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ABSTRACT Network traffic classification aims to recognize different application or traffic types by
analyzing received data packets. This paper presents a neural network model with deep and parallel
network-in-network (NIN) structures for classifying encrypted network traffic. Comparing with standard
convolutional neural networks (CNN), NIN adopts a micro network after each convolution layer to enhance
local modeling. Besides, NIN utilizes a global average pooling instead of traditional fully connected layers
before final classification, which reduces the number of model parameters significantly. In our proposed
method, deep NIN models with multiple MLP convolutional layers are built to map fixed-length packet
vectors towards application or traffic labels. Furthermore, a parallel decision strategy of building two
sub-networks to process packet header and packet body separately is designed considering that they may
carry different kinds of clues for classification. The results of our experiments on the ‘‘ISCXVPN-nonVPN’’
encrypted traffic dataset show that NIN models can achieve a better balance between classification accuracy
and model complexity than conventional CNNs. The parallel decision strategy can further improve the
accuracy of using single NINmodel for encrypted network traffic classification. Finally, the test set F1 scores
of 0.983 and 0.985 are achieved for traffic characterization and application identification respectively.

INDEX TERMS Network traffic classification, convolutional neural network, network-in-network, data
packet.

I. INTRODUCTION
Network traffic classification is the task of recognizing dif-
ferent application or traffic types by analyzing received data
packets, which is important in modern communication net-
works [1]. Advanced network management tasks, such as
guaranteeing network quality-of-service (QoS) and detecting
network anomaly, relies on accurate traffic classification.

Existing methods of network traffic classification can be
classified into three approaches, i.e., port-based approach,
payload-based approach and machine learning approach. The
port-based approach is the oldest and the simplest one [2],
which extracts port numbers from the Transmission Control
Protocol (TCP) or User Datagram Protocol (UDP) headers
of packets to determine traffic categories. The payload-based
approach, usually named deep packet inspection (DPI), ana-
lyzes the payload of packets using predefined patterns for
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different protocols [3]. Although these two approaches can
achieve high accuracy of traffic classification in some sce-
narios, they suffer from the popularity of encrypted data
in current communication networks. For example, the traf-
fic of virtual private network (VPN) sessions significantly
reduces the accuracy of the port-based approach. Secure
transfer protocols, such as Hyper Text Transfer Protocol
over Secure Socket Layer (HTTPS) and Secret File Transfer
Protocol (SFTP), also increase the difficulty of recognizing
application types using the payload-based approach. There-
fore, the machine learning approach to traffic classification,
especially to encrypted traffic classification, has attracted
more and more research attentions recently. This approach
considers that encrypted packets are not just sequences of
totally random bits, but contains some inter-class discrimina-
tive patterns and intra-class similarities that can be captured
by machine learning algorithms. This approach usually uti-
lizes a public or self-made dataset, which contains network
packets with accurate labels and is divided into two parts,
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a training set and a test set. The former, training set, is used
to train a statistical model, i.e., a classifier, which predicts
the labels of the latter, test set, for performance evaluation.
The conventional classifiers that have been investigated for
traffic classification include k-nearest neighbor (k-NN) [4],
C4.5 decision tree [5], support vector machine (SVM) [6],
etc. Although these machine learning based methods can
achieve better performance of encrypted traffic classification
than port-based and payload-based approaches, they still have
two deficiencies. First, these methods relied on manually
designed features, such as flow duration, inter-arrival time,
and so on. Such handcrafted feature selection constrained
the robustness and generalization ability of these methods.
Second, the machine learning models adopted by these meth-
ods were conventional ones with shallow structures, which
limited the representation and prediction ability of these
methods.

Since 2006, deep learning has emerged as a new area of
machine learning research [7], [8]. Deep learning models,
such as deep neural networks (DNNs), convolutional neural
networks (CNNs) and recurrent neural networks (RNNs),
have be applied to various research areas, e.g., image clas-
sification [9], speech recognition [10], and natural language
processing [11], and have achieved significant progresses.
Comparing with conventional statistical classifiers, deep
learning models are better at describing the complex and non-
linear mapping relationship from input features towards class
labels. Besides, deep learning models are able to learn feature
representations automatically from raw data, which alleviates
the dependency on manually designed features and simplifies
the pipeline of building classifiers. Therefore, such deep
learning models have been introduced into machine learn-
ing based encrypted traffic classification recently [12]–[14].
Some of these studies adopted a traffic flow as the unit
for classification. Wang [15] first proposed a traffic clas-
sification method based on stacked autoencoders (SAEs)
for bidirectional flows (bi-flow) in 2015, which employed
TCP payload as input data. An end-to-end encrypted traf-
fic classification method was also proposed [16], in which
one-dimensional (1D) CNNs were built based on raw traf-
fic data. An automatic multitask learning system [17] was
proposed for abnormal traffic detection, in which 2D-CNNs
were used for bi-flow classification and the bi-flows con-
tained packets with all layers. Lopez-Martin et al. [18] pre-
sented a method by stacking 2D-CNNs and RNNs, in which
each packet was represented by its 6 fields and 20 packets
were combined as a bi-flow. A hierarchical deep learning
method was designed for malicious flow detection task [19],
in which L7 layer data and manually-designed features were
combined as model input. RNNs with long short-term mem-
ories (LSTMs) have also been applied to encrypted traf-
fic classification and been compared with CNNs and SAEs
under the framework of deep-full-range (DFR) [20]. Some
other studies adopted a data packet as the unit for classifica-
tion. A framework for encrypted traffic classification named
Deep Packet was presented [21], in which CNNs achieved

better performance than SAEs for classifying packets. In the
DataNets method developed for SDN home gateway [22],
CNNs outperformed multilayer perceptrons (MLPs) on the
accuracy of packet classification. Some other issues with
encrypted traffic classification, such as class imbalance [23]
and multimodal learning [24], have also been studied by
proposing deep-learning-based models.

Although these deep-learning-based methods have
achieved significantly higher accuracy of encrypted traffic
classification than conventional classifiers, such as k-NNs
and decision trees, they still have some limitations. First,
CNN was the dominant model structure in these studies. The
convolution operations in CNNs are linear, which restricts
the abstraction ability of CNN layers when learning latent
representations from raw encrypted data. Second, no matter
using flows or packets as the units for classification, existing
models treated a packet as a whole or only utilized a specific
part of packets as input data. However, different parts of
packets, such as packet headers and packet bodies, may
provide different kinds of clues for classification.

Therefore, this paper presents a neural network model
with deep and parallel network-in-network (NIN) structures
for encrypted traffic classification. The NIN model was ini-
tially proposed for image classification [25]. Comparing with
CNN, NIN adopts a micro network after each convolution
layer to enhance its local modeling and abstraction ability.
Besides, NIN utilizes a global average pooling instead of
traditional fully connected layers before final classification,
which reduces the number of model parameters significantly.
In this paper, deep NIN models with multiple convolutional
layers are built for encrypted traffic classification, in which
the micro network after each convolutional layer is an MLP.
Furthermore, a parallel decision strategy is designed, which
trains two sub-networks to process packet headers and packet
bodies separately. The final classification result for a data
packet is determined by fusing the decisions of both sub-
networks. We evaluated the performance of our proposed
methods on the ‘‘ISCX VPN-nonVPN’’ encrypted traffic
dataset [5]. Experimental results show that NIN models can
achieve a better balance between classification accuracy and
model complexity than conventional CNNs. The parallel
decision strategy can further improve the accuracy of single
NIN models for encrypted network traffic classification. The
best test set F1 scores of traffic characterization and applica-
tion identification are 0.983 and 0.985 respectively.

The contributions of this paper are twofold. First, NINs are
employed into the task of encrypted traffic classification for
the first time, which performs better than conventional CNNs
and the existing Deep Packet model [21] on the ‘‘ISCX VPN-
nonVPN’’ dataset. Second, a parallel decision strategy is
designed which further improves the classification accuracy
and indicates that different packet segments may provide
different kinds of clues and should be processed separately
for traffic classification.

The rest of the paper is organized as follows. Section II
introduces the details of our proposed methods. Section III
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FIGURE 1. The structure of our CNN-based baseline model for encrypted
traffic classification. The definitions of all symbols can be found in the
last paragraph of Section II.A.

presents the experimental results. Finally, the paper is con-
cluded in Section IV.

II. METHODOLOGY
This paper focuses on the task of packet-level encrypted
traffic classification, which means that a traffic or application
type decision should be made for each input traffic packet. In
this section, we will first introduce our CNN-based baseline
model, and then presents our proposed NIN-based model
together with the parallel decision strategy.

A. CNN-BASED ENCRYPTED TRAFFIC CLASSIFICATION
1D-CNNs (one-dimensional-CNNs) has been applied in nat-
ural language processing [26] and gained a great success.
Since a traffic packet is a sequence of data bytes which is
similar to a language sequence to some extent, we choose
1D-CNNs to build our CNN-based baseline model for
encrypted network traffic classification. An illustration of our
model’s structure is presented in Figure 1. Here, the input is
a sequence of packet bytes with fixed length. The output is
a class label for either traffic characterization or application
identification.

As shown in Figure 1, the input data is first processed by K
linear convolution modules, each composed of a convolution
layer and a pooling layer. Let X ∈ Rd×n denote the input fea-
ture map of a convolution layer, where d and n are the length
and channel number ofX . The output of the convolution layer
is calculated as

F = ReLU (U ∗ X, H1), (1)

where ReLU (·) is the Rectified Linear Unit activation func-
tion, ∗ stands for the operation of one-dimensional convolu-
tion andH1 is the stride for downsampling.U ∈ RW1×n×N are
the convolution filters of this layer that need to be estimated,
where W1 and N denote the kernel size and output channel
number respectively. F ∈ Rd ′×N is the output of this convo-
lution layer, and its length d ′ is determined by d ,W1, andH1.
To further reduce the length of F, a max pooling operation is

FIGURE 2. Comparison between (a) a traditional convolution in CNNs and
(b) an MLP convolution in NINs [25].

FIGURE 3. Comparison between (a) fully connected layers in CNNs and
(b) the global average pooling in NINs.

then performed in each linear convolution module as shown
in Figure 1.

The output of the K linear convolution modules is a
two-dimensional tensor, which is then flattened into a
one-dimensional vector and fed into two fully connected
layers. In the end, a softmax layer is used for class label
prediction.

There are some hyper-parameters in the linear convolution
modules. For all convolution layers in these modules, W1,
H1 and N represent the kernel size, stride and filter number
respectively. Similarly, for all pooling layers in these mod-
ules, W2 and H2 represent the kernel size and stride.

B. NIN-BASED ENCRYPTED TRAFFIC CLASSIFICATION
The Network-In-Network (NIN) structure [25] was first pro-
posed in 2013, and has been applied to many tasks, such
as image recognition [27], object detection [28], and speech
recognition [29]. Comparing with traditional CNN structure,
it makes two modifications.

First, NIN adopts a micro network after each convolution
layer to enhance its local modeling and abstraction ability.
Figure 2 shows the comparison between a traditional con-
volution in CNNs and an MLP convolution in NINs which
adopts a multilayer perceptron (MLP) as the instantiation of
the micro network. For a traditional convolution, the com-
putation on local receptive field can be seen as a single
linear operation. Then the computation output is activated
by nonlinear functions, e.g., Rectified Linear Unit (ReLU).
In contrast, the MLP convolution owns an MLP-based micro
network and there is a nonlinear activation after each layer
in the micro network. Therefore, MLP convolution enhances
model’s capacity of nonlinear expressiveness and allows
complicated interactions across channels.

Second, the NIN structure uses a global average pooling
(GAP) layer to replace the fully connected layers after con-
volutions in conventional CNNs. The differences between
these two structures are shown in Figure 3. In traditional
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FIGURE 4. The structure of the NIN model used in our proposed method. The definitions of all symbols can be found
in the last paragraph of Section II.B.

CNNs for classification, the feature maps calculated by the
last convolutional layer are flattened into a one-dimensional
vector and then sent into fully connected layers. Finally,
the output of the last fully connected layer is processed by a
softmax layer. However, these fully connected layers contain
a large amount of parameters and are prone to cause overfit-
ting issues, resulting in unsatisfactory generalization ability
of networks. In contrast, the GAP layer in NINs averages
the feature maps given by the last convolution layer, and the
output vector is directly fed into the softmax layer. The use
of global average pooling can reduce model complexity and
avoid model overfitting effectively [25].

In this paper, we introduce NINs into encrypted network
traffic classification and the model structure is illustrated
in Figure 4.

As shown in this figure, the NIN model contains K MLP
convolution modules and the first K − 1 ones have the same
structure. Each MLP convolution module is composed of a
linear convolution layer and two convolution layers with 1×1
convolution kernel. These two 1 × 1 convolution layers act
as the MLP-based micro network mentioned above. Let F ∈
Rd ′×N denote the output of the convolution layer as shown in
Eq. (1). Then, the output of the micro network is calculated
as

F′
= ReLU (ReLU (F · V1) · V2), (2)

where · stands for matrix multiplication and {V1,V2} ∈

RN×N are the parameters of the two 1×1 convolution layers,
which enhances the nonlinear and cross-channel interactions
in the model.

In the first K − 1 MLP convolution modules, all con-
volution layers are activated by ReLU and have the same
filter number N . Meanwhile, there is a max pooling layer
at the end of each MLP convolution module with the kernel
size W2 and the stride H2. The structure of the last MLP
convolution module is slightly different from the previous
ones. First, the three convolution layers within this mod-
ule have different filter numbers (N , N2, N3) respectively,
because a channel dimensionality reduction is necessary to

FIGURE 5. The structure of a data packet used in our implementation.

meet the requirement of global average pooling. Here, N3 is
the number of traffic or application types for classification.
Second, there is no max pooling in this module. The output of
all K MLP convolution modules is a two-dimensional matrix
with dimensions of M × N3, which refer to the size of each
feature map and the number of feature maps respectively.
Then for each feature map, a global average pooling with
kernel size M is conducted. Finally, the resulted vector with
size of 1 × N3 is sent to the softmax layer to complete the
prediction.

C. PARALLEL DECISION USING NINs
As introduced above, this paper studies packet-level
encrypted traffic classification. As shown in Figure 5, each
data packet processed by neural networks is composed
of three segments corresponding to the Network Layer,
the Transport Layer and the Application Layer of TCP/IP
model respectively. In our implementation, these three seg-
ments contain fixed 20, 20 and 1460 bytes respectively after
padding or truncating during data pre-processing. The details
of data pre-processing will be introduced in Section III.B. In
previous deep learning based traffic classification methods,
a data packet is usually treated as a whole and is sent into
a single model for classification. However, considering that
different packet segments may provide different kinds of
clues for traffic classification, such as the port numbers at
the Transport Layer and the data patterns at the Applica-
tion Layer, we consider that it may be a better method if
sub-networks can be build to process them separately.

Therefore, this paper designs a parallel decision strategy
for neural network based traffic classification. Its diagram
is shown in Figure 6. A data packet is first split into two
parts, a packet header and a packet body, according to
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FIGURE 6. The diagram of parallel decision for traffic classification.

Figure 5. Then, these two parts are sent into two NIN models
to calculate classification probabilities separately. At last,
the two results are fused to obtain the final one. Let vectors
y1 = [y1,1, . . . y1,N3 ]

> and y2 = [y2,1, . . . y2,N3 ]
> denote the

softmax outputs of the two NIN models, where y1,m and y2,m
stand for the probabilities that the packet should be classified
as the m-the class calculated by the two NIN models. These
two vectors are fused linearly as

y = αy1 + (1− α)y2, (3)

where the vector y contains the final probability predicted for
each category and α is a fusion weight.

At the training stage, all the data packets in the training
set are first divided into headers and bodies, and then two
NIN models are built accordingly. Then, we tune the weight
α within the range of (0, 1) and observe the performance
of fused probabilities y on the validation set. The optimal
α is determined when the fused prediction achieves the best
performance on the validation set.

III. EXPERIMENTS
A. TASKS AND DATASETS
The ‘‘ISCX VPN-nonVPN’’ encrypted traffic dataset [5] was
adopted in our experiments. This dataset consisted of pcap
files corresponding to various network applications, and all
files were captured by the authors in their daily life. When
constructing the dataset, the captured packets were first dis-
criminated according to the application category (such as
Skype, Hangouts, etc.), and then classified according to the
specific activities that the data packets in the application
participated in (such as voice call, chat, etc.). Ultimately,
the packets which belonged to a same application’s activity
were arranged into the same pcap file. This dataset also con-
tained packets encrypted by virtual private networks (VPN).

The specific numbers of packets belonging to dif-
ferent application and traffic types in the raw ‘‘ISCX
VPN-nonVPN’’ dataset is summarized in Table 1. As shown
in the left part of this table, the dataset contained a total
of 17 types of applications. It is worth mentioning that the
SCP, Tor and Gmail applications only had non-VPN packets,
and the remaining 14 application types had both VPN and
non-VPN packets. As shown in the right part of this table,
the dataset contained a total of 12 traffic types, including
6 non-VPN ones and 6 VPN ones.We can also see there was a
serious data imbalance problem among different application
or traffic types in the raw dataset. In our experiments, two

TABLE 1. Sample numbers of different application and traffic types in the
raw ISCX dataset.

TABLE 2. The mapping relationship between application types and traffic
types. Each traffic type in this table represents both VPN one and
non-VPN one.

tasks were defined for application classification and traffic
classification respectively. Tominimize the impact of the data
imbalance problem, two experimental datasets corresponding
to the two tasks were constructed based on the raw ‘‘ISCX
VPN-nonVPN’’ dataset.

The object of Task A was application classification and
the application types included the 14 ones in Table 1 which
contained both VPN and non-VPN packets. For each type
with sufficient samples, 5000 packet samples were randomly
selected from the raw dataset to construct the experimental
dataset of Task A, in which the ratio between non-VPN and
VPN packets was 1:1, i.e., 2500 samples for each. For the two
application types with insufficient samples (AIM and ICQ),
their non-VPN/VPN packet numbers were 1522/1351 and
910/2500.

Task B aimed at traffic classification, that was, to classify
the packets belonging to multiple applications but with the
same service type into one traffic type. The mapping rela-
tionship between application types and traffic types is shown
in Table 2 and more details can be found in [5]. For each of
the 12 traffic types shown in Table 1, 12000 packet samples
were randomly selected from the raw dataset to construct the
experimental dataset of Task B.
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TABLE 3. Hyper-parameters of the 5 linear convolution modules in
CNNlarge. The meanings of these hyper-parameters can be found
in Figure 1.

For each experimental dataset, we randomly divided it into
a training set, a validation set and a test set according to the
proportions of 68%, 16% and 16%.

B. DATA-PREPROCESSING
All packet samples in the experimental datasets for both
tasks needed to be pre-processed since the raw packets with
variable lengths cannot be fed into neural networks directly.
In this paper, we mainly followed the previous work [21]
for data preprocessing, which included four steps, packet
parsing, packet length unification, byte normalization and
packet labeling.

Raw packet were first parsed by removing Ethernet Layer
header, anonymizing IP addresses, unifying the length of
Transport Layer header, and discarding the packets without
Application Layer data. Here, unifying the length of Trans-
port Layer header aimed to make the header lengths of all
packets the same, and was implemented by truncating the
TCP header to 20 bytes and zero-padding the UDP header to
20 bytes. The packet length unification step generated packets
with fixed length by truncating or zero-padding the Applica-
tion Layer data. In our implementation, the fixed length was
set as 1500 bytes because the length of most data packets was
less than or equal to 1500 bytes. Thus, the length of Applica-
tion Layer data was 1460 bytes as shown in Figure 5. Then,
each element, i.e., each byte, in data packets was divided by
itsmaximumvalue 255 and normalized to the interval of [0, 1]
in order to facilitate the training of neural networks. Finally,
each packet was marked with an application type label and a
traffic type label so that neural networks can be trained in a
supervised way.

C. MODEL CONSTRUCTION
For each task, two baseline CNN models, CNNlarge and
CNNsmall , were first built following the introductions in
Section II.A. In both models, the number of linear convo-
lution modules was K = 5 and the neuron numbers of the
two fully connected layers were 1024 and 64. Table 3 shows
the hyper-parameters of the 5 linear convolution modules in
CNNlarge. The model structure of CNNsmall were the same
as CNNlarge except that the filter numbers N of its 5 linear
convolution modules were 32, 64, 128, 256 and 512, which
were much fewer than those of CNNlarge.

Similarly, for each task, two NIN models without parallel
decision, NINlarge and NINsmall , were also built following the

TABLE 4. Hyper-parameters of the 5 MLP convolution modules in
NINlarge. The meanings of these hyper-parameters can be found
in Figure 4.

TABLE 5. Model complexities of built neural networks.

introductions in Section II.B. In both models, the number
of MLP convolution modules was K = 5. Table 4 shows
the hyper-parameters of the 5 MLP convolution modules in
NINlarge. Most of themwere the same as the ones inCNNlarge.
In the last MLP convolution module, the filter number N2
were set as 512. The model structure of NINsmall were the
same asNINlarge except that the filter numbersN of its 5MLP
convolution modules were 32, 64, 128, 256 and 512, and the
filter number N2 of the last MLP convolution module was
256, which were much fewer than those of NINlarge.

Considering that our data pre-processing procedure was
basically consistent with the study of Lotfollah et al. [21],
we chose to compare our proposed models with the state-of-
the-art model in their paper [21] and named it CNNDeepPacket .
It consisted of two linear convolution layers and three fully
connected layers. The filter number and the stride of both
convolution layers were 200 and 5, and the kernel sizes were
5 and 4 for two layers respectively. The neuron numbers of
three fully connected layers were 1024, 512 and 64.

The model complexities of above five models in terms of
parameter numbers and floating point operations (FLOPs)
per packet are summarized in Table 5. We can see that all
four proposed models had fewer parameter numbers than
CNNDeepPacket . NINlarge had fewer parameter numbers but
higher computation costs than CNNlarge. The reason is that
the global average pooling in NINs reduced the parameter of
the fully connected layers in CNNs while the micro networks
in NINs increased the computation costs of CNNs. Anyway,
the complexity of NINsmall was much lower than that of
CNNlarge in terms of both parameter numbers and FLOPs.

Finally, an NIN-based classification model with parallel
decision, named NINparallel , was built for each task following
the introductions in Section II.C. In this model, the NIN2 net-
work in Figure 6 adopted the same hyper-parameters as
NINlarge introduced above. The NIN1 network in Figure 6
consisted of two MLP convolution modules which were both
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TABLE 6. Overall experimental results of five neural networks on application classification (Task A) and traffic classification (Task B).

configured as W1 = 3, H1 = 2, N = 200, W2 = 3 and
H2 = 2. Besides, its first MLP convolution module had no
max pooling layer. Instead, the tensor was flattened and fed
into two fully connected layers with 1024 and 64 neurons.
The fusion weight α was tuned according to the model per-
formance on validation set and its optimal value was 0.52 for
both tasks.

Our models were implemented with TensorFlow and run
on a server with Ubuntu 14.04.3. AnNvidia Tesla K40mGPU
cardwas used to accelerate our training and testing. All neural
networks were trained for 300 epochs with a categorical cross
entropy loss using the Adam optimizer. The learning rate
was set to 0.001 at the beginning, and decreased by 98%
after every epoch. In order to prevent overfitting, we used the
dropout technique with a ratio of 0.9.

D. EVALUATION RESULTS
1) EVALUATION METRICS
In our experiments, Precision (Pr ), Recall (Rc) and F1 score
(F1) were used to measure model performance. These metrics
are mathematically explained as

Rc =
TP

TP+ FN
, (4)

Pr =
TP

TP+ FP
, (5)

F1 =
2RcPr
Rc + Pr

, (6)

where TP, FP, and FN stand for the numbers of true positive,
false positive and false negative samples respectively.

2) COMPARISON BETWEEN CNN-BASED AND NIN-BASED
ENCRYPTED TRAFFIC CLASSIFICATION AND RELATED WORK
Table 6 show the test set performance of NINlarge, CNNlarge,
NINsmall , CNNsmall and CNNDeepPacket models on applica-
tion classification and traffic classification tasks respectively.
Here, the Pr , Rc and F1 values were averaged across all
classes. Since F1 score is the harmonic mean of Precision
and Recall, we chose to use the average F1 score as the
main metric for analyzing the performance of different mod-
els. From these results, we can see that our proposed CNN
models achieved similar performance with CNNDeepPacket .
While, our proposed NIN models obtained better results than
CNNDeepPacket although the NINsmall model had much lower
model complexities than CNNDeepPacket as shown in Table 5.
Then, we will focus on the comparison between our proposed
NIN and CNN models. Two main conclusions can be drawn
as follows.

First, when CNN and NIN models had similar model
complexity, the NIN model achieved better results of packet
classification than the CNN model. We can see that NINlarge
outperformed CNNlarge in terms of average F1 score on both
tasks (0.974 vs. 0.970 on Task A and 0.979 vs. 0.973 on
Task B). NINsmall outperformed CNNsmall on both tasks as
well (0.969 vs. 0.961 on Task A and 0.974 vs. 0.969 on
Task B). It is worth mentioning that the basic model struc-
tures of the two NIN models were the same as their CNN
counterparts as mentioned in Section III.C. That is to say,
the unique model structures of NINs (i.e., MLP convolution
module and global average pooling) contributed to obtaining
the better performance of encrypted traffic classification than
CNNs.

Second, comparing the average F1 scores of NINsmall and
CNNlarge, it is obvious that although the model complexity of
NINsmall wasmuch lower than that ofCNNlarge, they achieved
similar classification performance (0.970 vs. 0.969 on Task
A and 0.973 vs. 0.974 on Task B). These results demonstrate
that NIN models can achieve a better balance between traffic
classification accuracy and model complexity than conven-
tional CNNs.

Furthermore, in order to compare the performance of dif-
ferent models in detail, Figure 7 and 8 show the class-specific
F1 scores of four models on both tasks. From these two
figures, some findings can be observed as follows.

First, the application types AIM and ICQ achieved the
lowest F1 score on task A. The best F1 scores of the remain-
ing categories were all higher than 0.94. This is due to the
insufficient samples of these two application types in the
raw ISCX dataset. As introduced in Section III.A, these two
types had only 2873 and 3410 samples respectively in our
experimental dataset, while this number was 5000 for other
application types. On task B, the traffic types Chat and Email
obtained the lowest F1 score. We consider that there were two
reasons. a) There were five applications corresponding to the
traffic type Chat as shown in Table 2, which increased the
difficult of distinguishing the traffic type Chat from others.
b) The application type Email included in the traffic type
Email also had a relatively low accuracy on task A as shown
in Figure 7. It may be attributed to that the data itself did not
contain strong patterns for classification that can be captured
by neural networks.

Second, NINlarge and NINsmall models achieved better per-
formance than their CNN counterparts on most application
and traffic categories. As shown in Figure 7, NINlarge out-
performed CNNlarge and meanwhile NINsmall outperformed
CNNsmall for 10 out of 14 application categories. Simi-
larly, as shown in Figure 8, NINlarge outperformed CNNlarge
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FIGURE 7. The class-specific F1 scores of four models on application classification (Task A).

FIGURE 8. The class-specific F1 scores of four models on traffic classification (Task B).

TABLE 7. Average F1 scores and complexities of different models on application classification (Task A).

TABLE 8. Average F1 scores and complexities of different models on traffic classification (Task B).

and meanwhile NINsmall outperformed CNNsmall for 8 out
of 12 traffic types. Besides, the performances of NINsmall and
CNNlarge models were relatively close on most categories as
well. These conclusions are consistent with the ones drawn
from Table 6.

Third, we can see from Figure 8 that the F1 scores of
VPN traffic types were comparable with those of non-VPN
ones. This demonstrates the robustness of deep learning based

traffic classification methods that can handle the data packets
encrypted by VPN effectively.

3) PERFORMANCE OF PARALLEL DECISION USING NINs
Table 7 and 8 show the average F1 scores of NINparallel mod-
els on both tasks. In addition, the results of using the NIN1 or
NIN2 network in NINparallel and the results of the NINlarge
model introduced above are also listed for comparison.

VOLUME 8, 2020 132957



Z. Bu et al.: Encrypted Network Traffic Classification Using Deep and Parallel NIN Models

Comparing the performance of NIN1 and NIN2 in both
tables, it can be found that using only packet header can
obtain significantly better performance than using only
packet body for traffic classification. That is to say, for the
packet-level traffic classification task, the 40-byte packet
header contains more information useful for classification
than the 1460-byte packet body. Comparing the performance
of NIN1 and NINlarge, we can see that using only packet
header was better than using the whole packet, although
the former employed a much smaller model structure than
the latter. This confirms our assumption that packet header
and packet body contain different kinds of information for
classification and it is difficult to model the concatenation of
them using a single network.

In each NINparallel model, NIN1 contained much fewer
parameters than NIN2. Thus, the model complexity of
NINparallel was comparable with that of NINlarge as shown
in Table 7 and 8. Furthermore, NINparallel achieved better F1
scores than NINlarge on both tasks, which demonstrates the
effectiveness of our proposed parallel decision strategy. In
addition, we counted the number of validation set samples
that were correctly classified by one of NIN1 and NIN2 but
failed to be correctly classified by the other. For task A,
there were 4266 samples that were correctly classified by
NIN1 but misclassified byNIN2, and there were only 38 sam-
ples that were correctly classified by NIN2 but misclassified
by NIN1. For task B, these two numbers were 7429 and
169 respectively. Thus, we can clearly see that the perfor-
mance ofNINparallel was actually dominated by its NIN1 part.
In other words, the task of classifying encrypted packets is
still challenging if only Application Layer data is available.

IV. CONCLUSION
This paper has presented a method of building deep and
parallel network-in-network (NIN) models for encrypted
network traffic classification. This method aims at mapping
fixed-length data packets towards the labels of application
or traffic categories. Based on deep NIN networks with
multiple MLP convolutional modules, a parallel decision
strategy is designed which builds two sub-networks for
processing packet header and packet body separately.
Experimental results on the ‘‘ISCX VPN-nonVPN’’
encrypted traffic dataset show that NIN models achieved
better performance than CNNs. Besides, the parallel decision
strategy further improved the accuracy of using single NIN
model for traffic classification. To boost the performance of
encrypted traffic classification using only Application Layer
data will be a task of our future work.
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