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ABSTRACT Formal Concept Analysis (FCA) is an applied mathematical technique for data analysis,
in which the relations between objects and attributes are identified. It introduces the notion of concepts
and their hierarchical structure, from which we can obtain a set of implications between attributes that
characterize a knowledge domain. The volume of information to be processed makes the use of FCA difficult
in domains with a high number of dimensions, creating a demand for new solutions and algorithms for FCA
applications. This article explores different approaches to extract proper implications from high dimensional
contexts based on constraints to obtain the set of implications rules. We propose algorithms that use a data
structure called Binary Decision Diagram (BDD) to represent the formal context, which reduces its size
and, due to this, operates more efficiently. We also propose a heuristic to obtain proper implications by
reducing the unnecessary generation of premises. In addition, we implemented a parallel computing model
for generating and obtaining different implications. To analyze the proposed algorithms, we used different
synthetic contexts with a varying number of objects, attributes, and density. The results obtained presented
speed gains of up to 22 times when compared to the solutions proposed in the literature such as Impec and
PropIm.

INDEX TERMS Formal concept analysis, proper implications, binary decision diagram.

I. INTRODUCTION
Extracting knowledge from large volumes of data collected
and stored currently is unfeasible without the support of
automation and techniques devised for this purpose. The
requirements for knowledge discovery tools have increased
greatly with this recent change in amount of stored data that
needs to be interpreted in a timely manner.

Formal Analysis of Concepts (FCA) is a branch of applied
mathematics, which is based on a formalization of concepts
and their hierarchy [1], [2]. By applying FCA to a set of
objects and its known properties, it is possible to organize
and understand this set of objects through the formal concepts
they form [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Huiling Chen .

Since it was first formalized, FCA has been applied in
several applications, such as information retrieval [4], linguis-
tics [5], security analysis [6], software engineering [7], social
network analysis [8], web services [9], textmining [10], Topic
Detection [11], Search engine [12], among others [13].

In general, FCA has been used in data analysis process and
knowledge representation where associations and dependen-
cies among instances are identified [14], [15]. Considering
a number of objects (G) (instances), attributes (M ) and an
incidence binary relation (I ) between objects and attributes,
a formal context (G,M , I ), can be created to represent that
set of instances. From a formal context, we can then extract a
set of implications I, which are related to the attributes [16],
as possibly novel knowledge. An implication A→ B, where
(A,B ⊆ M ), means that every object containing the attributes
belonging to the premise A also has the attributes from the
conclusion B. Applying different operators to I, we can
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generate different implication sets, with certain constraints
according to specific requirements.

A given set of implications that can be obtained from I
is the proper implications set, where for each implication
the premise is minimal and the conclusion is a singleton
(unit set) [17]. Implications from this set are useful because
they provide a minimum data representation - especially
for applications that require a minimum set of attributes
to reach a specific conclusion. In [18], the authors used
the proper implications set to identify relationships between
professional skills of LinkedIn users. From the set of proper
implications, the authors identified the minimum set of
skills (premise) required for a certain professional compe-
tence (conclusion). Other examples of use for proper impli-
cation sets are minimal path problems, such as finding the
best flight routes, and inferring functional dependencies in
database design [19].

The most commonly used algorithm for obtaining and
extracting proper implications from a formal context is the
Impec, proposed by [16]. The Impec algorithm generates,
from a set of M attributes, the set of all proper implications
A → b, where A ⊆ M and b ∈ M , in which the left
side (premise) is minimal and the right side (conclusion) has
only one attribute. However, in some cases, only implications
generated from some of the attributes are relevant, but the
Impecwould require the user to generate the full set of proper
implications and then manually select those that are relevant
to them.

In general, proper implications can be used to find the
minimal premises that lead to a given conclusion. In [16] the
authors presented three motivators where proper implications
should be used: the first and second motivators state that the
proper implications set should be small when compared to the
full set of implications, and composed by useful implications.
In other words, the set should be a small number of non-trivial
implications. Finally, the authors state that it is necessary
to have a way for the user to measure of how interesting
the implications are. As an example in data mining area,
association rules have relevancy measures. In this context,
this could be a weight function compatible with the closure
operator.

Another example of algorithm that generates a set of proper
implications from a set of attributes M is the PropIm algo-
rithm [18], which differs from the Impec mainly by only
generating implications with a support value greater than
0. Although implications with support equal to 0 are valid
implications, most of the time, analysts are more interested
in implications with support greater than 0, as those indicate
characteristics explicitly represented by the data.

The computational performance of the Impec and PropIm
algorithms makes their use prohibitive for processing high-
dimensional contexts, as both work in the complexity order of

O(M (
n∑
i=1

Cn,i)) where n is the size of the premise and |M | is

the number of attributes. In this article, we propose a solution

to efficiently extract proper implications on high-dimensional
formal contexts. Considering a high dimensional context,
with a large number of objects (up to 100,000), in which the
main goal is to find proper implications with support greater
than 0, and given a subset of desirable conclusions to describe
a specific domain, we propose two algorithms based on the
original proposal of [18]: I) the first algorithm, ImplicP,
contains a heuristic to avoid the generation of unnecessary
premise sets, evaluated based on the notion of monotonic
constraints; II) the second algorithm, named PImplicPBDD,
includes a Binary Decision Diagram (BDD) structure to
represent and manipulate the formal context efficiently,
and a parallel computing model to process several conclu-
sions simultaneously. The modifications and approaches pre-
sented in this article were more efficient, when compared
to the solutions present in the literature, for the following
reasons:

a) In applications where the user desires a set of proper
implications with only a subset of the attributes as
viable conclusions, it is not necessary to generate all
the implications, for all the attributes, in order to extract
the desired conclusions;

b) it also becomes unnecessary to generate and evaluate
all sets of premises;

c) the use of BDDs to represent and manipulate data from
the formal context is useful for efficiently handling
high-dimensional datasets.

d) the parallel algorithm processes multiple conclusions
simultaneously, increasing the number of objects being
manipulated. Furthermore, we show in this approach
that we can work on multiple queries (possibly from
different users) simultaneously, greatly decreasing the
total run time.

The experiments showed that our proposal was the most
efficient in scenarios where the objective is to find proper
implications with constraints. Using our proposed modified
algorithms, we were able to manipulate a high dimensional
dataset (e.g., 100,000 objects and 23 attributes), which no one
of the algorithms found in the literature was able to process.
In our experiments, we used both synthetic and real-world
datasets (LinkedIn dataset used in [18]), varying the number
of attributes and context density, and compared the time
taken by our approaches and the ImplicP and PImplicPBDD
algorithms.

We also varied the number of objects (instances) used in
the experiments from 1,000, 10,000 and 100,000, partially
meeting the latent challenge stipulated by [20]. Regarding
the density of the formal contexts, which is the amount of
incidence between objects and attributes, we used datasets
with a varying density of 30%, 50% and 70%, to analyze
the performance of algorithms in sparse and dense con-
texts. The results showed that PImplicPBDD has a better
performance – up to 22 times faster – than PropIm, regard-
less of the number of attributes and objects as well as the
density values.
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In the following sections, we will present each algo-
rithm and its results. The paper is organized as follows:
Section 2 presents basic concepts of the FCA andBDD. It also
describes somework related to BDD and proper implications.
Section 3 discusses the experimental methodology adopted
in this article and presents the evaluation of all proposed
algorithms (ImplicP, PImplicPBDD). Finally, in Section 4 we
present our conclusion and discuss future work.

II. RELATED WORK
The searching for a concept lattice with an appropriate size
and structure, which allows exploring the relevant aspects of
a formal context, is one of the most important problems when
using FCA. As a consequence, several techniques have been
proposed, which have specific characteristics for concept
lattice reduction and/or extraction of implication. In [21],
a review about the concept lattice reduction was presented.
In [22], the authors proposed the reduction of concept lattice
using fuzzy k-means clustering. In [23], scalable algorithms
to deal with large datasets using spark was proposed. In [24],
a strategy based on fuzzy clustering, applied on the original
data set, to reduce the formal context and to obtain association
rules was discussed. There is a big challenge when the formal
context has high dimensionality and it is necessary to extract
implications.

Currently, the existing FCA algorithms to extract proper
implications do not work efficiently for high-dimensional
contexts. As mentioned in [16], the Impec - most popular
algorithm to extract proper implications sets - was proposed
in order to extract all proper implications from a formal
context, but it does not perform well for larger datasets.
A similar algorithm was proposed by [18], named PropIm,
which is based on the Impec algorithm, but only identifies
proper implications with support greater than zero, meaning
all the implications found have at least one occurrence in the
dataset. The algorithm was used to identify the relationships
between professional skills of LinkedIn user profiles through
proper implications. It showed the minimum set of skills that
would be required to achieve certain job positions. Unlike
these two algorithms, our proposed solution has as main
objective to manipulate and process proper implication sets
on high dimensional contexts.

In [25] the authors presented the concept of relationally
approximable concepts that gives a generalized framework
of FCA. They also introduced the idea of F-approximable
mapping that provides as the morphism between relationally
consistent F-augmented contexts.

Another important research was presented in [26]. It was
introduced the concept of soft context that is produced using
a soft set and not a binary relation of the formal context.
Finally, it was demonstrated how they apply their method to
get a set of formal concepts extracted from a formal context.
Also, explained that their method is more effective than the
traditional.

In [27], the authors proposed an algorithm to extract
formal concepts using BDD. They used the data structure to

represent the list of found concepts. However, the authors
used contexts with 900 objects and 50 attributes, which
proved to only be efficient for dense contexts.1

In [28] the authors used BDD for extracting formal con-
cepts, but their focus was on using different BDD libraries to
investigate which would be the best for an FCA application.
The authors used brute force methods to obtain the set of
intents, and the BDDs that represent the extents. In all experi-
ments performed in the study, the algorithms with BDD were
more efficient when compared to the original algorithms.

In [29], the BDD structure was applied to two FCA
algorithms (NextClosure and Inclose2) that extract formal
concepts from high dimensional datasets. Using BDD to
represent the formal contexts reduced the required memory
space to represent them, and simplified information manip-
ulation operations. With this approach, the authors were
able to manipulate larger datasets that previously were not
feasible for the tested FCA algorithms. [30] explains that it
is possible to work with larger volumes of data using BDD
structures outside the context of FCA, which contextualizes
these findings in [29].

Similarly to the studies in [27]–[29] and [30], we propose
using BDD to process high dimensional contexts. The BDD
structure is used to represent and manipulate the formal con-
text in order to efficiently extract a set of proper implications
from a given dataset.

III. BACKGROUND
This section presents basic FCA and BDD, related to our
proposal. It also presents the algorithms used to compare with
our approaches.

A. FORMAL CONCEPT ANALYSIS
As discussed previously, FCA is a field of mathematics that
allows the identification of formal concepts and implications,
which are extracted from a formal context [2]. In this section,
we first recall the notions of formal contexts, formal concepts,
and implications.
Definition 1 (Formal Context): It is formed by a triple

K := (G,M , I ), where G is a set of objects (rows), M is
a set of attributes (columns) and I is defined as the binary
relationship (incidence relation) between objects and their
attributes where I ⊆ G×M [15].

An example of a formal context is given in Table 1. The
rows depict instances (objects) in the dataset:Paul, John,Ann,
Peter and Susan. The columns are the attributes, properties
of the instances (in this scenario, use of social networks for
each person). The incidences (‘‘X’’) mark the relationships
between objects and attributes.
Definition 2 (Formal Concepts): They are defined by a pair

(A,B) where A ⊆ G is called extent and B ⊆ M is called
intent. This pair must verify A = B′ and B = A′ [15]. The

1The BDD representation was shown to be more efficient when the binary
table (formal context) is dense.
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TABLE 1. An example of formal context.

relation is defined by the derivation operator (′):

A′ = {m ∈ M | gIm ∀ g ∈ A}

B′ = {g ∈ G | gIm ∀ m ∈ B}

A formal concept identifies the set of attributes (intent)
which delimit and characterize a set of objects (extent). Con-
sidering the formal context presented in Table 1, we get the
following formal concepts:
({Paul, John, Ann, Peter, Susan}, {})
({John, Ann, Susan}, {Instagram})
({John, Susan}, {Instagram, Twitter, Yammer})
({Paul, John, Peter, Susan}, {Twitter})
({Paul, Peter}, {Facebook, Twitterl})
({}, {Facebook, Instagram, Twitter, Yammer})

A partial order exists between two concepts
c1 = (A1,B1) ≤ and c2 = (A2,B2) if A1 ⊆ A2 ⇐⇒ B1 ⊇
B2.
The set of all concepts together with the partial order of

a given formal context K form a concept lattice denoted
byB(K).

From a formal contextK := (G,M , I ) or its concept lattice
B(K ) can be extracted implications [2].
Definition 3: Given a formal context K := (G,M , I ),

an implication is an expression P → Q, where P and Q are
sets of attributes, which express that P′ ⊆ Q′.
An implication P → Q, extracted from a formal context,

or respective concept lattice, is such that P′ ⊆ Q′. In other
words, every object which has the attributes of P also has the
attributes of Q. Note that, in P → Q, P is the left hand side
(lhs) and Q is the right hand side (rhs), where:

1) If X is a set of attributes, then X implies an implication
P→ Q if and only if (iff) P 6⊆ X or Q ⊆ X .

2) An implication P → Q holds in a set {X1, . . . ,Xn} ⊆
M iff each Xi implies P → Q; and P → Q is an
implication of the context (G,M , I ) iff it holds in its
set of object intents (an object intent is the set of its
attributes).

3) An implication P → Q follows from a set of implica-
tions I, iff for every set of attributes X if X implies I,
then it implies P→ Q.

As an example of an implication, we can consider the
universe of users’ accesses as described in Table 1 where,
for example, every user that accesses Yammer also accesses
Twitter. This type of relationship can be described as an
implication. An example of implication is Yammer→ Twit-
ter, which is a way to describe that all Yammer users also
use Twitter. Table 2 is an example of implications based on

TABLE 2. Implications extracted from the formal context in the Table 1.

the formal context presented in Table 1, considering Defini-
tion 3 and the derivation operators described in Definition 2.
Definition 4 (Proper Implications): For some problems it

is convenient to have each implication representing a mini-
mum condition. For this, it is required that the set of impli-
cations I of a formal context (G,M , I ) has the following
characteristics:
• The right side of each implication is unitary: if P→ m ∈
I, then m ∈ M ;

• Trivial implications are not allowed: if P→ m ∈ I, then
m /∈ P;

• Minimality is ensured, i.e. left side is minimal: if P →
m ∈ I, then there is no Q→ m ∈ I such that Q ⊂ P.

The complete set of implications in (G,M , I ) with these
properties is named the set of proper implications [16] or
unary implication system (UIS) [31]. The Table 3 shows the
complete set of proper implications extracted from the formal
context in the Table 1.

TABLE 3. Complete set of proper implications extracted from the formal
context in the Table 1.

The complete set of proper implication is still extensive.
In order to make it more restrictive, it can be selected only
proper implication with support above a previously defined
threshold.
Definition 5: Given a proper implication P → m, we can

define a support as follow: sup(P→ m) = |(P∪{m})
′
|

|G| .
The proper implications shown in Table 3 have support

equal to 0.4; except the {Facebook, Instagram }→Yammer
implication that has zero support. Note that implication
with zero support are valid; i.e., they can be inferred
from I through Armstrong inference axioms [32]. How-
ever, depending on the application these implications can be
removed.

B. MONOTONE CONSTRAINTS
Since the introduction of association rules [33], researchers
have been studying various problems related to pattern min-
ing in large databases. These studies involve developing more

134164 VOLUME 8, 2020



J. C. V. Neves et al.: Exploring Different Paradigms to Extract Proper Implications

efficient algorithms (both sequential and parallel) for finding
associations, their quantitative variants, sequential patterns,
and the use of clustering and sampling techniques.

Frequent Pattern Mining (FPM) is known to play an essen-
tial role in many important tasks in the data mining process.
However, FPM activity often generates several frequent rules,
so the user is required to post-process the output and select
useful rules.

The authors in [34] highlights the importance of the
constraint-based mining paradigm. This paradigm allows
users add a focus to the mining process through constraint
classes, allowing for a more targeted exploration and greater
control over mining, and the generation of rules according to
the user’s need.

One type of restriction that can be added to the data mining
process is the application of monotone constraints. Formally,
a constraint C ismonotone [35] iff and only if for all itemsets
S and S ′:

S ⊇ S ′ and S violates C , then S ′ violates S.

Thus, if a rule S violates a monotone constraintC , it can be
said that any subset of S will also violate it. Equivalently, if a
rule S satisfies a constraint C , all of its supersets will satisfy
it [36], [37].

Suppose the following implication is proper: {abc} →
{C1}. That is, the combined attributes a, b, and c yield a
C1 conclusion with minimal constraint. If {abc} → {C1}

is minimal, even if {abcd} → {C1}, this implication (S)
violates the minimal restriction. Therefore, any other set
{abcx1..xn} → {C1} (S ′) would violate the same restriction.
As an example, consider Table 2. Note that {Yammer} →
{Instagram} is a minimal implication of its own. Although
{Yammer,Twitter} → {Instagram} (S) is an implication,
this is not minimal, as it violates the restriction. Thus, any
other set of {Yammer,Twitter, . . .} → {Instagram} (S ′) also
violates the minimal restriction.

C. BINARY DECISION DIAGRAM
The Binary Decision Diagram (BDD) is a form of represent-
ing canonical Boolean formulas. It is substantially more com-
pact than the traditional structure forms (normal conjunctive
and disjunctive form) used in FCA, and it can be efficiently
manipulated [38], [39].

Figure 1 represents the Binary Decision Tree table pre-
sented in Table 4 in its tree form.

Figure 2 provides an example where a BDD is used to
represent the binary decision tree described on the Figure 1.
In this diagram, lines represent that the object has the attribute
and the dotted-line represents the lack of that attribute.

Note that it was possible to represent the same informa-
tion using a structure considerably more compact than the
original. In our approach, we represented the formal context
as a BDD. Consider equation 1 representing a Boolean
formula correspondent to Table 1. For a better view, attributes
names have been replaced by letters as follow: Facebook (a),

FIGURE 1. An example of binary decision tree table.

TABLE 4. An example of binary decision tree table.

FIGURE 2. Example of a BDD from Figure 1.

Instagram (b), Twitter (c), Yammer (d).

f(a, b, c, d) = abcd + abcd + abcd + abcd + abcd (1)

The attribute a means that, in this part of the function,
the attribute is true (this object has this attribute), whereas a
means the opposite. The part abcd of the equationwas created
to validate the Paul and Peter objects, abcd was created to
validate the Susan and John objects and the last part abcd
validates the Ann object.

The generated BDD corresponding to the formal context
presented in Table 1 (and described by Equation 1) can be
seen in Figure 3. Object names have been replaced by num-
bers and attributes replaced by letters: Paul (1), John (2),
Ann (3), Peter (4), Susan (5) and Facebook (a), Instagram
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FIGURE 3. The BDD representing the formal context of the Table 1.

(b), Twitter(c), Yammer (d). Take as example, the object 1
(Paul) which is represented by the path Facebook, Instagram,
Twitter, Yammer .

We used the BDD library CUDD (Colorado University
Decision Diagram) to construct our BDD structures. The
library provides function packages to work with BDDs, and
has been recently updated. The CUDD also has functions for
Algebraic Decision Diagrams (ADDs) and Zero-suppressed
Binary Decision Diagrams (ZDDs) which could also be used
o represent formal contexts.

D. BASE ALGORITHM DESCRIPTIONS
In this section, we describe the PropIm algorithm, used as
the basis for our proposal (PImplicPBDD) and the synthetic
formal context generator (generateBDDFormalContext).

1) THE PropIm ALGORITHM
The algorithm proposed by [18] finds the set of implications
with support greater than 0 from a formal context. The set
of implications is done in two steps: first, all sets of attribute
premises are generated for a conclusion attribute, and then
this set is pruned to find the minimum set of attributes for the
premise.

Algorithm 1 receives as input a formal context (G, M, I),
and generates as an output a set of proper implications. The
loop (lines 2-17) analyzes each attribute in M. Initially, each
attributem can be a conclusion for a set of premises. For each
m, the algorithm calculates the premises P1.

In line 3, P records all the attributes that contains the same
objects of m. The counter, named size, determines the size
of each premise, and is initialized as 1 because the smallest
possible size is 1 (an implication of type x → z) (Line 4).

In line 5 Pa is initialized as empty once it stores a set
of auxiliary premises that can generate an implication using
m as a conclusion. From lines 6-16, the set of minimum
premises is found, limited by |P|. In Line 7, the setC contains
all sets of size from elements in P. In Line 8, the set of

Algorithm 1 PropIm
Input : Formal context (G,M ,I )
Output: Set of implication with support greater than 0

(imp)
1 imp = ∅
2 forall the m ∈ M do
3 P = m′′

4 size = 1
5 Pa = ∅
6 while size < |P| do
7 C =

( P
size

)
8 Pc = getCandidate(C,Pa)
9 forall the P1 ⊂ Pc do

10 if P1′ 6= ∅ and P1′ ⊂ m′ then
11 Pa = Pa ∪ {P1}
12 imp = imp ∪ {P1→ m}
13 end
14 end
15 size++
16 end
17 end
18 return imp

candidate premises is formed through the Algorithm 2, called
GetCandidate. It obtains all subsets that do not contain
an attribute that belongs to the Pa premise. It receives, as a
parameter, the sets C and Pa and returns a set D of premises.

Algorithm 2 GetCandidate
Input : Premise Candidate (C), Set of Premises (P)
Output: Premise (D)

1 Function getCandidateProp(C,Pa):
2 D = ∅
3 foreach a ∈ A|A⊂Pa do
4 foreach B ⊂ C do
5 if a 6∈ B then
6 D = Pc/B
7 end
8 end
9 return D

Each candidate premise P1⊂ PC is checked to ensure that
the premise P1 and the conclusion m result in a valid proper
implication. In case P1′ 6= ∅ and P1′ ⊂ m′, the premise
P1 is added to the set of auxiliary premises Pa, and also
the implication {P1→m} is added to the list of implications
imp = imp ∪ {P1→m}.

Table 5 presents a formal context used for a better under-
standing of the generation of premise sets in PropIm.

In the first iteration, the algorithm generates 4 sets of size
1 for all attributes, i.e., unitary premises {a}, {b}, {c} and {d}
(Table 6). After the generation, the algorithm checks whether
there is already an implication for the current conclusion that

134166 VOLUME 8, 2020



J. C. V. Neves et al.: Exploring Different Paradigms to Extract Proper Implications

TABLE 5. Formal context example.

TABLE 6. Generated premises.

contains any attributes of the generated premises. If there
is an implication with any of the attributes, the premises
that would be generated referencing this attribute will be
discarded, so we generate only premises that could become
valid implications. Table 7 describes the first step of running
the algorithm. As a result, the first implication {a}→ {C1} is
found.

TABLE 7. Candidate premises.

In the second iteration of the algorithm, 10 sets of premises
will be generated, 4 of size 1 and 6 of size 2, as described
in Table 8. After the generation, the algorithm checks whether
there is already an implication for the current conclusions,
containing any attribute of the generated premises of size
1 and 2. If there is an implication with any of the used
attributes, the premises that refer to this attribute are dis-
carded, generating only premises that could become valid
implications. Table 9 describes the result of the algorithm’s
execution. Note that premises {a}, {ab}, {ac}, {ad} are
removed, as there is already an implication that uses the
attribute a ({a}→ {C1}).

TABLE 8. Generated premises.

TABLE 9. Candidate premises.

In the third iteration 14 sets of premises will be generated,
being 4 of size 1, 6 of size 2 and 4 of size 3, as shown
in Table 10. Asmentioned, the algorithm then checks whether

TABLE 10. Generated premises.

there is already an implication to the current conclusion that
contains any attribute of the generated premises, now of
sizes 1, 2 and 3, and unnecessary premises are discarded.

Table 11 describes the result of the execution of the algo-
rithm that discards premises {a}, {ab}, {ac}, {ad}, {abc},
{abd}, {acd} since there is already an implication using the
attribute a ({a}→{C1}). A new implication {bcd} → {C1}
was found. At this point, as all premise sets have been gener-
ated, the algorithm moves on to the next conclusion.

TABLE 11. Candidate premises.

2) THE generateBDDFormalContext FUNCTION
The creation of the BDD structure for a formal con-
text make use of the generateBDDFormalContext function
(Algorithm 3), which receives as input a file in the Burmeister
format [40], built through BDD operations with the current
context

Algorithm 3 generateBDDFormalContext
Input : Formal context (G,M , I )
Output: Formal context structured as a BDD

(BDDContext)
1 BDDTemp = ∅
2 BDDContext = ∅
3 forall the g ∈ G do
4 forall the m ∈ M do
5 if (g,m) ∈ I then
6 BDDTemp = BDDTemp.nodeTrue
7 else
8 BDDTemp = BDDTemp.nodeFalse ;
9 end

10 BDDContext = BDDContext+BDDTemp
11 end
12 return BDDContext
13 end

Basically the algorithm runs through all attributes of an
object and, if it contains a given incidence, the BDD variable
is included as true in the temporary BDD representing that
object (line 5), otherwise it is included as false (line 6).
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Finally, the algorithm adds the object’s BDD (BDDTemp) to
the formal context (BDDContext) (line 8).

Given the above, there is a clear combinatorial problem in
generating sets of premises of the PropIm algorithm, which
is difficult to handle. To illustrate, if we have a context with
15 attributes, then we will have 45,045 sets, for a context with
20 attribute, that number increases to 310,080 and, with 25,
to 1,328,250 sets. Note that, because this is a combinatorial
problem, a small increase in the number of attributes can
result in an exorbitant number of premise sets.

Thus, we inserted into our algorithm ImplicP a pruning
heuristic which was able to eliminates unnecessary premise
sets, before generating their implications. Another important
factor is that with the use of the list data structure, the process-
ing of this algorithm tends to occupy a large memory space,
making it impractical to use in some cases. Changing the data
structure to BDDs has made storage in mainmemory and data
manipulation much easier and more dynamic.

IV. PROPOSED ALGORITHMS
A. ImplicP
We developed the Algorithm 4 to improve the performance
of PropIm. It is considered a heuristic (Algorithm 5) to
eliminate unnecessary generation of premise sets to be eval-
uated. This proposed heuristic is based on the theory of
monotonic constraints [35], where if a S rule violates a C
constraint, any superset of S will also violate such a constraint
(section III-B).

Algorithm 4 ImplicP
Input : Number of Conclusions (Nc), Formal Context

(G,M ,I )
Output: Set of implications with support greater than 0

(Imp)
1 Imp = ∅
2 Conclu = getC(Nc,M )
3 foreach m ∈ M\Conclu do
4 P = m′′\Conclu
5 Size = 1
6 Pa = ∅
7 ResultImpAtr = ∅
8 while Size < |P| do
9 C = getP(P, Size, 0,ResultImpAtr,Pa)
10 Pc = getCP(C,Pa)
11 foreach P1 ⊂ Pc do
12 if P′1 6= ∅ and P

′

1 ⊂ m′ then
13 Pa = Pa ∪ {P1}
14 Imp = Imp ∪ {P1→ m}
15 end
16 ResultImpAtr = Imp
17 Size++
18 end
19 end
20 return Imp

Algorithm 5 getC
Input : Total Number of Conclusions (NumC),

Attribute list (Pa)
Output: List of attributes that will be used as a

conclusions (C)
1 Function getC(NumC, Pa):
2 C = ∅
3 for i = 1 to i <= NumC do
4 C = C ∪ Pa[i]
5 end
6 return C

Therefore, if a rule that satisfies both constraints is found
(support greater than 0, and a minimum set of attributes
that implies a conclusion), we will no longer compute and
generate new combinations of rules that have such attributes,
avoiding unnecessary processing.

Basically, the algorithm receives as input a formal con-
text (G,M,I), and the output is a set of proper implication
Imp with support greater than 0. Initially, we determine the
attributes that will be used as conclusions (line 2). Following
(lines 3-18), the m attributes of M are analyzed, considering
that each could be a conclusion to a set of premises.

In line 4, P records all attributes that contain the same
objects of attribute m, excluding the conclusions. The Size
variable determines the size of each premise, initially 1 indi-
cating the smallest possible match for an implication of type
x → z (line 5). Pa stores a set of attributes that represent the
auxiliary premises that can generate an implication using m
as a conclusion. ResultImpAtr stores all the implications that
were generated for the current conclusion (line 7).

On lines 8-17, the minimum premise set, limited by |P|,
is computed. At line 9, getP receives all size combinations
Size from elements in P. The set of candidate premises is
obtained through getCP. The getP function uses the proposed
heuristic to reduce the number of calculated premise sets
(line 9). Each candidate premise P1⊂Pc is checked to ensure
that premise P1 and conclusion m result in a valid implication.
If P′1 6= ∅ and P

′

1 ⊂ m′, then the premise P1 is added to the
set of auxiliary premises Pa, and the implication {P1 → m}
is added to list of implications Imp (line 14).
The Algorithm 5, getC , takes as a parameter the total num-

ber of conclusions and the Pa attribute list from the formal
context, and returns the list of attributes that will be used as
conclusions. Attributes selected as conclusions will not be
evaluated again as possible premises for a new conclusion.

Algorithm 6, getCP, receives all the subsets that do not
contain an attribute belonging to the premise Pa. It takes as
parameter the sets C and Pa, and outputs a set of premises D.
Algorithm 7, getP, receives the sets of size Size from ele-

ments in P. If the premise has already been created (Len=0),
it is added to the result list E , and the recursion is terminated.
The repeat loop on lines 5-9 generates the next premise and
verifies that it has not been used in previous implications,
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Algorithm 6 getCP
Input : All the subsets that do not contain an attribute

belonging to the premise Pa (set C, set Pa)
Output: Set of Candidate Premises (D)

1 Function getCP(C,Pa):
2 D = ∅
3 foreach B ⊂C do
4 if Pa = ∅ then
5 D = D ⊂ B
6 else foreach a ∈ A|A⊂Pa do
7 if a 6∈ B then
8 D = D ⊂ B
9 end
10 ;
11 end
12 return D

Algorithm 7 getP
Input : List of Attributes (Atr), Size of the attribute

(Len), StartPosition (SP), Result (R), Premises
(Pa)

Output: Set of Reduced Premises (E)
1 Function getP(Atr,Len, SP,R,Pa):
2 E = ∅
3 if Len = 0 then
4 E = E ∪ {R}
5 return
6 for i = SP to i <= |Atr| − Len do
7 R[|R| − Len] = Atr[i]
8 if R ⊂ Pa then
9 continue
10 getP(Atr,Len− 1, i+ 1,R)
11 end
12 return E

discarding it if it has. The output is a list of premises with
the size of the variable Size.

Note that, by utilizing the getP function, we generate a
smaller volume of premise sets. Only if there is no implication
for the current conclusion using the premise attribute will
the entire sequence be generated. In contrast, the original
PropIm algorithm always generates all combinations of all
premises for all sizes of Size. For a better understanding of the
premise generation process of ImplicP algorithm, we show an
example of a formal context that will be used for extracting
premises on Table 12.

In 4’s first iteration (lines 8-16), using c1 as conclusion,
the algorithm generates the subsets of candidate premises
shown in Table 13. As a result, the implication {a}→ {c1}
is found.

In the second iteration, we generate all subsets of size
1 and 2 that do not contain any of the attributes that were
already used in valid premises for implications (Table 14).

TABLE 12. Formal context example.

TABLE 13. Candidate premises.

TABLE 14. Candidate premises.

The premises {ab}, {ac} and {ad} are not generated
because there is already an implication using the attribute
a in {a}→ {c1}.
For the third iteration, the subsets of size 1, 2 and

3 are generated (Table 15). Again, the premises {abc}, {abd}
and {acd} are discarded as attribute a is already used in
{a} → {c1}. In this iteration, a new implication {bcd} →
{c1} is found, and as all attributes were used as premises the
algorithm moves on to the next conclusion.

TABLE 15. Candidate premises.

It is important to highlight that, with the inclusion of
Algorithm 7 in Algorithm 4, we only calculate the candi-
date (viable) premises. In most cases, the implications will
be found before testing all premise sizes, increasing the run-
time economy brought by the ImplicP heuristic. In our experi-
ments, we observed a reduction of up to 43% in the number of
premise sets being calculated, when compared to the original
algorithm, PropIm.

For the complexity analysis of the ImplicP algorithm,
consider N the size of the premise that will be generated
and, |M | the number of attributes that will be used as a
conclusion. In the best case, all implications are generated
with size 1, that is, we have O(N ∗ |M |). In the worst case,
it would be necessary to generate all combinations of all

premises for all conclusion attributes, with O(M (
n∑
i=1

Cn,i)),

where n is the size of the premise that will be gener-
ated and |M | the number of attributes that will be used as
conclusion.
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Algorithm 8 PImplicPBDD
Input : Formal context (G,M ,I )
Output: The set of proper implications with support

greater than 0, Imp
1 (Gbdd,Mbdd, Ibdd) = GenerateBDDContext(G,M,I)
2 Imp = ∅
3 foreach m ∈ M do
4 Imp = Imp ∪ AtrImpPBDD(m, (Gbdd,Mbdd, Ibdd))
5 end
6 return Imp

Algorithm 9 AtrImpPBDD
Input : Attribute m, formal context (G,M ,I )
Output: The set of proper implications of m with

support greater than 0, ImpM
1 ImpM = ∅
2 BddC = primeAtrSetBDD(m) P = m"
3 Size = 1
4 Pa = ∅
5 ResultImpAtr = ∅
6 while Size < |P| do
7 C = getP(P, Size, 0,ResultImpAtr,Pa)
8 Pc = getCPBDD(C,Pa)
9 foreach P1 ⊂ Pc do
10 BddP = primeAtrSetPBDD(P1)
11 if BddC 6= 0 and BddP 6= 0 and BddC ==

BddP then
12 Pa = Pa ∪ {P1}
13 ImpM = ImpM ∪ {P1→ m}
14 end
15 Size++
16 end
17 return ImpM

B. THE PImplicPBDD ALGORITMHM
The PImplicPBDD (Algorithm 8) uses a heuristic to reduce
the sets of premises required to obtain the rules of implication
and also the BDD framework to simplify the representation
of a formal context, making object manipulation more effi-
cient. The objective is to distribute the processing load of
different conclusions across distinct cores. For each avail-
able processor core, a thread is created to process a distinct
conclusion.

The algorithm receives as input a formal context (G,M , I ),
and its output is a set of proper implications with support
greater than 0. The algorithm makes use of the AtrImpPBDD
function, which receives as parameters an attribute m and the
formal context, and outputs the set of proper implications that
has m as a conclusion.

The AtrImpPBDD calls the function primeAtrSetPBDD,
responsible for creating the BDD containing all objeccts in
the list of attributes received as a parameter. The function out-
puts a BDD of only the objects that contain those attributes.

Algorithm 10 primeAtrSetPBDD

1 Function primeAtrSetPBDD(ListAttributes):
2 BddNewExt = BddCxt;
3 foreach it ∈ ListAttributes do
4 BddNewExt& = BddNewExt.and(it);
5 end
6 return bddNewExt;

Algorithm 11 getPPBDD

1 Function
getPPBDD(Atr,Len, StartPosition,Result,Pa):

2 if Len = 0 then
3 D = D ∪ {Result};
4 return;
5 for i = StartPosition to i <= |Atr| − Len do
6 Result[|Result| − Len] = Atr[i];
7 if Result ⊂ Pa then
8 continue;
9 getP(Atr,Len− 1, i+ 1,Result);

10 end
11 return D;

The function getP calculates all premise sets of size Size
through elements in P. If the premise has already been
created, it is included in the result list and the process is
terminated. Otherwise, the next premise of the combination
is generated and if already used in the previous implica-
tions is discarded. As output, a list of premises with the
size of Size is generated.

Initially, each attribute m in M that can be a conclusion
to a premise is analyzed. For each m, a set of premises
P1 is determined. Through the primeAtrSetPBDD function,
the BddC stores the BDD containing all objects with attribute
m (line 2). This BDD is used to verify the premise P1 and the
conclusion m.
Pa stores a set of auxiliary premises that can generate an

implication using m as their conclusion. In lines 7-17 of the
pseudo-code, we find the set of minimal premises, limited
by |P|. The premise set C is a combination of size Size
of elements in P (line 8). In line 9, the set of candidate
premises is createdwith the getCPBDD function and, for each
candidate premise P1 ⊂ PC , a BDD is stored (bddP) with all
objects of the premise. In line 12, the algorithm verifies BddC
and BddP to ensure that the P1 premise and its conclusion m
result in a valid implication BddC = BddP). Considering
that it is valid, P1 is added to the set Pa and the implication
{P1→m} is added to Imp (line 14).
Figures 4, 5a, 5b, 5c and 5d show the process of generating

an implication using BDD, in the PImplicPBDD algorithm.
Figure 5a presents the BDD generated by the conclu-

sion Instagram. The BDD generated with the premise Yam-
mer is shown in 5b. Figure 5d presents the intersection
between the BDD with conclusion Instagram and the one
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FIGURE 4. BDD generated from the formal context in Table 1.

Algorithm 12 getCPBDD

1 Function getCPBDD(C,Pa):
2 D = ∅;
3 foreach a ∈ A|A⊂Pa do
4 foreach B ⊂C do
5 if a 6∈ B then
6 D = Pc/B;
7 end
8 end
9 return D;

with premise Yammer. If the intersection between the BDD
Instagram and premise Yammer (Figure 5c) is the same as
the premise Yammer, a valid implication is created. Note that
Figure 5b is identical to Figure 5d. This means that all objects
that share the premise Yammer also share the conclusion
Instagram.
The order of complexity of the PImplicPBDD algo-

rithm’s extraction of the set of proper implications is
O(|M ||imp|(|G||M |+|imp||M |)). This is an exponential com-
plexity, as |imp| is combinatory in the worst case scenario.
However, we implemented a heuristic that reduces the combi-
nations of attributes to be tested, and the number of premises
generated for each conclusion.

The getCPBDD algorithm receives all subsets that does
not contain an attribute which belongs to the premise Pa.
It receives the C and Pa sets as a parameter and returns a D
set of premises.

Figure 6 presents the parallelism model used in the
PImplicPBDD algorithm (Algorithm 8). In order to deter-
mine which parts of the algorithm would be parallelized,
the library-based software programming model was used
[41]. The PImplicPBDD algorithm uses the shared memory
parallel computationmodel, designed using domain partition-
ing and decomposition that can be divided by conclusions,

FIGURE 5. Internal BDD process for obtaining an implication.

FIGURE 6. Parallelism model used in the PImplicPBDD algorithm.
Independent cores process independent conclusions.

sharing the same formal context and listing all the implica-
tions in common memory. With these changes, it was pos-
sible to calculate the premise sets for different conclusions
simultaneously.

V. EXPERIMENTS
Our experimental methodology includes randomly generated
synthetic contexts with controlled densities and dimensions
in all experiments. The random contexts were generated by
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the SCGAz (Synthetic Context Generator) tool within preset
limits of controlled densities and sizes.

The SCGaz tool randomly fills synthetic formal contexts
ensuring the absence of redundancies among objects and
attributes which could lead to erroneous comparison analysis.
At the same time, the tool allowing users to select any density
in the bounds of the minimum and maximum permitted for
a type of context. According to the authors [42], the tool
allows a more controllable and reliable simulation environ-
ment. The created formal contexts had 1,000, 10,000 and
100,000 objects, each with sets of 20 and 23 attributes
and densities ranging from 30%, 50% and 70% (the maxi-
mum density for each generated context). We added a time-
limit constraint of 20 days for the time spent extracting the
proper implications set, necessary some of the experimental
setups would not execute in a viable time on the PropIm
algorithm.

Note that the randomly generated incident table can vary
among two contexts with the same dimensions and densities,
resulting in different implication sets. Therefore, a different
performance was obtained for each context. For each com-
bination of objects (1,000, 10,000 and 100,000), attributes
(20 and 23) and density (30%, 50% and 70%), two formal
contexts were generated. Since the contexts were randomly
generated, every attribute could be considered as a conclu-
sion in our experiments. Thus, for the formal context with
20 attributes, for example, we have 20 executions using each
attribute as the desired conclusion and the remaining 19 as
premises, totaling 40 executions for each experimental setup.

The algorithms have been implemented in Java and the
experiments were performed using an IBM server machine
(OS Ubuntu 16.04), equipped with an Intel Xeon (3.1GHz)
4-core processor, 32GB of RAM memory and 30GB of SSD
storage.2 The parallel algorithm used the multicore architec-
ture to process 4 conclusions simultaneously, one in each
of the cores. In the parallel experiments, the goal was to
partition the data an simultaneously process different parts of
the problem. For all performance tests, we compared different
algorithms running the same contexts.

The experiments performed with the ImplicP and PropIm
algorithms, using synthetic contexts, showed that the prun-
ning heuristic proposed in this article caused a reduction
in the time required to extract the proper implications set.
Table 16 shows the results obtained by both algorithms in
experiments varying the number of objects, attributes, and
context density. For each scenario, we measured the run
times for both algorithms. However, for the scenarios with
23 attributes, the PropIm algorithm was not able to execute
within 20 days, and had its run terminated.

As shown in Table 16, the speed up obtained with the
ImplicP algorithm compared to PropIm in 20 attribute con-
texts was of up to 5 times. This gain is based on the effective-
ness of the heuristic for reducing the number of assumption
combinations required to find an implication. The heuristic

2Files available at http://github.com

TABLE 16. Runtime minutes taken to generate the proper
implications set.

ensures that, if an implication in the form {a, b} → {C1}
has already been formed, new combinations will not test the
attributes a or b for the conclusion C1. In its next iteration,
the algorithm would try to generate combinations of three
premises, but it would not use {a, b, ∗} → {C1} com-
binations, reducing the number of tests performed by the
algorithm. Regarding the scenarios where the contexts had
23 attributes, the heuristic was once again more efficient, as it
was able to run before the established 20 day timeout. In most
cases, bigger densities have reduced the total speedup, as in
those cases the volume of incidences is greatly increased,
which causes the algorithm to perform more attribute combi-
nations, consequently taking much longer to find the proper
implications set.

From our experimental results, it is noticeable that the
execution times of the evaluated algorithms tend to increase
when the number of attributes and, mainly, the density (inci-
dence) in the formal context is increases. We investigated the
number of attributes in the premises to verify the reason for
this increase in computational time. For this, we established
a confidence interval of α = 0.05 to determine the amount of
attributes found in each premise.

Table 17 displays the minimum (Int. Min. Premises) and
maximum (Int. Max. Premises) values for the confidence
interval for the premises found in each scenario. In addition,
we found the most frequent premises (mode), the percentage
of that the mode represents considering the total of rules,
and finally, the number of proper implications. Importantly,
regardless of the algorithms (PropIm, ImplicP and PIm-
plicPBDD), the set of proper implications is the same.
The scenarios with 30% density (incidence of attributes in

relation to objects) presented the smallest amount of attributes
in the premises, which resulted in the shortest time to find
the set of proper implications. Scenarios with lower density
are favorable for the proposed heuristic, since after finding
a minimum rule, for example, {a → b}, no new rules
will be generated using the attribute {a} on the left side
of the implication. In contrast, for the scenarios with 70%
density, in general, there were more number of attributes in
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TABLE 17. Quantity of attributes in the premises.

TABLE 18. Example of proper implication extracted from the formal
context of Linkedin.

the premises, which resulted in greater computational effort
required to find the set of proper implications.

In order to test the PImplicPBDD algorithm on a real
world problem, we used a formal context based on data from
the Linkedin social network. The context uses as conclusion
10 professions and 24 skills as premises. The dataset has a
total of 1,269 objects, sampled from Linkedin.

For this real world formal context, the PImplicPBDD algo-
rithm processed found the proper implications set in 8 days,
while PropIm had returned no results after 14 days. Note that,
while the number of objects is relatively small, Linkedin’s
context contains 24 attributes, so it requires a greater genera-
tion of combinations and candidate premises for each conclu-
sion, which led to the PropIm algorithm being unable to run
in a viable time. The PImplicPBDD algorithm, which uses
both solutions proposed in this article, was able to process the
entire context. Table 18 displays three example implications,
drawn from the Linkedin formal context with the conclusion
of Data Scientist.

VI. CONCLUSION AND FUTURE WORK
Some aspects of this study proved challenging, such as con-
cluding all the experiments on high dimensional contexts
in viable time. We compared the performance of several
approaches/algorithms, on different contexts, and were able
to successfully find the proper implication sets for some
contexts that existing algorithms were not able to.

The experiments with the PropIm algorithm showed that it
was not able to run some of the context with high dimen-
sionality, and that it is less efficient when compared to
the approaches proposed by our study. On the other hand,
the PImplicPBDD algorithm was more efficient in find-
ing the set of proper implications from formal contexts.
We also explored the use of parallel algorithms to reduce pro-
cessing time by computing the implications simultaneously.

The number of implications in the proper implications
set is an important aspect of this discussion. When the
user needs to find only rules with the minimal number of

premises (attributes) that imply in a conclusion, the algorithm
will certainly find some redundancy in the rules it generates
when exploring that.

As an example, consider the following proper implications:
a → C1, a → C2 and a → C3. These rules are redundant,
and could be written simply as a → C1,C2,C3, which
would no longer be a proper implication. Proper implications
have more interpretability, so the knowledge they represent
is easier to understand both by domain experts and common
users, but this knowledge will likely be represented a greater
number of rules.

Considering this, the algorithms proposed in this article
enable a user to, in the rule extraction process, define a subset
of attributes to be used as desirable conclusions. Traditional
approaches in the literature (Impec and PropIm) do not have
that characteristic, and required a post-processing by the user
to select rules they are interested in (i.e., those with the
desirable conclusions and attributes). Consequently, many of
the rules generated are discarded, and their computation time
is wasted.

As future work, we suggest the use of other techniques to
parallelize the code, such as using GPUs (Graphics Process-
ing Units) and/or Xeon Phi, or even distributing the compu-
tation of this problem through a cluster of computers.

Other potential work, we suggest using temporal logic
(important application in formal verification) to obtain a veri-
fication model [43], [44] [45] from a formal context, defining
a set of properties, written in temporal logic, that could be
viewed as proper implication. For example, the implication a,
b→ c could be represented by the specification AG ((a & b)
→ AG (c)) in this new model. All valid specifications (true)
could be viewed as possible implications. The focus of the
study would be to obtain the initial model that describes the
behavior of the system from the formal context, since it con-
tains only the description of the objects and their attributes.
Once this model was built, the verification time could be
compared with the response time from other approaches that
also obtain proper implications.
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