of charging at H is denoted as
Dch and at P as Dcp.
The battery charge state at any time during normal operat-

ing mode is determined by the following equations:
Trip discharging

SOC i+1 = SOC i − C × DD SOC i > SOCmin (13)

H2V charging at H

SOC i+1 = SOC i + Pch × Dch SOC i < SOCmax (14)

G2V charging at P

SOC i+1 = SOC i + Pcp × Dcp SOC i < SOCmax (15)

The charging at H or P can follow a certain criterion
where the customer can charge immediately after arriving
at H or wait until a certain SOC threshold. The probability
of recharging at each threshold increases when the SOC
decreases.

2) EMERGENCY OPERATING MODE
If the EV is in the in-area emergencymode, the car is expected
to be connected to H and operating in V2H mode. EVs in the
A state are directed to return to H to support the restoration
process. In-area cars in the P state contribute to the restoration
process through the V2G mode.
For the out-of-area EVs, drivers are requested to contribute

to the restoration process by traveling from H to A and then
to P in the affected area. The discharge SOC for both H and
P are shown below:
V2H discharging at H

SOC i+1 = SOC i − Pdh SOC i > SOCR (16)

V2G discharging at P

SOC i+1 = SOC i + Pdp SOC i < SOCR (17)

where SOCR is the reserved SOC level and is determined
based on the convenience of the EV owner. It indicates the
level of SOC that should remain in the car for the return trip
to H. The available SOC in the EV at any point of time can
be calculated by

SOCav = SOC i − SOCR (18)
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FIGURE 4. The proposed normal and emergency operating models for (a) HO EVs, (b) HW EVs, and (c) HWP EVs. V2H = vehicle-to-home;
H2V = home-to-vehicle; V2G = vehicle-to-grid; SOC = state-of-charge.

Pdh and Pdh are the discharge power at H and P, respectively,
and can be calculated as

Pdh = Pdp =
SOCav

MTTR
(19)

whereMTTR is the mean time to repair.
Fig. 4 shows, in detail, the transition rate diagrams for all

EV trip modes (HO, HW, and HWP). Below is an explanation
for the different states,

- HF and PF represent the state where the EV is fully
charged.

- HD and PD represent the de-rated state, where the EV is
partially charged.

- HR and PR represent the reserve state, where the EV has
the preferred lowest level of battery for urgent trips or
the return trip to H.

The de-rated and reserved SOC can be calculated
using (20) and (21).

SOCD = αD.SOCmax + (1− αD) .SOCmin (20)

SOCR =

{
SOCmin at H
αR.SOCmax + (1− αR) .SOCmin at P

(21)

Table 2 shows the transition rate matrix for the HWP EV
with all transition rates between all states.
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TABLE 2. Transition matrix for the proposed model (HWP EV).

C. EV ADEQUACY MODEL
The amount of energy that can be contributed by an EV
(SOCav) is determined by its state-of-charge (SOCi) at the
beginning of a contingency. SOCi shows the amount of energy
stored in a battery pack. Considering the constant power
approach to charging, the SOC of an EV at the time of an
outage is calculated by

Available SOC at H,

SOCav.H = πHF . (SOCmax − SOCmin)

+πHD. (SOCD − SOCmin) (22)

Available SOC at P,

SOCav.P = πPF . (SOCmax − SOCmin)

+πPD. (SOCD − SOCR) (23)

Utilizing the EV available SOC at P given by (23),
the cumulative in-area and out-of-area EV available energy
capacities are given by

SOCav.IA =

∑NIA.i
n=1 SOCav.P.n

NC .i
(24)

SOCav.OA =

u∑
m=1

∑NOA.i
n=1 SOCav.P.n

u∑
k=1

NC .k

m 6= i, k 6= m (25)

To model the adequacy of the EV power output to meet
the load demand, the adequacy transition rate is calculated.
In Fig. 5, the state transition diagram is given for the system
adequacy model, incorporating the EV, where En, Ex , and
Eo represent full, partial, and zero EV adequacy to supply
the load. The En state is the only state that can improve the
duration and frequency of interruptions, while the Ex state
improves only the ENS.

The total EV available capacity for each customer in the
system during interruption can be calculated using

En.i

=

{
SOCav.H .n+SOCav.IA.n+SOCav.OA.n 0<n≤NEV .i
SOCav.IA.n+SOCav.OA.n NEV .i<n≤NC .i

(26)

FIGURE 5. Adequacy model for an MG utilizing EVs.

Based on the adequacy of the EV available capacity given
in (26), ENS, SAIFI, and SAIDI can be calculated as follows:

ENS i =
Nc.i∑
n=1

(LDn.i − En.i) (27)

SAIFI i =
(NC .i − NR.i) .λi

NC .i
(28)

SAIDI i =
(NC .i − NR.i) .MTTRi.λi

NC .i
(29)

In summary, to assess the reliability of an electric MG
utilizing EVs, different tasks should be executed, as shown
in the flowchart in Fig. 6. The following steps are involved
in the proposed algorithm for modeling EV behavior and its
impact on the reliability of the MG:

1) Collect the EV data (charging/discharging, mobility,
participation).

2) Model the stochastic behavior of the following param-
eters:

a) EV home departure and arrival time
b) EV trip distance
c) EV parking arrival and departure times
d) EV parking duratio

3) Simulate the driving behavior of the different EV
trip modes in normal and emergency scenarios using
Sequential Monte-Carlo simulation.

4) Compute the transition rates for each EV.
5) Construct the transition rate matrix for each EV.
6) Compute the steady-state availability for each state.
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FIGURE 6. The restoration model flow chart.

7) Compute the available SOC for each EV and parking
lot.

8) Analyze the system reliability indexes, including EV.

IV. ANALYSIS AND RESULTS
A. EV AND STUDY SYSTEM DATA
In this study, the Roy Billinton Test System (RBTS) Bus 2
was used to evaluate the reliability in different scenarios. The
RBTS has been referenced in the body of literature for many
reliability studies and evaluation techniques. A description of
the RBTS and system data can be found in [37]. Table 3 lists
all the data related to the study system. The system is divided
into four regions/feeders, where each region has its own EV
fleet and parking structure.

TABLE 3. Study system data.

The following comments are related to the RBTS under
study in this report:

• It is assumed that adequate capacity is installed in the
system for normal operation and all failure scenarios. All
the lines and components are within the capacity limits.

• The initial state of the test systems is assumed to be in
normal operating mode, where all the components and
lines in the system work properly.

• The average load given for each load point is the aver-
age load seen at each load point based on the average
consumption over a year.

Some simplifications were made in the model to make
feasible iterations for the simulation. It was assumed that one
EV exists in each household and only one of the residents
drives it. It was also assumed that the driver only charges the
vehicle at H or P. Only the EV sedan battery size, with an
average capacity of 24.1 kWh [38], was considered in this
work. However, different battery sizes are also considered to
assess the sensitivity of reliability indexes to the EV battery
size. The charging power was based on two different charging

TABLE 4. EV data – base case.

rate possibilities—a regular charging mode at H and a fast
three-phase charging mode at P.

Table 5 lists all the relative EV data used in the proposed
model [34], [35], [38]. The efficiency of the EV charger is
assumed to be 100%. The data in Table 4 pertain to a base
case to show the basic analysis; further sensitivity analyses
will be considered to cover a wider range of data.

TABLE 5. EV data – base case.

The distance traveled, departure time, and arrival time to
H or P were all modeled by random variables. Arrival at
and departure from H and P times were collected and pro-
cessed [39]. A time scale of 1 minute from 00:00 to 24:00 was
used. In Fig. 7, the PDFs for the EV departure and arrival
times are for both the HO EVs and the HW/HWP EVs. All
PDFs were modeled as normal distribution, which was better
suited than other distributions. Table 5 lists all the PDFs and
travel distances.

B. EV MOBILITY MODELING
In this section, the stochastic behavior of the EV mobility is
modeled using MC simulation. Fig. 8 and 9 show the EV
travel time and distance for 10 arbitrary HO EVs and HW
EVs. It is worth noting that the HW and HWP EVs have
the same travel distance and time characteristics, and the
main difference lies in the ability of the EV to be recharged
at P. During the MC simulation, the SOC for each EV was
computed sequentially and the transition rates between all
states were counted in order to be included in the EV capacity
model.

The driving pattern for an arbitrary EV HW for three
consecutive days is shown in Fig. 10. The three days are
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FIGURE 7. PDF modeling for HO, HW, and HWP EV departure and arrival
times. PDF = probability density function; HO = home-only; HW =

home–work; HWP = home–work–park; EV = electric vehicle.

FIGURE 8. EV travel time for 10 arbitrary HO and HW EVs. EV = electric
vehicle; HO = home-only; HW = home–work.

simulated to show the different EV behaviors and possible
transitions between states.

- Day 1: Normal operation.
- Day 2: An in-area outage occurs at 18:00 for 5 hours.
- Day 3: An out-of-area outage occurs at 6:00 for 5 hours.
Two outages are simulated in Fig. 10, an in-area outage on

the second day and an out-of-area outage on the third day.
At the beginning of the in-area outage, the EV is at H, fully
charged and shifted to the V2H state to restore the service.
At the end of the outage, the EV is at HR state, shifted to the
H2V operation. As of the second outage, the EV is at H at
the beginning of the outage. To support the affected area, the
EV is moved to the away state and taken to P to operate in
V2G mode.

C. EV AVAILABLE CAPACITY MODELING
At this stage, the EV SOC capacity is modeled using MC
simulation and Markov modeling. In Fig. 11, the SOC for
different types of EVs are shown for 10 consecutive days. All
SOC charging follows the recharging threshold probabilities
mentioned in Table 5. The HWP is clearly more charged
because the EV has the option of charging at either H or P.
The HO EV is less depleted over time because the distance
traveled every day is less than the HW and HWP.

FIGURE 9. EV travel distance for 10 arbitrary HO and HW EVs. EV =

electric vehicle; HO = home-only; HW = home–work; km = kilometers.

In Fig. 12, the cumulative available EV parking capacity
for different numbers of EVs (5, 10, and 20) in one arbitrary
day is shown. The EVs arrive and depart stochastically, and
the number of EVs available differ from one time to another.
Note that the maximum capacity of the parking lot occurs at
around 12:00, when the parking lot can supply the maximum
energy.

Tables 6 and 7 give the transition rates and steady-state
probabilities, respectively, for anHWPEV. The largest proba-
bility is the state where the EV is at H and fully charged (HF).
Then, the steady-state probabilities were used to compute
the reliability system indexes for all customers in the study
system.

TABLE 6. Transition rates – base case.

TABLE 7. Steady-state probabilities – base case.

D. EV ISLANDED SYSTEM ADEQUACY ASSESSMENT
In this section, the adequacy of the EV capacity to sup-
ply the demand during interruptions is assessed. Three reli-
ability indexes are considered: ENS, SAIDI, and SAIFI.
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FIGURE 10. EV HW simulated driving pattern for three consecutive days with in-area and out-of-area outages.

TABLE 8. System reliability indexes – base case.

Fig. 13 shows the load energy consumption, the EV available
capacity in the three different modes (V2H, in-area V2G, and
out-of-area V2G), and considering four arbitrary customers
with no EV, HO EV, HW EV, and HWP EV. It is clear from
the figure that the HO EV can provide more energy to the
load during interruptions because the EV is more available
at H, and the travel distance is less compared to HW and
HWP EVs.

In Table 8, the reliability indexes (EN, SAIDI, and SAIFI)
are shown for each region in the study system as well as for
the overall system. Three different cases are considered—the
base case with no EV participation at all, with only V2H,
and with V2H and V2G. The percentage of change is also
shown for each scenario. The percentage of change in ENS is
−40.1% for the overall study system when considering only

FIGURE 11. SOC for different EV types over 10 consecutive days. SOC =

state-of-charge; EV = electric vehicle; HO = home-only; HW =

home–work; HWP = home–work–park.

FIGURE 12. The cumulative available EV parking capacity for different
numbers of EVs. EV = electric vehicles.

V2H restoration mode and −55.4% when considering both
V2H and V2G. In SAIDI, the change is −24.9% and −46%,
respectively. SAIFI is slightly affected when only considering
V2H, with a percentage of −1.5%, and the change is −20%
when considering both V2H and V2G. This is expected
because the impact of EV support is greater on the ENS and
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FIGURE 13. Load energy consumption, with the EV available capacity in the three different modes (V2H, in-area V2G,
and out-of-area V2G). kWh = kilowatt hours; V2H = vehicle-to-home; V2G = vehicle-to-grid; EV = electric vehicle; HO =

home-only; HW = home–work; HWP = home–work–park.

FIGURE 14. ENS, SAIDI, and SAIFI for different SOCmax values. ENS =

energy not supplied; SAIDI = System Average Interruption Duration
Index; SAIFI = System Average Interruption Frequency Index; SOCmax =

maximum state-of-charge; kWh = kilowatt hours.

FIGURE 15. ENS, SAIDI, and SAIFI for different engine consumption
values. ENS = energy not supplied; SAIDI = System Average Interruption
Duration Index; SAIFI = System Average Interruption Frequency Index; EV
= electric vehicle; kWh = kilowatt hours; km = kilometer.

SAIDI. The EV can either restore part of the load or the full
load for a certain duration during the outage, unlike SAIFI,
where full restoration is required for improvement.

E. SENSITIVITY ANALYSIS
The reliability indexes also help the utilities evaluate their
networks and improve these reliability indexes for providing

FIGURE 16. ENS, SAIDI, and SAIFI for different MTTR values.
ENS = energy not supplied; SAIDI = System Average Interruption
Duration Index; SAIFI = System Average Interruption Frequency Index;
MTTR = mean time to repair.

better service. Many factors can impact the reliability per-
formance, such as EV SOCmax , SOCmin, outage duration,
failure frequency, and more. In this section, different key
parameters are incremented to show the sensitivity of the
reliability indexes. Fig. 14 shows the effect of EV SOCmax
on the system reliability indexes. The indexes decrease as
the SOCmax increases due to the added capacity during
restoration.

In Fig. 15, the EV engine consumption is increased from
0.1 to 0.55 kWh/km. All indexes decrease when the engine
consumption increases because the available capacity is less
during interruptions.

In Fig. 16, the repair time increases from 1 to 10
hours/failure. The ENS and SAIDI increase with the repair
time, and the SAIFI is steady.

V. CONCLUSION
Electric power systems are currently experiencing major
changes in their architecture and principles of operation.
Increased integration of renewable energy sources, energy
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market restructuring, greater environmental awareness, and
rising concerns about the security of the energy supply
impose new challenges. These challenges were tradition-
ally addressed by adding new system resources and capac-
ities, with investments in the field of large size genera-
tion and transmission infrastructures, in particular. Recently,
the increasing penetration of EVs connected to the util-
ity distribution grids have attracted significant interest in
modeling and formulating the potential of EV storage
to support the customer side during outages. Since EVs
mainly affect local distribution systems, previous stud-
ies have mostly tried to determine how different distri-
bution system characteristics will be affected by EVs.
Analyzing the reliability of distribution systems incorpo-
rating EVs is a challenging issue, especially considering
the stochastic driving behavior and increased utilization
of EVs.

This paper focused particularly on the reliability and
resilience aspects of MGs incorporating EVs. V2G and V2H
modes, the increased availability of EVs, and the stochastic
nature of driving can all introduce reliability benefits and
challenges to the system. The main direct contribution of EVs
to reliability under the V2G and V2H modes is on the cus-
tomer side rather than on the utility or system side. V2G tech-
nology achieves two-way interaction between the distribution
system and EVs and helps provide more flexible and reliable
operation. This paper quantitatively analyzed the stochastic
behavior of the EV and available energy capacity. More-
over, an innovative and practical Markov-based reliability
analysis method including EV participation was developed
and illustrated. The model proposed is algorithmic and does
not introduce bias in the calculation of reliability. Therefore,
the method appears suitable for the evaluation of alternative
microgrid restoration plans incorporating EVs. The stochastic
natures of EV driving and charging behavior were integrated
successfully into the proposed reliability model, and ade-
quacy transition rates were extracted from the EV available
capacity and load demand and used in the Markov model
analysis. However, EVs’ available capacity may not be able
to completely supply the demand during outages. This is due
to the ratio of available EV capacity to the load demand,
especially if the EV is in HW or HWP mode, because the
work driving distance is longer, which consumes more of
the SOC.

The results and outcomes of this work will benefit network
operators with improved reliability, security, and power qual-
ity of their networks during emergency/fault supply condi-
tions. Customers will also benefit by participating in different
system support and energy balancing schemes because they
will be empowered through MG operation to take control
of their energy flow and gain full independence from the
main grid supply in case of system faults. Owners and oper-
ators of EV batteries will also be able to negotiate tariffs,
incentives, and compensations for all offered functionali-
ties and services, thereby gaining additional returns on their
investments.
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