
Received July 6, 2020, accepted July 15, 2020, date of publication July 20, 2020, date of current version July 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3010556

Intensive Care Unit Mortality Prediction:
An Improved Patient-Specific Stacking
Ensemble Model
NORA EL-RASHIDY1, SHAKER EL-SAPPAGH 2,3, TAMER ABUHMED 4,
SAMIR ABDELRAZEK5, AND HAZEM M. EL-BAKRY5
1Machine Learning and Information Retrieval Department, Faculty of Artificial Intelligence, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
2Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
3Information Systems Department, Faculty of Computers and Artificial Intelligence, Benha University, Banha 13518, Egypt
4College of Computing, Sungkyunkwan University, Seoul 561-758, South Korea
5Information Systems Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt

Corresponding author: Tamer Abuhmed (tamer@skku.edu)

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) under
Grant NRF-2016R1D1A1A03934816.

ABSTRACT The intensive care unit (ICU) admits the most seriously ill patients requiring extensive
monitoring. Early ICU mortality prediction is crucial for identifying patients who are at great risk of dying
and for providing suitable interventions to save their lives. Accordingly, early prediction of patients at high
mortality risk will enable their provision of appropriate and timely medical services. Although various
severity scores and machine-learning models have recently been developed for early mortality prediction,
such prediction remains challenging. This paper proposes a novel stacking ensemble approach to predict
the mortality of ICU patients. Our approach is more accurate and medically intuitive compared to the
literature work. Data were prepared and feature selection was processed under the supervision of the ICU
domain expert. The data were split into six modalities based on the expert’s decisions. For the prediction
process, a separate classifier was selected for each modality based on the performance of the classifiers.
We utilized the most popular and diverse classifiers in the literature, including linear discriminant analysis,
decision tree (DT), multilayer perceptron, k-nearest neighbor, and logistic regression (LR). Then, a stacking
ensemble classifier was constructed and optimized based on the fusion of these five classifier decisions.
The framework was evaluated using 10,664 patients from the medical information mart for intensive care
(MIMIC III) benchmark dataset. To predict patient mortality, extensive experiments were conducted using
the patients’ time series data of different lengths. For each patient, the first 6, 12, and 24 hours of the first
stay were tested. The results indicate that our model outperformed the state-of-the-art approaches in terms of
accuracy (94.4%), F1 score (93.7%), precision (96.4%), recall (91.1%), and area under the receiver operator
characteristic (ROC) curve (93.3%). These results demonstrate the ability and efficiency of our approach to
predict ICU mortality.

INDEX TERMS Ensemble classifier, intensive care unit, information fusion, machine learning, mortality
prediction.

LISTS OF ABBREVIATIONS
Term Abbreviation
ICU Intensive Care Unit
ICT Information Communication Technology
CSRU Cardiac Surgery Recovery Unit
SICU Surgical Intensive Care Unit
MICU Medical Intensive Care Unit
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MIMIC-III Using Medical Information Mart for Inten-
sive Care III

EHR Electronic Health Record
LOS Length of Stay
APACHE Acute Physiology and Chronic Health

Evaluation
SOFA Simplified Acute Physiology Score
MPM Mortality Probability Model
BIDMC Beth Israel Deaconess Medical Center
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MCAR Missing Completely at Random
MAR Missing at Random
MNAR Missing Not at Random
KNN K-Nearest Neighbor
DT Decision Tree
LR Logistic Regression
MLP Multilayer Perceptron
LDA Linear Discriminate Analysis
SVM Support Vector Machine
WSRT Wilcoxon Sign Rank Test

I. INTRODUCTION
Most hospitals are moving towards replacing the traditional
infrastructure with smart systems to maximize the utilization
of information and communication technology [1]. Smart
health is expected to significantly improve the quality of
service in the healthcare sector. The intensive care unit (ICU)
is a special department in the health care sector that typically
helps people recover from life-threatening injuries and ill-
nesses [2]. Patients in the ICU require consistent supervision
from medical staff and caregivers to ensure the stability of
their health. Therefore, early- and reliable-prediction tools
for sensitive medical conditions would be useful caregiving
aids.Mortality prediction is one of themost important tasks in
critical care research [3]. The purpose of mortality prediction
is not only related to identifying high-risk people and to
making the right decisions but also to saving ICU beds
for patients in need [4]. Several scoring systems, such as
the acute physiology and chronic health evaluation system
(APACHE) [5] and simplified acute physiology (SAPS), have
been developed recently [6]. These systems are not always
appropriate for all patients in the ICU because they are
not sufficiently accurate [7]. To improve the accuracy of
the mortality prediction, researchers have proposed models
and scoring systems under specific conditions. For example,
Moridani et al. [8] proposed a mortality scoring system for
people with heart problems. They concluded that the model
provides acceptable results when risks are predicted early.
However, selecting the right model for a patient, who may be
diagnosed with various diseases and then admitted to ICU,
is still considered a challenge. Therefore, a more general and
efficient mortality predictionmodel is required, and this is the
focus of our study.

The growth of the electronic health record (EHR) in
the ICU, where the IUC clinical measurements and other
patient medical histories are preserved, presents a great
opportunity to develop predictive and analytical tools that
help both patients and physicians using machine learning
(ML) techniques [9]. Using HER, various studies have uti-
lized the ML advances to build accurate mortality prediction
models. Graham et al. [10] provided a patient readmission
prediction model based on logistic regression (LR). Their
work relied on the patient’s age, arrival mode, and triage
category. Gentimis et al. [11] utilized lab test results to
predict the patient’s length of stay (LOS), and sepsis has been

used for mortality prediction by [12], [13]. Liu et al. [14]
provided a mortality prediction model using the support
vector machine (SVM). References [15], [16], and [17]
endorsed the use of LR to develop a clinical prediction model
for mortality while [18] and [4] supported the use of random
forest (RF) and decision tree (DT), respectively. Although
these studies proposed various ML models for mortality
prediction, the resulting models have suffered unstable
performance, especially in different ICU categories [15]. This
is because mortality prediction in the ICU encounters many
challenges relating to data diversity, high dimensionality,
irregular sampling, and data imbalance [14], [19]. The high
dimensionality increases the computational complexity and
decreases the model accuracy. The irregular sampling creates
a challenge for extracting data and reflects the large amount
of missing data [20]. Highly imbalanced data also negatively
impact our ability to obtain satisfactory results as it may
lead to classifier bias in favor of the majority class [21].
All these factors impact single-classifier models differently.
As discussed by Anand et al. [16], each classifier has
its advantages and limitations. Accordingly, using a single
classifier with high diversity and high-volume datasets may
increase both the search-space area and misclassified data,
whichmay in turn degrade the classifier’s accuracy [22], [23].

Therefore, instead of training on a large database,
Breiman [24] proposes dividing data into small pieces,
building classifiers on each small piece, and then combining
all the predictors. This is known as ensemble learning.
Ensemble learning methods are statistical and computational
learning methods that are reminiscent of human learning
behavior that involves considering multiple options before
making a crucial decision. An ensemble classifier consists
of a set of ML techniques that combine learning algorithms,
decisions, or other characteristics to provide more accurate
and reliable decisions [25]. It is well known that ensemble
classifiers provide more efficient classification models by
taking advantage of used classifiers and avoiding their
limitations [26]. Generally, the ensemble model outperforms
all constituent classifiers, but the participating weak learners
should be accurate and diverse. Accuracy is achieved by opti-
mizing the performance of each base learner, and diversity
is achieved based on the ensemble type. For a homogeneous
ensemble, this is achieved by using different samples (e.g.
bagging), different weights (e.g. boosting), different feature
sets, and samples (e.g. RF). For a heterogeneous ensemble,
this is achieved by using different ML algorithms or different
hyperparameters for the same algorithm. There are many
combination strategies to construct the ensemble classifier
including voting and stacking. Given the fact that ensemble
classifiers outperform single classifiers, various theoretical
and empirical studies recommend using ensemble classifiers
as an effective model because they can improve the prediction
accuracy for the followingmultiple reasons [27], [28]. (1) The
ensemble classifier provides a handy solution by training dif-
ferent basic classifiers with different data partitions and then
combines their outputs. In the case of insufficient training
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data, resampling techniques can be used to create overlapping
random subsets from the available data. The data generated
from resampling is used to train different classifiers, and
then to create an ensemble output; such a method is well
known to improve the ensemble classifier [29]. (2) It is
extremely difficult for a single classifier to solve extremely
complex problems that involve a decision boundary that lies
outside the space of the function implemented by the selected
classifier model [30]. Therefore, a suitable combination
of ensemble classifiers can learn this non-linear boundary.
(3) The ensemble classifier reduces the risk of a poor
selection of a single that cannot generalize the performance,
and therefore, combining several classifiers by averaging the
output may decrease the risk of the poor-performance of
the selected single classifier. Moreover, this contributes to
decrease the risk of making a poor selection [31]. (4) Since
medical data is a fusion of heterogeneous data obtained
from different sources, a single classifier cannot be used to
learn all the information included in this data. For example,
ICU data are of several types (e.g., time series, multivariant,
Electroencephalogram (EEG) recording, image scanning,
blood tests, etc.). In such cases, data from each type can
naturally be trained with different classifiers then combined
for the final decision. The process of combining data from
multiple sources to provide a more informative decision is
called data fusion [32]. Ensemble-based models have been
successfully used for applications adopting the data fusion
process [33]– [35].

Maintaining the diversity between the base learner clas-
sifiers is the cornerstone of building an efficient ensemble
classifier. There are several intuitive approaches to building
an ensemble model with different decision boundaries, and
to achieve the highest diversity, these can be summarized
as follows [36]. (1) Dividing training data into several
subsets with each subset used for learning with a single base
classifier—this division can be performed using resampling
techniques such as bootstrapping, which creates a training
data subset with a replacement, or it can be performed man-
ually. (2) Using different training parameters and different
classifiers, as certain types of classifiers are not suitable for all
types of data, selecting several algorithms and combinations
can also serve as a better way to build classifiers with different
decision boundaries.

This research investigates the use of a proposed ML-based
ensemble classification technique to develop an accurate and
medically intuitive model for early mortality prediction. Our
research was conducted under the supervision of an ICU
medical expert. Accordingly, multiple preprocessing steps
were made to improve the quality of the data extracted
from the MIMIC-III dataset. [37]. We investigate the role
of time-series data (i.e. vital signs, laboratory tests, and
demographic) on the performance of the proposed ML
model. Our classifier combines the prediction powers of
many well-known and diverse algorithms such as multi-layer
perceptron (MLP), linear discriminate analysis (LDA),
K-nearest neighbor (KNN), DT, and LR.

To optimize our ensemble model, the data are vertically
divided into feature subsets based on the suggestions of the
domain expert. The results show a superior performance of
the proposed approach compared to that of the state-of-the-art
models. To summarize, the study focuses on answering
the following questions. (1) What are the most important
factors in the early prediction of ICU mortality? (2) Do
ML techniques, especially ensemble models, outperform the
current mortality scoring systems?

The contributions of this study are summarized as
follows.
• We propose an accurate and medically intuitive ICU
mortality prediction framework based on a comprehen-
sive list of critical features from ICU patients. Themodel
is based on a novel stacked generalization ensemble
algorithm. The constructed model is optimized to solve
a binary classification based on an accurate pipeline of
preprocessing and classifier optimization steps.

• The framework analyzes the role of multivariate
time-series data on the performance of the prediction
model. This includes the study of the effect of using
different lengths of the temporal data (i.e. 6, 12, and
24 hours) of patients, starting from the admission time
of the first stay.

• Our model incorporates six distinctive modalities based
on the opinions of the medical expert. Each base
classifier (i.e. KNN, MLP, LDA, DT, or LR) was
optimized with the list of modalities, and the statistically
significant classifier was selected for every modality.
The resulting list of classifiers was used to build
the proposed stacking model. Different meta-classifiers
were tested, and the best performing classifier was
selected.

• We evaluate the proposed approach by perform-
ing extensive experiments using a balanced dataset
of 10,664 patients from the MIMIC-III benchmark
dataset. The results of our framework are superior to
those of the standard scoring systems, single classifiers,
and standard ensemble techniques. The proposed model
achieved encouraging accuracy and strong generaliza-
tion performance that can adapt to the classification of
various types of data in ICU.

• A comprehensive analysis was conducted to com-
pare out stacking model with popular ML models
such as KNN, MLP, LDA, DT, and LR. More-
over, we compare our model with similar ensemble
models, including bagging, RF, boosting, and voting
classifiers.

The rest of this paper is organized as follows.
Section 2 presents a review of relatedwork, whereasmaterials
and methods are discussed in Sections 3. The research
setting and experimental design for the proposed framework
are detailed in Section 4, with the results presented in
Section 5. We discuss our evaluation of the proposed solution
in Section 6, and finally, we conclude our researchwith a brief
outline of the main findings in Section 7.
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II. RELATED WORK
Intensive care is a complex department that always handles
patients with critical cases, many of whom suffer from several
diseases simultaneously [38]. Therefore, patients admitted to
the ICU require close and continuous supervision to avert
the potential for rapid degradation in their health status.
Intensive monitoring through the ICU equipment results in
large medical records that require efficient and accurate
systems for assistance in data analysis. Using ICU data to
predict future events, such as patient mortality, is considered
one of the most critical topics in ICU research [39]. In this
section, we discuss the related literature studies on this topic.
We specifically focus on (1) traditional scoring systems and
(2) ML-based systems for the mortality prediction.

A. TRADITIONAL SCORING SYSTEMS
For traditional scoring systems, various models, such as
APACHE (the most widely used and well-known model
in critical care), have been developed. The first version
of APACHE was developed in 1981; it is based on
34 physiological features extracted from the first 24-h period
after ICU admission to determine the patient’s health status.
In 1999, the APACHE II scoring model was adopted,
including only 12 physiological measures, in addition to the
patient’s age. This version was extended to APACHE III
in 1993 by adding new features such as the gender, and LOS
in ICU. In 2006, APACHE IV was developed to provide
a risk-estimating score used to predict short-term mortality.
SPAS II is another scoring system developed in 1993. This
is frequently used for specifying the severity of diseases in
patients in the ICU. However, it is only valid for adult patients
(i.e. age > 15), and the values range between 0 and 163.
One other conventional scoring system is the sepsis-related
organ failure assessment (SOFA) score [40], which is used
to assess six organs by evaluating the breathing, nervous
system, liver, and coagulation related features. This score
indicates the derangement for each organ, based on a number
between 0 and 4, where 0 represents normal cases, and
4 represents critical cases [41]. Further details on the current
scoring system can be found in the reports of Jeong [6] and
Arabi et al. [42]. Overall, the traditional score-based systems
have attempted to predict mortality using similar approaches
based on specific numbers of vital signs and measurements.
However, owing to their weakness in discrimination, there
is no efficient up-to-date scoring system that can be used
for mortality prediction. This has sparked the need for other
assistant techniques that can help in realizing the early
prediction of mortality.

B. ML-BASED SYSTEMS
The studies are based on the regular ML techniques for
mortality prediction [14], [43], [44]. Member et al. [45]
illustrated the use of SVM results to improve the prediction
of patient LOSLOS using association rules. Kim et al.
compared the use of DT, artificial neural networks (ANN),

and SVM with APACHE III to predict mortality [46],
and reported that DT gave the best performance. In [18],
Ghose et al. used RF, SVM, and LR, compared to SAPS, and
concluded that RF achieved an area under the curve (AUC)
of 87%; they also found that RF outperforms some of the
state-of-the-art predictive models based on SVM and LR.
Therefore, selecting the most suitable algorithm is considered
a critical point in building an efficient model. Various
studies used LR for the early prediction of mortality in the
ICU [15], [47], [48]. For example, Ball et al. [17] used LR
to develop a clinical prediction approach for mortality based
solely on heart-rate features. Their work provides acceptable
results for Canadian elderly patients who suffered from heart
problems. Anand et al. [16] recommended LR to predict the
mortality of adult patients admitted for cardiac surgery and
to the coronary care unit. Sadeghi et al. recommended SVM
as the most accurate algorithm for mortality prediction [4].
Dybowski et al. adopted an ANN-based system to predict
mortality [49] and compared its performance with those of
LR and SVM. They reported that ANN was more accurate
than SVM and LR. Others in [62] used ANN for predicting
various events such as mortality, LOS, and ICD 9 diagnosis.
The study achieved AUC values of 0.93, 0.88, 0.87 for these
tasks, respectively.

The limitation of the current ML-based studies is that
most studies build prediction models for specific types of
patients and use a single ML algorithm for their proposed
system. The authors of [41], [43], [50] [51] and [52]
developed mortality-prediction models for specific patients
such as kidney-failure patients. Although accurate results
were obtained in these studies, the application of their
models is limited to specific domains. In the ICU, classifying
a patient and selecting the right model, especially within
the first 24 hours after admission, are challenging [53].
Ding et al. [54] attempted to overcome this shortcoming by
developing a two-step framework—one for clustering and
the other for mortality prediction. Their method uses the
just in time learning algorithm (JITL) to collect relevant
samples, after which the prediction process is conducted
locally. The performance delivered by this method may be
better than that delivered by conventional prediction systems.
Other researchers have attempted to solve the problem of
data unavailability in the first 24 hours by utilizing the
correlation between specific patient’s measurements and
mortality. For example, Krishnan and Kamath [55] only used
lab test features and genetic algorithm-based wrapper to do
feature selection followed by an optimization of an ANN
model for mortality prediction [56]. The authors reported
that the developed model improved prediction accuracy by
approximately 2–3% with an increase of 5% in terms of
AUC. A similar idea has been considered by Miao et al. [57],
where laboratory data have been used to predict the risk of
mortality for heart failure patients. However, one drawback
of using lab measurements is that these tests may not be
available for all the ICU patients, and not all critical cases
can be predicted using lab-test results. The same concept had
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been used in [4] and [42], where only heart-rate signals were
used and then aggregated during the first hour for mortality
prediction. In [58], the authors built a deep learning model
that used only on nursing notes to predict mortality.

Other studies have developed ensemble models to improve
mortality-prediction accuracy. For example, Johnson et al.
[59] provided an ensemble for survival prediction using
a Bayesian ensemble schema that consists of 500 weak
learners (DT); it achieved an area under the receiver operator
characteristic curve ROC (AUC) of 86%. Using an ensemble
of the same learner may not be practical and may not deliver
the best accuracy. In [60], Awed et al. designed an ensemble
model for mortality prediction, which includes RF, DT, and
Naive Bayes (NB). They applied their ensemble model on
20 features extracted in the first 6 hours of the patient
admission. It achieves an AUROC score of 82%. It may
not provide the best performance in the first 6 hours as
many values may not be available during this initial period.
In [61], J. Xia et al. proposed an ensemble model based on
the long short-term memory (LSTM) technique for mortality
prediction. The idea behind this work is to use two LSTM
layers based on 50 features extracted in the first 24 hours.
They achieved an AUC score of 85.5%. Caicedo-Torres et al.
proposed a deep learning model called ConvNet for mortality
prediction [58]. Their system achieved 87.3% in terms of
AUC, and they added further steps by using ConvNet in
handling both static and dynamic data.

These inconsistencies in the results and performance
reported in the literature clarify that no single algorithm
outperforms others in terms of prediction, and none of the
developed systems are commonly used for prediction owing
to the low power of discrimination. Therefore, it is a challenge
to provide an accurate prediction of hospital mortality. This
work focuses on handling this challenge and dealing with a
complex ICU dataset and improving mortality prediction in
the ICU.

III. MATERIALS AND METHODS
This section details the selected dataset, preprocessing steps,
and extracted features in our experiments.

A. MIMIC III DATABASE
TheMIMIC III dataset is a benchmark ICU dataset developed
by the MIT Lab for computational physiology. It comprises
the EHR data related to patients admitted to the ICU at
the Beth Israel Deaconess Medical Center (BIDMC) in
Boston. MIMIC-III is an updated version of MIMIC-II
released in 2010. MIMIC-III can be used once accessibility
confirmation is obtained from the Physionet Organization.
Privacy issues have been managed in all MIMIC versions by
removing all the sensitive patient data such as names, phone
numbers, and addresses.

B. USED DATASET DESCRIPTION
MIMIC-III is a vast single-center database including informa-
tion related to patients admitted to the ICU in a large tertiary

hospital. It comprises data of 53,423 distinct ICU admissions
in the period between 2001 and 2012. In MIMIC-III,
38,597 distinct patients are aged over 16. The mean age
among adults is 65.8, and 55.9% are males. The means of
4,579 measurements and 380 laboratory tests are available
in the MIMIC III tables. Table 1 presents the statistics
of the dataset according to age and gender. There are
different modalities in MIMIC III, including physiological
measurements, medications, laboratory tests, descriptive
details, nursing notes, and reports. The data are distributed
as a set of commas separated files (CSV) that can be mapped
to a relational database such as PostgreSQL. The resulting
database consists of 26 related tables linked by unique
identifiers such as SUBJECT_ID.

TABLE 1. Dataset description.

In this work, we consider adult patients (age > 15 years)
admitted to the cardiac surgery recovery unit (CSRU), med-
ical ICU (MICU), or surgical ICU (SICU). Table 2 presents
the distribution of patients according to the ICU type.

TABLE 2. Utilized ICU types.

C. DATA PREPROCESSING STEPS
The following challenges are addressed to prepare the
MIMIC data for the ML process:

Imbalanced data distribution: Imbalanced data produce
biased results, and the algorithms are optimized for the
majority class. Our selected MIMIC dataset is imbalanced
because it has 35000 patients who have survived (i.e. class 0)
and 5400 dead patients who died in the ICU (class 1). The
main class represents 15.43% of the total dataset.

Data redundancy: MIMIC has several redundant features
with different names and units of measurement. Besides,
many of these features are highly correlated.

Irregularity of time series: MIMIC data are primarily
time-series data. However, not all features are collected at
the same rate. Most features have many missing values.
A certain feature may be lost or incomplete because sensors
or instruments can break down or be improperly operated by
the medical staff.
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D. COHORT SELECTION
We used the following three main inclusion criteria for the
study cohort: (1) care unit type: only patients from CSRU,
MICU, and SICU are considered; (2) age: only adult patients
(age > 15 years) are included; (3) the number of admissions:
only the first admission is considered to prevent possible
data leakage during analysis. Figure 1 details the number of
patients in each step and the filtering steps performed.

FIGURE 1. Inclusion and exclusion criteria of patients.

E. TABLE SELECTION
MIMIC III relational database consists of 26 tables that
store patient demographics, vital signs, laboratory test results,
diagnosis notes, etc. Our patient monitoring data are mainly
extracted from the chartEvents, outputEvents, labEvents,
d_itmes, and lab_items tables. To aggregate data from
the MetaVision and CareVue medical information systems,
we utilize the inputevents_cv and inputevents_mv tables.
Table 3 shows the table selected from the dataset and the
selected column of each table.

IV. PROPOSED FRAMEWORK
This work presents a stacking ensemble classifier for
ICU mortality prediction as a binary classification task
(0: survived and 1: died). We performed experiments on the
model using the MIMIC-III dataset. As shown in Figure 2,
the proposed framework has a set of four modules. The first
module collects the MIMIC data and performs the prepro-
cessing steps to improve data quality. The outputs of this step
include three datasets called feature sets A, B, and C. These
data are collected for different time windows (i.e. at 6, 12, and
24 hours). The secondmodule optimizes the five selectedML
models for themortality-prediction binary-classification task.
The optimization process utilizes the datasets prepared by the
first component. The third module fuses the optimized base
classifiers of the previousmodule and explores the roles of the
standard ensemble techniques. The tested ensemble models
include RF, AdaBoost, bagging, stacking, and voting.

We propose a customized stacking ensemble model, which
is developed based on the six optimized base classifiers.

Our proposed ensemble classifier works as a committee of
experts where each expert is specialized in one field. A com-
mittee can sometimes make a wiser decision than individual
experts can. Opinions of all committees (classifiers) are
aggregated for consideration using various mechanisms like
weighted voting. Finally, the performance of different models
is evaluated using unseen test datasets.

A. DATA PREPROCESSING
This step aims to improve the quality of the collected
medical data. After exploring the dataset, we found that the
collected data contains missing and outlier values. Most of
the ML models cannot work with missing data, and several
are sensitive to outliers. Missing data occur due to many
reasons including equipment failure and system/network
errors. Furthermore, because vital signs and lab-test results
may be recorded at different frequencies, some values may
also be missing. The data preprocessing includes sample
selections, data balancing, normalization, removing outliers,
and handling missing data.

1) DATA BALANCE
Class imbalance is a common problem in medical data [63].
In MIMIC III, a minority of patients died during ICU
admission. There are many techniques for handling imbal-
anced data including data sampling. Two main techniques
are used for data sampling: downsampling and oversam-
pling [64]. Oversampling involves increasing the number
of cases of the minority class. Various techniques can be
used for oversampling such as random oversampling [65],
Synthetic Minority Oversampling Technique (SMOTE) [66],
adaptive synthetic sampling approach, or (ADASYN) [67].
Downsampling involves decreasing the number of records
of the majority class, and various techniques are used for
data downsampling, such as random undersampling [67],
cluster and Tomek links [68]. As we mentioned in Section 3,
we used three main inclusion criteria for choosing the dataset:
age, care unit type, and data balancing. After excluding
records according to age and ICU type, 32194 patients were
included, 26320 survivors and 5874 fatalities. Therefore,
in our study we used the undersampling technique to keep
the data balanced, it works by removing records from the
majority (the survival) class. The undersampling technique
does not add any noise in the data but loses some knowledge
from the majority class. However, our dataset is huge, so this
loss will not affect the resulting dataset. The undersampling
process cut the sample to 10,644 patients (57% survivors,
43% fatalities).

2) UNIFICATION OF MEASUREMENT UNITS
The MIMIC III dataset is collected from both MetaVision
and CareVuemedical information systems. Therefore, we can
find a single feature measured by different units. Each
feature is unified and converted to a single unit according
to some conversion rules. For example, the calcium chloride
measurement is recorded in mg and ml, with a percentage
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TABLE 3. Lists the selected tables and columns.

of 89% for mg and 11% for ml. In this case, all the values
are converted to mg. Table S5 in the Supplementary File
provides further information about all the conversion rules
for the measurements.

3) REMOVING OUTLIERS
Many ML algorithms are sensitive to outliers [69]. Extreme
outlier values are removed from our dataset. To detect
outliers, the acceptable range of each feature is determined by
our medical specialist, and all values outside the acceptable
range are removed.

4) HANDLING MISSING VALUE
Many statistical analysis methods are used to impute missing
values, including hot-deck and regression imputation [70].
These techniques deliver excellent performancewhen the per-
centage of missing data is in the range of 5–10%. Advanced
techniques, such as expectation maximization [64], [71], and
multiple imputations, are considered appropriate when the
percentage of missing data lies in the range of 20–50%,
resulting in more reliable data.

In this paper, features with more than 60% of missing
data were entirely removed. However, time-series features,
such as arterial blood pressure and temperature, which
were missing in 40–60% of the data were retained owing
to their medical importance. We selected patients that
have at least three records for all time-series features.
Missing values of time-series features are filled using
(1) forward filling, (2) backward filling, and (3) the
means of the same patient’s data. Other features with
missing data were filled using the expectation-maximization
algorithm [72].

5) DATA NORMALIZATION
Data normalization unifies the roles of all features.
We rescaled all the features using the min-max normalization
technique (Equation 1), where X ′ is the scaled value, and X
is the original value.

X ′ =
X − min(X )

max (X)− min(X )
(1)

B. FEATURE SELECTION AND EXTRACTION
For each patient, a set of features and measurements were
recorded during the patient’s admission in the ICU. For
our study, features were extracted from four main tables:
chartevents, inputevents_mv/cv, outputevents, and labevents.
Of around 1200 features scanned with the help of a medical
expert from four main tables, the most important 80 features
were used. As verified by medical expert knowledge,
we collected the medically relevant features for mortality
prediction. Table S3 in the Supplementary File presents these
features with their item IDs. The resulting time-series data
are filtered for the first 24 hours for each patient, and we
only consider the first admission. To support an exhaustive
comparison study, we select three main feature sets, A, B,
and C, which are described in the following subsections.
Each feature was extracted using statistical and functional
forms such as summation and maximum. Table 4 details the
functional form used for each feature in every feature set A, B,
and C. Features were extracted according to their importance.
For example, for GSC it is only important to consider the
minimum value. For the level of consciousness, the value
when the patient arrived at the ICU is the most important,
and the last conscious status before the prediction can be
made. In addition to these data, demographic features, such
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FIGURE 2. Architecture of the proposed framework.

as age, weight were extracted from each patient’s table. The
following points discuss the three feature sets and the number
of features in each set.

Feature Set A contains 28 statistical features extracted from
12 features, including the time-series vital signs, such as heart
rate and respiratory rate, as they provide the first indication
of the patient’s health status. A patient’s heart rate exceeding
the normal limit indicates tachyarrhythmia, which may be
a fetal-like ventricular tachycardia or fibrillation, or it may
be an atrial flutter or fibrillation. In contrast, a heart rate
falling below the normal rangemay lead to a heart blockage or
cardiac arrest [73]. All situations are critical and may lead to
sudden death. The same can be said for oxygen saturation—
a decrease in oxygen saturation is critical and may lead
to lactic acid accumulation or cardiac arrest (in severe
cases) [74].

Feature Set B contains 62 features extracted from 27 fea-
tures, including time-series vital signs from the feature set A,
in addition to some lab-test results, such as urine output and
hemoglobin, and other endocrinal gland test results. For urine
volume, we use the sum function to calculate the volume of
urine, drainage from condom catheters, Foley catheters, etc.
We use the sum function to calculate the total amount of urine
per day. The amount of urine falling below the normal amount
indicates oliguria or an acute kidney injury. For hemoglobin,
we use the minimum and maximum functions as these are the
most important for hemoglobin. High hemoglobin increases
blood thickness, which may lead to heart attacks, clots,
and strokes. Low hemoglobin may also be a risk indicator,
especially for patients with kidney diseases.

For feature Set C, 322 features were extracted from 3 tables
including input_events, outputevents, and labevents. This set

133548 VOLUME 8, 2020



N. El-Rashidy et al.: ICU Mortality Prediction: An Improved Patient-Specific Stacking Ensemble Model

TABLE 4. Extracting features from time-series data of all the feature set.

contains all the features used in feature sets A and B, as well
as some other tests such as Arterial Blood Gases (ABG)
tests. ABG includes different markers: PH, PO2, PCO2,
HCO3, Anion Gap, and Base Excess (see table S3 in the
Supplementary File). This indicates the levels of oxygen
and carbon dioxide in the blood. ABG features are used to
evaluate respiratory and kidney functions and provide a view
of the metabolic state. They are also used as an indication of
how efficiently the lungs provide oxygen and remove carbon
dioxide. ABGs also measure the blood pH and the body’s
acid-base balance.

When selecting the time-series data, we focus on data
collected from the first day. The time-series data from
different measurements are often recorded and sampled
at irregular periods. Therefore, we perform discretization
on the time and measurement axis, resampling data at
regular space periods (every hour). For each subset extracted
earlier, three-time frames (6, 12, and 24 hours) are used to
extract different feature sets with different sampling times.
Figure 3 explains how we extracted feature sets according to
time frames. The first three inputs depict the various ways
a feature set can be sampled (6, 12, and 24 hours), leaving
1 hour as a time gap between training and prediction. The
event of interest considers the time of prediction (time until
the patient either died or was discharged from the ICU).

1) SINGLE CLASSIFIER MODELS
First, we divided the whole feature set into the six modalities
based on the domain expert decisions. Second, we evaluated

FIGURE 3. Extraction of features according to time frames.

and optimized five ML classifiers (i.e. LR, LDA, DT MLP,
and KNN) based on the grid search technique and assigned
the best performing classifier to each modality using its
statistical significance.

We chose classifiers based on their diversity and popularity
in the ICU domain [75], [76], see Table 5. The five selected
base classifiers achieved the best performance for the six
modalities, where the DT classifier had the best performance
for two modalities. This justifies the selected types and
number of classifiers.

TABLE 5. Classifiers adopted in this study.
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FIGURE 4. Standard ensemble Classifiers (bagging, boosting, and stacking).

2) ENSEMBLE CLASSIFIER
Using an ensemble classifier is a well-known ML technique
that combines the prediction of a set of single classifiers (base
or weak learner) using weighted or unweighted techniques
and obtains a model that outperforms every base classifier.
This type of learning is intuitive as it simulates the human
nature of considering multiple perspectives before making a
final decision. In conventional learning, a single classifier is
used to solve the problem, but in ensemble learning, several
classifiers work together to solve the problem. There are two
main categories of ensemble classifiers: (1) homogeneous
ensemble, which uses the same classifier such as RF, where
RF is an ensemble of DT, and (2) heterogeneous ensemble,
which uses a set of diverse classifiers such as SVM and
DT [27]. The sequence of work of all the base classifiers
and the method for individual decision combinations are
important when building an ensemble classifier. The three
major ensemble models—bagging, boosting, and stacking—
are presented in Figure 4 [28].

V. RESULTS
We performed extensive experiments to determine the effi-
ciency of our proposed system using the MIMIC III dataset
since it has the complete patient EHR, including the patient
profile, daily vital signs, laboratory test results, summaries
of admission and discharge, nursing, and caregiver notes.
We only input specific patient information to the tested
classification models, starting with 1200 features and ending
with the 80 most essential features. We only include the
10644 patients (5000 survivors and 4644 fatalities) from
the undersampling process to ensure data balancing. Our
objective is to predict whether any individual patient will die
in the ICU.

A. EXPERIMENTAL SETUP
All the experiments were performed on a laptop workstation
with an Intel Core i7, 16 GB RAM and a 1 Terabyte hard
disk on a Windows 10 64-bit system. All algorithms of
single classifiers and ensembles were implemented in the

Python language using the scikit-Learn library. For each
experiment, we make a pipeline optimization by sequentially
applying the following steps. Initially, the datasets were
divided into training sets (75%) and testing sets (25%). For
the training set, we used stratified 10-fold cross-validation
(CV) technique to train all the models. Training data used
to tune hyperparameter for all classifiers using a grid search
algorithm. Using 10-fold CV helps us to avoid overfitting
and generates an evaluation matrix report that is based on
generalization performance. The unseen testing sets were
used to measure the generalization performance of the trained
models. Figure 5 shows the structure of the cross-validation
on training and testing data. We ensure that no admission data
exist in both training and test sets as this may enable the used
algorithms to memorize the records and perform better in the
testing phase. Each patient was represented with a feature
vector that encodes summary information about the patient’s
health status over the chosen period. For example, the heart
rate measurements are encoded into multiple variables that
describe the maximum, minimum, and mean values. These
summarization values allow us to consider the differences in
the feature time series during the selected period.

FIGURE 5. The K-Fold cross-validation.

B. EVALUATION METRICS
We used the standard list of evaluation metrics for clas-
sification problems, including precision, recall, F1-score,
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TABLE 6. Evaluation metrics.

specificity, and AUC. Both CV and testing results were
obtained. The CV results were used to select the best models,
and the generalization performance was measured using the
testing datasets. Table 6 lists the used metrics.

C. RESULTS OF BASE CLASSIFIERS
1) RESULTS WITHOUT FEATURE SELECTION
In this section, we evaluate the five single classifiers KNN,
MLP, LDA, LR, and DT using the three prepared feature
sets A, B, and C with three sliding windows of 6, 12,
and 24 hours, as illustrated in Figure 3. In this section, 45
different experiments were performed for the three feature
sets, with each feature set classified with the five ML
classifiers and three different time frames. We carefully
selected the most common ML algorithms in the medical
domain. Table 7 presents the CV accuracy of each model
and also details the testing performance of each model
represented by F1, P, R, ACC, SP, and AUC.

For feature set A, we observed that MLP generates
the best testing results using the 6- and 12-hour datasets.
It achieves values of F1 = 0.775 and AUC = 0.766 using
the 6-hour dataset and F1 = 0.781 and AUC = 0.772 using
the 12-hour dataset. For the 24-hour dataset, LDA offers
the best performance with F1 = 0.776 and AUC = 0.760.
For feature set B, the overall testing results were improved
by 3–4% in terms of F1, AUC, and ACC. As detailed
in Table 7, for all three-time windows—6, 12, and 24 hours—
MLP outperforms all other algorithms by achieving testing
results of F1 = 0.829 and AUC = 0.804 using the 6-hour
dataset. These testing results improved to F1 = 0.855 and
AUC = 0.824 using the 24-hour dataset. For feature set C,
the overall testing performance was improved by 6–15%,
compared to those of feature sets A and B. The LDA and
MLP achieved the best testing results using the 6- and
12-hour datasets, respectively. MLP test results are F1 =
0.890 and AUC = 0.874. Using the 12-hour dataset, both
MLP and LDA improved the test results by approximately
2–3%, compared to those when using the 6-hour dataset.
By using the 24-hour dataset, the LR achieved the best testing
performance with F1 = 0.905 and AUC = 0.922.

From these previous experiments, we observed the follow-
ing: (i) as we extended the extraction window, the perfor-
mance of each model improved; (ii) feature set C achieved
the best results, and all the models performed better when
using it. Therefore, feature set C is critical for further analysis
to determine how we can improve the MLmodels using these
data. Figures 6(a), (b), and (c) compare the performance of all
three feature sets on the time frames of 6, 12, and 24 hours,
respectively.

2) RESULTS AFTER FEATURE SELECTION
Based on the results presented in Table 7, our experiment
enhanced the performance of the best-performing feature set.
As discussed in the previous section, feature set C achieved
the best results. In this experiment, we explored the role
of the feature selection step to enhance the performance
of the ML models based on feature set C. There are three
main feature-selection techniques: filter methods, wrapper
methods, and embedding methods [44]. In this study, we used
the wrapper approach that works depending on the learning
classifier results: the best features were chosen based on
the classifier results [77]. Wrapper methods require more
computations than filter methods do, but they provide higher
accuracy. We used the recursive feature elimination (RFE)
wrapper approach to select the best features from feature set
C. As presented in Table 8, after using the feature-selection
step, the overall performance improved the accuracy by 1–2%
for some algorithms such as LDA and LR. For the 6-hour
dataset, we observe that LDA yields the best testing results of
F1 = 0.873 and AUC = 0.894. MLP delivers the best testing
results using the 12-hour dataset (F1 = 0.874 and AUC =
0.892).When using the 24-hour dataset, MLP outperforms all
the other models (F1 = 0.881 and AUC = 0.901). All these
evaluations are based 10-fold cross-validation.

Figure 6(d) compares all the algorithms. Feature selection
removes the noisy and less-informative features from the
dataset, which improves the results and stability of the ML
models; it also improves the computational complexities of
the resulting models. However, using single ML models can
be improved by using an ensemble of these diverse models.
In the next section, we extend our research to explore the
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TABLE 7. Base classifier model results.

possible role of ensemble models to improve the mortality
prediction performance.

D. RESULTS OF ENSEMBLE MODELS
Ensemble classifiers are expected to enhance the performance
of our classification. Several experiments were performed
to compare and evaluate ensemble methods. We explore
the capabilities of the ensemble models with and without
a feature-selection step. We examine the most popular
ensemble techniques, including RF, voting, bagging, and
boosting.

1) RESULTS BEFORE FEATURE SELECTION
Table 9 presents the results of using an ensemble classifier
based on feature set C as this achieved the best results

with single models. Several ensemble classifiers were
tested, including homogenous classifiers (bagging, RF, and
boosting) and heterogeneous classifiers (voting). Not all
ensemble classifiers improve mortality-prediction perfor-
mance. As indicated in Table 9, RF offers the worst testing
performance among the ensemble classifiers. It achieves
F1 = 0.765 and AUC = 0.812 using the 6-hour dataset,
F1 = 0.773 and AUC= 0.832 using the 12-hour dataset, and
F1 = 0.776 and AUC = 0.842 using the 24-hour dataset.
The overall performance with RF was no better than that of
a single classifier because RF chooses a random subset of
features to be considered at each branch, and these random
subsets may not be able to influence the predictive powers
of the models. Other ensemble classifiers achieved some
improvements, compared to the single classifiers. Bagging
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FIGURE 6. Base classifier AUC testing results for mortality prediction using (a) 6 h,
(b) 12 h, (c) 24 h, and (d) feature selection.

TABLE 8. Single classifier model results with feature selection.

TABLE 9. Results of ensemble classifiers based on feature set C.

and boosting ensemble classifiers achieved better results
than RF in all the time frames. The best performance for
both the classifiers was achieved using the 24-hour dataset
(F1 = 0.901 and AUC = 0.911 for bagging and F1 =
0.916 and AUC = 0.904 for boosting). The F1 and AUC
scores for bagging are better than those for all the other
models.

Regarding the heterogeneous voting classifiers [33], we
used LR, KNN, DT, LDA, and MLP as the base classifiers.
We used the soft aggregation method, which predicts the

class label of the record based on the argmax of the sums
of the predicted probabilities. Voting classifiers achieved
better results than the other ensemble classifiers did. For
the 6-hour dataset, they provided F1 = 0.863 and AUC =
0.825. The results were improved when using the 12-hour
dataset (F1 = 0.872 and AUC= 0.863) and further improved
when using the 24-hour dataset (F1 = 0.903 and AUC
= 0.891). Figure 7 (a) compares the ROC curves for these
ensemble classifiers. All these evaluations are based on
10-fold cross-validation.
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FIGURE 7. AUC score for all ensemble classifiers after 24 hours: (a) using all features and (b) with
feature selection.

TABLE 10. Results of the ensemble classifier with feature selection.

2) RESULTS AFTER FEATURE SELECTION
In this section, we reevaluate the same ensemble models
but after performing the wrapper feature-selection step.
Table 10 indicates that using RFE feature selection improves
the performance of some ensemble classifiers. RF achieves
values of F1 = 0.799 and AUC = 0.830 using the 12-hour
dataset. The bagging classifier achieves the best performance
(F1= 0.885). The best performance of the boosting classifier
was obtained when using the 6-hour dataset (F1 = 0.880 and
AUC= 0.896). The performance (F1) of the voting classifier
improved by 2%, and we observe that the best accuracy
was obtained when using the 24-hour dataset (F1 = 0.923
and AUC = 0.909). All these evaluations are based on
10-fold cross-validation. Figure 7(b) compares the ensemble
algorithms after using the feature selection step. From the pre-
vious results, we made the following observations: (i) using
feature selection decreases the computational time but does
not guarantee an improvement in the classifier performance,
and (ii) no model performs the best in all time frames.
To summarize the effect of using wrapper feature selection
on single and ensemble classifiers, Figure 8 compares the best
performance of all the classifiers.

E. RESULTS OF THE STACKING MODEL
Stacking ensemble learning uses the concept of meta-level
based learning [36]. The set of base-learners is generated
by applying various ML algorithms. The ensemble model

FIGURE 8. Comparison of all classifiers (with and without) the feature
selection phase.

achieved the best results when all the base classifiers were
accurate and diverse. Accuracy can be achieved by optimizing
the hyperparameter of each base classifier, and diversity can
be achieved using many methodologies, including different
training examples, feature sets, and parameters. Several
studies [23], [78] analyzed the relationship between classifier
diversity and the quality of stacking and concluded that diver-
sity may be considered as the selection criteria for building
the ensemble classifier. In the previous section, we tested the
most popular ensemble techniques such as bagging, boosting,
and voting, and they did not enhance performance. In this
experiment, we adopt our novel methodology to build a
customized and medically oriented ensemble model. The
overall development process is formulated in Algorithm 1.
This model is also described in the following specific steps.
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TABLE 11. Feature subset used in an ensemble classifier.

First, we divide feature set C, which achieved the
best results, into six subsets according to medical expert
knowledge. Table 11 details these six feature sets. These
feature subsets are independent. Second, each subset of these
heterogeneous sets is used to optimize a list of different
base classifiers. We investigate the combination of het-
erogenous learning algorithms to create a more accurate
ensemble model. In other words, we used diverse types of
learning algorithms, including MLP (non-linear classifier),
DT (tree-based classifier), LR and LDA (linear classifier),
and KNN (instance-based classifier). The resulting five
models are diverse, and each produces a different error.
As a result, the staking model is expected to outperform
all models. The two main evaluation techniques, namely,
classification performance test and statistical significance
tests (Wilcoxon sign rank test, Friedman test, and Nemenyi
test), are used to estimate the base classifier efficiency. The
following subsections discuss the selection process. Third,
the decisions of the level-0 classifiers are combined using the
meta classifier (level-1 classifier). In our case, we selected the
LR as the meta classifier. Figure 9 shows the cross-validation
process for all base classifiers.

1) CLASSIFICATION PERFORMANCE TESTIN
The purpose of this step is to calculate the differences among
the testing accuracies of the KNN, LDA, MLP, LR, and DT
models using every subset. This comparison is used to specify
the most suitable algorithm for each subset. For example,
subset 1 is trained using all the classifiers, and the differences
of ACC measures between all algorithms are recorded. The
first part of Table 12 shows the differences between the
test accuracy for subset 1. The performance of MLP was
superior to that of other techniques for this subset. Table 12
details the differences between the testing accuracies of all
the algorithms for all subsets.

2) STATISTICAL SIGNIFICANCE TESTIN
The main challenge encountered when selecting the most
suitable model for every subset is how much we can trust

the estimated skill for the selected model. Because our
dataset is balanced, we depend on both accurate results and
statistical tests to measure the statistical significance of the
differences among the tested models. In this study, we depend
on the Wilcoxon signed-rank test [79]. It is a nonparametric
test recommended by Demsar for comparing algorithm
performance. [79]. It works upon the number of losses,
ties, and wins obtained over the algorithm. An algorithm is
considered statistically better if the number of wins is plus
half the number of ties.

All the algorithms were compared for each feature
subset using the Friedman test [80]. The Friedman test is
a non-parametric test of the repeated measures ANOVA.
The Friedman test determines where there is a significant
difference among classifiers, but it does not show which
algorithm is the best.

To rank the classifiers and select the best one, the Nemenyi
post hoc test is used to calculate the average rank for each
classifier on each feature subset. Table 13 shows the results of
the Freidman test for all subsets and the average rank obtained
from the Nemenyi test for all classifiers. When multiple
classifiers are compared against each other, the results of
the Nemenyi test can be visually represented using critical
difference diagrams. Figure 10 shows the critical difference
among all classifiers for each subset according to the average
rank from the Nemenyi test.

The optimization hyperparameters for each algorithmwere
tuned using the grid search technique. Table 14 specifies the
most suitable algorithm for each subset and presents its list of
hyperparameters.

3) RESULTS OF THE STACKING CLASSIFIER
Our novel proposed algorithm is based on the generalization
stacking ensemble model (also called the stacking ensemble
model). It combines the decisions of different classification
algorithms. All the sub-models contribute equally to the
final combined prediction. In comparing the results of our
customized ensemble classifier with the performance of
all the base classifiers, we found that the proposed model
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FIGURE 9. Stacking ensemble based on a cross-validation of all feature subsets.

TABLE 12. Average differences between the accuracies of base classifiers for all subsets.

achieved the best results. All the stacking classifiers used
the LR as the metaclassifier. To ensure the superiority of LR
as the best meta classifier in our proposed stacking model,
15 different experiments were conducted with the same base
classifiers but using four other meta classifiers: KNN, MLP,
DT, and LDA. Table S6 in the Supplementary File presents

the CV accuracy of each of the resulting stacking models.
In addition, Table S6 in the Supplementary File details the
testing performance of each model represented by F1, P, R,
ACC, SP, and AUC.

In addition, we compared the proposedmodel (Figure S1 in
the Supplementary File) with the traditional stacking model

133556 VOLUME 8, 2020



N. El-Rashidy et al.: ICU Mortality Prediction: An Improved Patient-Specific Stacking Ensemble Model

Algorithm 1 Construction of the Enhanced Stacking Ensemble Classifier

Algorithm-1: Stacking with cross validation and independent based classifiers

Input: Training data D = {Xi, yi}mi=1, Xi ∈ Rn, yi ∈ {0, 1}
{DS = D1,D2,D3,D4,D5,D6}
B base classifiers {DT ,LR,MLP,LDA,KNN }, each classifier is optimized for a specific subset

Output: An ensemble classifier H
1. By using cross validation approach, randomly split DS i ∈ DS into K equal-size subsets: DS i = {DS i1,DS i2, . . . ,DS iK }
for k = 1 to K do

//1.1 Learn level-0 classifiers
for t = 1 to T do

Learn a classifier hkt from DS i\DS ik
end for
//1.2 Create level-1 a training set
for Xi ∈ DS ik do

DB = []
Dp+ = Create a new instance {x ′i , yi}, x

′
i = {hk1 (Xi) , hk2 (Xi) , . . . , hkT (Xi)}

end for
end for

2. Repeat step 1 for each subset in DS
3. Concatenate the generated DB from all classifiers B
4. // Learn a second-level classifier

Learn a new classifier h′ from the collected DB //LR in our case
5. Re-train all first level classifiers

for t = 1 to 5 do
Train classifier ht based on Dt
end for

return H(x)=h′(h1 (x) , h2 (x) , . . . , h5(x))

TABLE 13. Freidman and Nemenyi tests result for all feature subsets.

TABLE 14. Optimized hyperparameters for selected algorithms.

(Figure S2 in the Supplementary File) and the stacking
model associated with a wrapper feature selection step
(Figure S3 in the Supplementary File). Table 15 compares
our model with two stacking models in terms of the CV
accuracy and other testing metrics. In the case of the 6-hour
dataset, the proposed stacking model achieved values of F1=
0.911 and AUC= 0.919. Compared to the traditional stacking
model, the proposed model achieved increments of 0.038
and 0.026 in F1 and AUC, respectively. Compared to the

stacking model with feature selection, it achieved increments
of 0.022 and 0.027 in F1 and AUC, respectively. In the case of
the 12-hour dataset, the proposed model achieved values of
F1 = 0.923 and AUC = 0.920.
Compared to the traditional stacking model, the proposed

model achieved increments of 0.022 and 0.031 in F1 and
AUC, respectively; compared to the stacking model with
feature selection, the proposed model achieved increments of
0.053 and 0.032 in F1 and AUC, respectively. In the case of
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FIGURE 10. Comparison of all classifiers based on the Nemenyi testfor each subset. Numbered from 1 to 6 according to feature subset number, from
subset 1 to 6. The groups of classifiers are significantly different (p<0.005).

TABLE 15. The effect of no feature selection, feature selection, and proposed domain expert-based data splitting on the stacking technique.

the 24-hour dataset, the proposed model achieved values of
F1 = 0.937 and AUC = 0.933. Compared to the traditional
stacking model, the proposed model achieved increments
of 0.025 and 0.022 in F1 and AUC, respectively. Finally,
compared to the stacking model with feature selection,
the proposed model achieved increments of 0.056 and
0.014 in F1 and AUC, respectively.

From the previous experiments, we observed that: (i) fea-
ture set C includes important critical features that lead to
an improvement in mortality prediction for all the time
frames; (ii) not all base classifiers are suitable for all subsets;
therefore, choosing the most accurate classifier for each
subset enhances the overall performance of the proposed
ensemble classifier; (iii) the results of the first 6 h are
comparable to those of the first 12 h owing to the large
percentage of missing features in the first 12 h; (iv) the most
accurate results are obtained by using the 24-hour dataset;

(v) our proposed ensemble classifier outperforms all the
base classifiers; and (vi) the results indicate that a well-built
heterogeneous ensemble classifier can outperform any other
classifier in terms ofmortality prediction. Figure 11 compares
the ROC performance of all the stacking algorithms with time
frames of 24 hours.

To ensure the superiority of our proposed ensemble
stacking model. We compare all models, including single
classifiers and ensemble classifiers, with our proposed
model using the Nemenyi test. The rank is based on the
accuracy of the classifiers. Figure 12 shows the results of
the average rank using the critical differences diagram. The
critical differences were calculated using the Nemenyi, after
comparing all models against each other based on accuracy
and Freidman test. The test asserted a significant difference
among classifiers (statistics= 8.89, p < 0.005). As shown in
the figure, using KNN with wrapper feature selection gives
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FIGURE 11. AUC for the stacking classifiers.

the worst performance (ACC = 0.840, p < 0.005) and
MLP gives the best performance (ACC = 0.902, p < 0.005)
among all base classifiers. Regarding the ensemble clas-
sifiers, the RF classifier presents the worst significance
performance (ACC= 0.851, p < 0.005) followed by
bagging (ACC = 0.911, p < 0.005). Boosting statistically
outperformed all other ensemble classifiers (ACC = 0.929,
p < 0.005). The proposed stacking ensemble classifier
statistically significantly outperformed all base and other
ensemble classifiers (ACC = 0.944, p < 0.005). Thus,
we can conclude that our proposed stacking ensemble
classifier shows a significant performance gain over other
classifiers using the same feature set.

4) THE ROLE OF THE MOST CRITICAL FEATURES
Studying the importance of the features is critical from
the ML point of view [77]. Generally, feature importance
provides a specific score for each feature, and these scores
indicate the effect of each feature on the model performance.
Accordingly, we calculated the feature importance using
three different techniques: information gain (IG), correlation
coefficient (CC), and RF. Each technique returns a specific
rank for each feature. Table S4 in the supplementary file
details the importance of all features according to these
algorithms. Based on these scores, we can observe that
age, heart rate, level of conscious, GSC score, alarm[high],

respiratory rate, WBC, SpO2 alarm [high], motor response,
heart rhythm, non-Invasive Blood Pressure, and temperature
are the top contributing features to the mortality prediction.
To study the impact of the most important features on the
model performance, we conducted 12 different experiments,
where in each experiment, we excluded one of these features
and checked the model performance. Table S7 in the
Supplementary File shows the details of all experiments.

VI. DISCUSSION
Our proposed ensemble classifier achieved this performance
because (1) all the feature subsets are preprocessed in terms
of missing values, outliers, and normalizations; (2) the three
feature sets are medically divided into six feature subsets;
(3) all the subsets are tested on all the classifiers, and then,
the most efficient models are selected for each set; and
(4) the stacking model are used to fuse the decisions of
these diverse and accurate models. In this section, we closely
examine the performance of the proposed stacking model,
in comparison with that of the traditional scoring systems,
the base classifiers, and the literature studies in the ICU
mortality prediction domain.

A. PROPOSED MODEL VS. THE TRADITIONAL SCORING
SYSTEM
In this section, we compare the performance of the proposed
model against that of the traditional scoring systems, single
classifier models, and ensemble techniques. First, we imple-
ment several scoring systems that are commonly used in
the ICU (SAPS II, APACHE II, and SOFA). We calculate
each score on our dataset after doing all the preprocessing
steps. For example, the SAPS II scoring system formula
calculates the patient’s score according to the degrees of
measurements. The score ranges from 0 to 160 points, where
a higher number indicates a higher risk. For additional clarity,
Table S5 in the Supplementary File details the steps for
performing these calculations. As presented in Table 15,
SAPS II delivered the best performance (F1 = 0.772 and
AUC = 0.812). We observe that most of the scoring systems

FIGURE 12. Comparison of all classifiers based on Nemenyi test applied on the whole feature set. Groups of classifiers that are
significantly different (p<0.005).
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TABLE 16. Score performance results for all the models.

FIGURE 13. AUC scores of all the models evaluated in the study for a period of 24 hours.

are similar in terms of the performance, which confirms
the insights of other researchers [60]. Our proposed model
relies on an advanced ensemble classifier that produces a
more sophisticated model. This model is capable of handling
various types of data and has a greater classification power
than that of the traditional scoring systems. Our proposed
ensemble model outperforms all the scoring systems by
7–19% in terms of accuracy. As the previous discussion
asserted, feature set C achieved the best results for all the base
classifiers and ensembles. Table 16 compares the best models
from each category. Table 16 indicates that MLP delivers
the best performance (F1 = 0.912 and AUC = 0.901) when
using single classifiers. Using ensemble classifiers provides
some improvements, and the best performance is achieved
using both bagging (F1 = 0.901 and AUC = 0.916) and
boosting (F1 = 0.911 and AUC = 0.904). Our proposed
heterogeneous ensemble classifier produces the best results.
It outperforms single classifiers by 4–16% (F1 = 0.937 and
AUC= 0.933). Figure 13 presents anAUC-based comparison
between the results of the scoring system, single classifier’s
model, ensemble models, and our proposed model.

B. PROPOSED MODEL VS. LITERATURE STUDIES
As discussed in Section 2, numerous techniques have
been proposed to solve the mortality-prediction problem.
However, most suffer from limitations that can be summa-
rized as follows:

1. Use of less-informative feature sets. Some studies
only depend on the vital signs to predict mortality,
as these signs are the most frequently recorded
features [75], [81]. Others use only specific mea-
surements such as laboratory-test results [55]. These
features may provide acceptable results for specific
patient categories but cannot be used in general for
the ICU. In this study, based on the decision of
our domain expert, we considered selecting features
related to risks in most critical diseases. For example,
for renal failure patients, we added Blood Urea
Nitrogen (BUN) and Urea Nitrogen. For patients with
heart problems, we added creatinine kinase, heart rims,
and heart cardiac) enzymes. We used albumin for
liver-failure patients, partial thromboplastin time (PTT)
for hemophilia diseases, etc.

2. Limitation of determining the time window to extract
features. Many studies work only on the 6-hour dataset
to provide a model that can offer an early prediction.
In this study, we choose to work with three-time
windows (6, 12, and 24 hours). The most accurate
result was then determined (i.e. features extracted after
24 hours). This is because many features may not be
recorded in the first 12 h.

3. Most literature studies depend on singleML algorithms
to analyze the patient’s patients’ data and predict future
events [17], [76]. This may not be suitable for ICU
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TABLE 17. Comparison with the literature.

data as they vary in types and ranges. Therefore,
we compare the results obtained when using common
base classifiers and ensemble classifiers. To improve
the efficiency of the ensemble techniques, we improved
the accuracy and diversity of a customized stacking
technique. We vertically divided the best-performing
dataset into six subsets according to medical expert
opinion. Then, we selected the most suitable algorithm
for each subset, which was used to develop our
proposed stacking model. In our study, to guarantee
the accuracy of the developed model, we completely
separated the training and testing data in advance.
In terms of the classification accuracy, the accuracy
of the proposed algorithm was considerably improved,
compared to the state-of-the-art techniques.

Table 17 compares the proposed stacking model and the
literature models in terms of sample size, used algorithm,
number of features, number of hours, and accuracy. As can be
observed, our model considers all features related to critical
cases, not only the vital signs. We used 80 features from vital
signs, patient demographics, and lab tests. Regarding time
frames, we extracted data within three different time frames
(6, 12, and 24 hours). The best performance was obtained
when we used a period of 24 hours. Regarding accuracy, our
proposed ensemble model achieved the best performance;
it outperformed the state-of-the-art models. Most of the
related literature is based on single classifiers that achieve
results inferior to those of our model. The proposed model
is acceptable because it was designed with the guidance
received from a medical expert. The effectiveness of the
heterogeneous stacking ensemble classifier in overcoming
challenges related to the ICU heterogeneous data was
confirmed.

VII. CONCLUSION AND FUTURE WORK
This paper has presented a heterogeneous and medically
intuitive ensemble classifier for ICU mortality prediction.
This is a binary classification task. The model was based
on a set of five well-known algorithms that are commonly
used in the medical domain: KNN, LR, LDA, MLP, and
DT. The most critical features related to ICU mortality
prediction were collected with the help of a medical
expert. Our study was based on the MIMIC III benchmark
data. We utilized the time-series data of 80 features from

10,664 patients. These data were collected for the first 6,
12, and 24 h. To be considered reliable and more intuitive,
mortality prediction was tested after one hour from the end
of the training time window. Extensive experiments were
performed using these features, the previous baseline ML
algorithms, and the standard ensemble techniques of bagging,
boosting, and voting. With the guidance of a medical expert,
the best feature list was divided into six different subsets.
A comprehensive analysis was conducted to select the best
model for each subset of features. Finally, we developed our
proposed stacking ensemble classifier by using the LR as
a meta learner. The performance of the proposed ensemble
model was evaluated and compared with that of traditional
scoring systems for mortality prediction, single classifier
models, and traditional ensemble models. The evaluation
process was completed using the K-fold CV. Our proposed
ensemble classifier achieved an encouraging performance
(F1= 0.937, ACC= 0.944, and AUC= 0.933) that improved
the accuracy of the state-of-the-art studies by 2–3%. The
proposed model is medically more intuitive because it is
based on a comprehensive list of patient features. In addition,
the model was designed under the guidance of a medical
expert. In the future, we will extend our model to deal with
other types of data such as EEG and ECG. We will explore
the role of deep learning models for dealing with the time
series data. Deep learning models such as LSTM and CNN
are popular to hand the longitudinal data. Next, we will
investigate the role of multitask modeling to enhance model
stability and the prediction of multiple related tasks.
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