
Received July 5, 2020, accepted July 14, 2020, date of publication July 20, 2020, date of current version July 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3010629

Fractional Synchrosqueezing Transformation
and Its Application in the Estimation of the
Instantaneous Frequency of a Rolling Bearing
XIN LI1,2, ZENGQIANG MA 1,3, SUYAN LIU1,3, (Member, IEEE), AND FEIYU LU3
1State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
2School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
3School of Electrical and Electronic Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

Corresponding author: Zengqiang Ma (mzqlunwen@126.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 11790282, in part by the
2020 Independent Project of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures under
Grant ZZ2020-39, in part by the Hebei Province ‘‘333’’ Talents Project under Grant A201802004, in part by the Graduate Innovation
Funding Project of Hebei Province under Grant CXZZBS2019152, and in part by the 2020 Graduate Innovation Funding Project
under Grant YC2020062.

ABSTRACT The time-frequency energy distribution processed by a short-time Fourier transform can
be compressed to the real instantaneous frequency by the synchrosqueezing transformation (SST), which
improves the time-frequency energy concentration of the signal. However, there is a large error in the
instantaneous frequency estimation of a multicomponent nonpure harmonic signal by the SST. Therefore,
a method for determining the instantaneous frequency (IF) of a rolling bearing based on a fractional
synchrosqueezing transformation (FRSST) is proposed. First, the theoretical derivation of the FRSST
algorithm as a signal processing technique is given and the steps of the IF estimation are presented. Second,
the main advantages of the proposed FRSST algorithm are proved. In the comparison of simulation signals,
it is verified that the FRSST algorithm has a high time-frequency concentration, is non-fragile to the
frequency modulation rate, has noise robustness and has nonsensitivity to the cross-frequency signal. Finally,
the FRSST algorithm is applied to the IF estimation of a rolling bearing under rising speed and fluctuated
speed, and is compared with the SST based on variational mode decomposition (VMD-SST), the generalized
parametric SST (PSST) and polynomial chirplet transform (PCT). The test results show that the estimation
error of IF based on the FRSST method is the least for a rolling bearing with the four fault types under rising
speed. On average, the estimation error is 2.2180 Hz less than the corresponding error of the VMD-SST and
1.1862 Hz less than the corresponding error of the PSST method.

INDEX TERMS Fractional synchrosqueezing transformation, instantaneous frequency, noise robustness,
rolling bearing.

I. INTRODUCTION
The rolling bearing is the key component of rotating machin-
ery, which is widely used. Because the rolling bearing’s work-
ing state directly affects the operational efficiency and service
life of a mechanical system, it is of great significance to study
its fault diagnosis [1]–[3]. Under the condition of variable
speed, the key to the fault diagnosis of a rolling bearing is how
to identify the IF effectively by the vibration signal [4]–[8].
As a result, methods that can obtain the IF information from
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the vibration signal have attracted considerable attention in
recent years.

The research on IF extraction is divided into two cat-
egories. The first category is order tracking which con-
verts the nonstationary vibration signal into a stationary
one. The most widely used methods include order features
extraction [9], [10], order analysis [11], [12] and synchronous
averaging [13], [14]. These methods usually require the
installation of an additional key-phase device to measure
the actual speed of the bearings, but it is difficult to imple-
ment when the installation of the device is inconvenient. The
other category involves methods with no key-phase device
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focused on the IF estimation that is mainly based on the phase
demodulation [15]–[18] and time-frequency representation
[19]–[23]. The former type of method demodulates the har-
monic signal extracted from the rolling bearing vibration
signals to obtain instantaneous phase information, but it
can only obtain this information when the harmonics con-
stantly exist in the rolling bearing vibration signal and have
a sufficiently high energy level. However, in most practi-
cal cases such harmonics are very difficult to detect due to
the existence of background noise and resonance [24]. The
later type of method transforms the vibration signal into the
time-frequency domain, so the instantaneous frequency infor-
mation of a harmonic signal can be extracted by a ridge
extraction algorithm and the noise can be effectively sup-
pressed. Thus, the time-frequency representation method is
often used for the rolling bearing systems with strong noise.

Time-frequency analysis is an important tool to analyze
the instantaneous characteristic frequency of nonstationary
signals. In this method, a one-dimensional frequency domain
or time domain signal is mapped to a two-dimensional time-
frequency domain plane, and the time-frequency distribution
of the signals is obtained. Finally, the instantaneous charac-
teristic frequency of each component signal is extracted in the
time-frequency domain. Based on the above theory, a series
of time-frequency analysis algorithms for instantaneous char-
acteristic frequency extraction have emerged, such as the
short-time Fourier transform (STFT) [25], Wigner-Ville dis-
tribution (WVD) [26], [27], and wavelet transform. These
algorithms’ main advantages and disadvantages are ana-
lyzed and discussed in many literatures and will not be
described here. To improve the energy concentration, which
is an important index to measure the effectiveness of the
time-frequency analysis algorithm, the SST is introduced
into the time-frequency analysis algorithm. In reference [28],
the SST method based on wavelet transform is proposed to
improve the energy concentration in the frequency’s direction
and support signal reconstruction, but the time-frequency
resolution is low at high frequency. As an extension of the
method, the SST method based on the STFT is proposed
in [29]. Although the time-frequency resolution at high fre-
quency is improved, the anti-noise capability is poor.

The SST can comprehensively describe the characteristics
of a bearing fault signal frequency that changes over time, but
the SST algorithm has two shortcomings. One shortcoming
is that the accuracy is high only for the harmonic signal
that has a constant instantaneous frequency; it is low when
the instantaneous frequency changes dramatically. Second,
in practical applications, the nonstationary bearing vibration
signal usually contains multiple components that will appear
simultaneously in the time domain; furthermore, the instanta-
neous frequency may overlap in the frequency domain or the
instantaneous frequency difference of each component may
be small. At this time, the most clear and real time-frequency
information cannot be obtained by the SST algorithm [30].
Considering the nonlinear, strong noise and multicompo-
nent characteristics of the rolling bearing vibration signal,

combined with the advantages of STFRFT algorithm,
the FRSST combining the STFRFT and the SST is proposed
to realize the instantaneous frequency estimation of a multi-
component nonpure harmonic signal. The FRSST algorithm
has strong noise robustness and can improve the estimation
accuracy of the instantaneous fault frequency of a rolling
bearing.

The main contributions of the paper are as follows: (i) the
theoretical derivation of the FRSST algorithm as a signal
processing technique is given and the steps of the IF estima-
tion are presented. The FRSST can realize the instantaneous
frequency extraction of a multicomponent signal with fre-
quencies that cross or are close and can support signal recon-
struction. (ii) According to the characteristics of the rolling
bearing signal and the advantages of the FRSST, the FRSST
algorithm is introduced into the IF estimation of a rolling
bearing. This algorithm improves the energy concentration of
the time-frequency distribution of a rolling bearing vibration
signal and the estimation accuracy of the instantaneous fault
frequency.

The arrangement of the remaining chapters is as follows:
the second chapter analyzes the related work of the SST
and STFRFT and discusses the existing problems. The third
chapter analyzes the principles and errors of the SST. The
fourth chapter proposes the FRSST algorithm and introduces
the theoretical derivation and implementation steps in detail.
The fifth chapter verifies the effectiveness of the method
using the simulation signals and actual data from a rolling
bearing. Finally, the sixth chapter summarizes the full text.

II. RELATED WORK
A rolling bearing fault signal with variable speed is nonlin-
ear and nonstationary, rendering traditional signal processing
methods ineffective [31]. The SST can concentrate the time-
frequency energy of a fault signal to the real IF and improve
the energy concentration of the time-frequency distribution,
but the SST has two shortcomings which have been described
in Section I.

A. RELATED RESEARCH OF THE SST
Based on the above shortcomings of the SST, some improved
SST algorithms have appeared in recent years. In refer-
ence [32], the SSTmethod based on variational mode decom-
position (VMD) is proposed. The introduction of VMD
enhances the noise robustness of the SST. In reference [33],
a multiple gradually reduced synchrosqueezing transforma-
tion method is proposed that not only ensures the sig-
nal reconstruction but also improves the time-frequency
concentration of the SST. In reference [34], a horizontal–
vertical synchrosqueezing transformation (HV-SST) method
is proposed to increase the time-frequency resolution and
noise immunity by exploring the data correlation between
the horizontal channel and the vertical channel. The itera-
tive generalized SST method [17] mainly demodulates the
time-frequency distribution of the nonfixed frequency signal
into a straight line parallel to the time axis to improve the
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instantaneous characteristic frequency extraction accuracy of
the nonpure harmonic signal. However, these methods do not
overcome the limitations of the SST method on the multi-
component signal. The general parameterized SST [35], [36]
introduces the kernel function parameters into the SST. This
algorithm can not only extract the instantaneous character-
istic frequency of the nonfixed frequency signal but also
improve the accuracy of the instantaneous characteristic fre-
quency of each component in the multicomponent signal.
However, the accuracy of the method is highly dependent
on the instantaneous frequency ridge extraction algorithm,
and it is not suitable for a multicomponent signal with
a cross instantaneous frequency. The time-reassigned syn-
chrosqueezing transformation (TSST) [37] makes the time-
frequency distribution coefficient redistributed in the time
direction instead of in the frequency direction as in the
SST. Although this transformation is more suitable for the
instantaneous frequency extraction of the linear frequency
modulation (LFM) signal, the calculation efficiency is low
and the time-frequency resolution is not high. To improve the
calculation efficiency of the TSST, an improved TSST algo-
rithm is proposed in reference [38] to improve the timeliness.
However, the time-frequency resolution is not improved.

In practical engineering applications, the weak fault sig-
nal of a rolling bearing is more easily detected under the
conditions of fluctuating speeds, while the vibration signal
presents strong noise as well as nonpure harmonic and mul-
ticomponent characteristics. To improve the accuracy of the
IF estimation and noise robustness, we propose the FRSST
algorithm.

B. RELATED RESEARCH OF THE STFRFT
The STFRFT is an important tool for LFM signal pro-
cessing. It has an adaptive time-frequency-scale-frequency
modulation-rate-conversion window that can reflect any local
details of the signal. The STFRFT algorithm is widely used
in the IF extraction of a rolling bearing [39]–[41] and some
fractional models [42]–[44]. In reference [45], considering
the characteristics of a rolling bearing signal, the fractional
Fourier transform (FRFT) is introduced into VMD to real-
ize the adaptive decomposition of VMD and improve the
noise robustness of the algorithm. In [46], ensemble empirical
mode decomposition based on a fractional Fourier transform
was proposed to detect and estimate the parameters of multi-
component chirp signals, but with the limitations of ensemble
empirical mode decomposition, the modal aliasing problem
is not solved well. In [47], the combination of empirical
mode decomposition and a fractional Fourier transform was
used to suppress high-power interference in the tracking radar
signal, and some results have been achieved. However, when
the interference frequency is high, the filtering effect is not
obvious. In contrast to the FRFT, the STFRFT has strong
time-frequency resolution and noise robustness that solve the
problem that fault signals and power frequency signals are
difficult to separate and extract. The STFRFT can be success-
fully applied to the diagnosis of faults in asynchronous motor

rotors, as it effectively identifies the characteristic frequency
and reflects the trend of the fault characteristic frequency.
Therefore, according to the advantages of the STFRFT algo-
rithm, the STFRFT is applied to the SST algorithm to extract
the IF of a rolling bearing.

In conclusion, the FRSST method solves the problems
of low accuracy of the instantaneous frequency estimation
and poor noise immunity of the SST at variable speeds.
First, the time-frequency distribution of each component is
calculated based on the STFRFT algorithm to improve the
noise robustness of the algorithm. Second, according to the
SST algorithm, the time-frequency energy distribution is
compressed to the real IF to improve the time-frequency
concentration of the algorithm. Finally, the instantaneous
fault frequency of a rolling bearing is estimated by improv-
ing the peak search algorithm and the estimation error is
calculated.

III. THE PRINCIPLE AND ERROR ANALYSIS OF THE SST
A. THE SST PRINCIPLE
The SST is used to compress the diffused time-frequency
energy to the real instantaneous frequency, which not only
improves the energy concentration of the time-frequency dis-
tribution but also retains the characteristics of a signal recon-
struction. The derivation process of the SST is as follows.

The definition expression of the STFT for x(t) is

X (t, ω) =
∫
+∞

−∞

g(u− t) · x(u) · e−jωudu (1)

where g(u) is a window function. According to Parseval’s
theorem, Equation (1) can be rewritten as follows:

X (t, ω) =
∫
+∞

−∞

x(u)
(
g(u− t)ejωu

)∗
du

=

∫
+∞

−∞

x(u) · (gω(u))∗ du

=
1
2π

∫
+∞

−∞

x̂(ξ ) ·
(
ĝω(ξ )

)∗ dξ (2)

where gω(u) = g(u− t) · ejωu, ()∗ is the symbol of a complex
conjugate operation, x̂(ξ ) is the Fourier transform of x(u) and
ĝω(ξ ) is the Fourier transform of gω(u). The expression of
ĝω(ξ ) is as follows:

ĝω(ξ ) =
∫
+∞

−∞

g(u− t) · ejωu · e−jξudu. (3)

Let u− t = t ′. Then,

ĝω(ξ ) =
∫
+∞

−∞

g(t ′) · ejω(t+t
′)
· e−jξ (t+t

′)dt ′

= ejt(ω−ξ ) ·
∫
+∞

−∞

g(t ′) · ejt
′(ω−ξ )dt ′

= ejt(ω−ξ ) · ĝ(ω − ξ ) (4)

where ĝ(ω − ξ ) is the Fourier transform of g(ω − ξ ).
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Substituting (4) into (2) yields

X (t, ω) =
1
2π

∫
+∞

−∞

x̂(ξ ) ·
(
ejt(ω−ξ ) · ĝ(ω − ξ )

)∗
dξ

=
1
2π

∫
+∞

−∞

x̂(ξ ) · e−jωt+jξ t · ĝ(ω − ξ )dξ

= e−jωt ·
1
2π
·

∫
+∞

−∞

x̂(ξ ) · ĝ(ω − ξ ) · ejξ tdξ . (5)

The standard STFT is multiplied by the phase shift operator
ejωt . The resulting improved STFT is as follows:

Xe(t, ω) =
∫
+∞

−∞

x(u) · g(u− t) · e−jω(u−t)du. (6)

The improved STFT of (6) can be rewritten into an expression
corresponding to (5), as follows:

Xe(t, ω) =
1
2π
·

∫
+∞

−∞

x̂(ξ ) · ĝ(ω − ξ ) · ejξ tdξ . (7)

Herein, we employ themodel of a purely harmonic signal (the
frequency is f0) with an invariant amplitude (A) as

X (t) = A · ejf0t . (8)

Due to the Fourier transform of X (t),

X̂ (ξ ) = 2πA · δ(ξ − 2π f0). (9)

By substituting (9) into (7), we can obtain the STFT of X (t):

Xe(t, ω) = A · ĝ(ω − 2π f0) · ej2π f0t . (10)

The SST is designed to improve the energy concentration
by a squeezing procedure. To obtain the instantaneous fre-
quency of the STFT result (10), it is suggested to calculate
the derivative of X (t) with respect to time as

∂tXe(t, ω) = ∂t
(
A · ĝ(ω − 2π f0) · ej2π f0t

)
= A · ĝ(ω − 2π f0) · ej2π f0t · j · 2π f0
= Xe(t, ω) · j · 2π f0. (11)

According to (10) and (11), for any (t, ω) and for Xe 6= 0,
a 2-D instantaneous frequency f0(t, ω) for the STFT of X (t)
can be obtained by

f0(t, ω) = −j ·
∂tXe(t, ω)
Xe(t, ω)

. (12)

In mathematics, the synchrosqueezing operator is written as∫
+∞

−∞
δ(η − f0(t, ω))dω. Then, the SST is formulated as

Ts(t, η) =
∫
+∞

−∞

Xe(t, ω) · δ(η − f0(t, ω))dω. (13)

The SST is the second rearrangement of the time-frequency
energy of the STFT, and it can improve the energy con-
centration of the time-frequency distribution. Moreover,
Equation (13) is integrated into the frequency domain, and
the reconstructed signal of X (t) can be obtained by

X (t) =
1

2πg(0)
·

∫
{ω,|ω−φk |<ds}

Tx(t, ω)dω (14)

where φk is the estimated instantaneous frequency curve and
ds is the integral interval.

B. THE ERROR ANALYSIS OF THE SST
According to (13), the result of the SST algorithm is directly
affected by the estimation accuracy of the instantaneous
frequency f0(t,w). According to the analysis of the SST,
the instantaneous frequency of the purely harmonic signal can
be estimated by (12). However, there are some errors for the
LFM signal based on the SST. In this paper, the LFM signal
x(t) = exp

(
j2π

(
f0t + 1

2µt
2
))

and the Gaussian window

function g(t) = exp(− t2

2σ 2
) (σ is the standard deviation of the

Gaussian window function and σ 6= 0) are taken as examples
to illustrate the error of the SST algorithm. The STFT of the
LFM signal is as follows:

STFT

=

∫
+∞

−∞

exp
(
j2π(f0(τ+t)+

1
2
µ(τ+t)2−

τ 2

2σ 2−j2π f τ
)
dτ

= exp
(
j2π (f0t+

1
2
µt2)

)∫
+∞

−∞

exp
(
−

(
b1τ+a1τ 2

))
dτ

(15)

where b1 = −(j2π f0 + j2πµt − j2π f ) and a1 = −(jπµ −
1

2σ 2
). According to the integral formula∫

+∞

−∞

e−(aτ
2
+bτ )dτ =

√
π

a
eb

2/4a. (16)

Equation (15) can be simplified as

STFT =
√
π

a1
exp(j2π(f0t +

1
2
µt2)+ b21/4a1). (17)

Hence,

∂tSTFT (t,w) = STFT · j · 2π

·

(
(f0 + µt)+

jµ(2π f0 + 2πµt − 2π f )

jπµ− 1
2σ 2

)
(18)

and

−j
∂tSTFTex
2πSTFTex

= f0(t,w)+
jµ(2π f0+2πµt−2π f )

jπµ− 1
2σ 2

(19)

where f0(t,w) = f0 + µt . If the true instantaneous frequency
was estimated by (12), the error, which is jµ(2π f0+2πµt−2π f )

jπµ− 1
2σ2

,

would be introduced. However, the error is related to the
frequency modulation rate and cannot be estimated. There-
fore, the SST of the LFM signal calculated by (13) is no
longer accurate. To improve the estimation accuracy of the
instantaneous frequency, the SST algorithm based on the
STFRST is proposed. In the following, the derivation process
and calculation results of the FRSST are given.

IV. INSTANTANEOUS FREQUENCY ESTIMATION BASED
ON THE FRSST
A. THE FRSST PRINCIPLE
1) THE FRFT PRINCIPLE
The FRFT is a generalized form of the traditional Fourier
transform. There is a signal f (t) in time-frequency domain
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and the angle between its axis and time axis is β. The sig-
nal is rotated around the origin in time-frequency plane by
FRFT and the rotation angle is α. When α is orthogonal
to β, the energy of the signal is the most concentrated in
the fractional domain as shown in the Fig. 1, where (t,w) is
time-frequency plane and (u,v) is the fractional domain plane.
So in the case of multicomponent, the signal is separated, and
the signal is extracted by inverse fractional Fourier transform.

FIGURE 1. The FRFT of the signal.

The Definitions of FRFT is as follows:

Xα(u) = FRFTα[x(t)] =
∫
∞

−∞

x(t)Kα(t, u)dt (20)

where Kα is the kernel function of the FRFT. Kα is calculated
by

Kα(t, u) =


Aa exp

[
jπ ((t2 + u2) cotα − 2ut cscα)

]
,

α 6= nπ
δ(t − u), α = 2nπ
δ(t + u), α = (2n± 1)π

(21)

where α = pπ/2, p is the order of the FRFT and Aa =√
1− j cotα. The inverse fractional Fourier transform is the

fractional Fourier transform with angle −α = −pπ/2,
namely,

x(t) =
∫
+∞

−∞

Xα(u)K−α(t, u)du. (22)

Firstly, when FRFT is applied to fault signals of rolling
bearings, the effective signal energy is concentrated in a
narrow band with a certain frequency as the center, and the
noise signal does not show the characteristics of energy accu-
mulation. Therefore, the FRFT can better separate the noise
part of the fault signal and improve the anti-noise ability of the
algorithm. Secondly, there are many frequency components
in the fault signal, and they are cross-interference, which
will greatly increase the difficulty of frequency estimation.
But each frequency component has different energy aggrega-
tion center frequencies in the fractional domain. Therefore,
the FRFT can effectively suppress cross-interference and
improve the estimation accuracy of the frequencies of each
component. Therefore, the FRFT instead of Fourier transform
is applied to the SST algorithm.

2) THE STFRFT PRINCIPLE
According to the characteristics of the FRFT, the STFRFT
with order α of a function x(t) is defined as the convolution
of the FRFT and a window function and is calculated by

STFRFTα(t, u) =
∫
+∞

−∞

x(t + τ )g∗(τ )Kα(τ, u)dτ . (23)

3) THE DETECTION AND PARAMETERS ESTIMATION OF AN
LFM SIGNAL
As the FRFT is a 1-D linear change, it is unaffected by
cross terms. The FRFT can not only detect and estimate
the parameters of an LFM signal reliably but also reduce
the complexity of the processing. The specific steps are as
follows. The LFM signal with noise can be expressed as

x1(t) = s(t)+w(t) = a0 exp(jϕ0+j2π f0t+πµ0t2)+w(t)

(24)

where a0, ϕ0, f0 and ζ0 are unknown parameters and w(t)
is Gaussian white noise. Then, the process of optimal order
selection and parameter estimation for (24) can be described
as

{α̂0, û0} = argmax
α,u
|Xα(u)|2 (25)

and 

_
µ0 = − cot α̂0
f̂0 = û0 csc α̂0

ϕ̂0 = arg

[
Xα̂0 (û0)

Aα̂0e
jπ û20 cot α̂0

]
â0 =

∣∣Xα̂0 (û0)∣∣
1t
∣∣Aα̂0 ∣∣

(26)

where Xα(u) is the FRFT of x1(t) and _
µ0, f̂0, ϕ̂0 and â0

represent the parameter estimation of the frequency modula-
tion rate, center frequency, phase and amplitude of the LMF
signal, respectively.

4) THE FRSST PRINCIPLE

In this section, the LFM signal x(t)=exp
(
j2π

(
f0t + 1

2µt
2
))

and the Gaussian window function g(t) = exp(− t2

2σ 2
) (σ is

the standard deviation of the Gaussian window function and
σ 6= 0) are taken as examples to illustrate the advantages
and principle of the FRSST. The FRSST algorithm has two
advantages, and one is to improve the energy concentration of
the time-frequency distribution. According to reference [48],
the difference between the STFT and STFRFT in the time-
frequency resolution of an LFM signal is mainly caused by
4π2σ 4µ2. With the increase of µ, the time-frequency con-
centration of the STFT decreases, while the corresponding
concentration of the STFRFT is unaffected by µ. The second
advantage of the FRSST algorithm is to improve the esti-
mation accuracy of the instantaneous frequency. This second
advantage is explained in detail by a theoretical derivation.
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According to the analysis in Section III.B, if the true
instantaneous frequency is estimated by (12), the error of
jµ(2π f0+2πµt−2π f )

jπµ− 1
2σ2

would be introduced. The error that cannot

be estimated is related to the frequency modulation rate µ.
Therefore, the SST of the LFM signal calculated by (13) is
no longer accurate. The FRSST algorithm avoids the problem
and increases the estimation accuracy of the instantaneous
frequency. The FRSST principle is described below. In addi-
tion, the ideal method to avoid the problem is explained
below.

The STFRFT with order α of a function x(t) is defined as

STFRFTα(t, u)

=Aα

∫
+∞

−∞

exp(j2π(f0(t+τ )+ 1
2
µ(t+τ )2)·exp(−

τ 2

2σ 2 )

·exp(jπ(τ 2cotα+u2cotα−2uτ cscα))dτ


=Aα exp(j2π(f0t +

1
2
µt2)+ jπu2 cotα)

·

∫
+∞

−∞

[
exp((j2π f0 + j2πµt − j2πu cscα)τ )

· exp((jπµ+ jπ cotα −
1

2σ 2 )τ
2)dτ

]

=Aα exp(j2π(f0t +
1
2
µt2)+ jπu2 cotα)

·

∞∫
−∞

exp(−(Bτ + Aτ 2))dτ (27)

where B = −(j2π f0+j2πµt−j2πu cscα) and A = −(jπµ+
jπ cotα − 1

2σ 2
). According to (16), Equation (27) can be

rewritten as

STFRFTα(t, u) == Aα exp(j2π(f0t +
1
2
µt2)+ jπu2 cotα)

·

√
π

A
· exp(B2/4A)

=

√
π

A
Aα exp(j2π(f0t +

1
2
µt2)

+ jπu2 cotα + B2/4A) (28)

According to (28), the time-frequency energy distribution of
x(t) based on the STFRFT appears energy diffusion withw =
f0+µt as the center. To reduce the energy diffusion caused by
the STFRFT, the SST is designed to compress the energy to
the instantaneous frequency. The derivative of STFRFTα(t, u)
with respect to time is

∂tSTFRFTα(t, u)

= ∂t

(√
π

A
Aα exp(j2π(f0t+

1
2
µt2)+jπu2cotα+B2/4A)

)
= STFRFTα(t, u) · (j2π (f0 + µt)+

B
2A
∂B
∂t

)

= STFRFTα(t, u) · (j2π (f0 + µt)+ 2πµ

·
2π (u cscα − f0)− πµt

1
σ 2
− j2π (µ+ cotα)

) (29)

According to (26), when α is the optimal order, f0 = u cscα
and µ = − cotα. Therefore, Equation (29) is simplified as

∂tSTFRFTα(t, u)

= STFRFTα(t, u)·(j2π (f0+µt)−2π2σ 2(cot2 α)t). (30)

According the properties of FRFT, u = w·cosα. By substitut-
ing this equation into (30), for any (t,w), a 2-D instantaneous
frequency for the STFRFT can be obtained by

f (t,w) = f0 + µt

= −j
∂tSTFRFTα(t,w)
STFRFTα(t,w)

+ 2π2σ 2(cot2 α)t

2π
. (31)

From the above analysis, it can be seen that the STFRFT can
improve the instantaneous frequency estimation accuracy of
an LFM signal compared with the STFT algorithm.

The FRSST is a synchrosqueezing transformation based
on the STFRFT. The synchrosqueezing operator is written as∫
+∞

−∞
δ(η − f (t, ω))dω, and the FRSST is formulated as

FRSSTx(t, η)=

∞∫
−∞

STFRFTα(t,w)δ(η−f (t,w))dω. (32)

The SST that is the second rearrangement of the
time-frequency energy of the STFRFT can improve the
energy clustering of the time-frequency distribution. More-
over, Equation (32) is integrated into the frequency domain,
and the reconstructed signal of x(t) can be obtained by

x(t)= (2πg(0))−1 ·
∫
{w,|w−φk<ds}|

FRSSTx(t,w)dw (33)

where φk is the estimated instantaneous frequency curve and
ds is the integral interval.

B. INSTANTANEOUS FREQUENCY RIDGE EXTRACTION
The vibration signal of a rolling bearing not only has the
characteristics of emphasizing frequency but also is easily
affected by noise. Therefore, in its time-frequency energy
distribution, there may be multiple peaks at the same time,
and the peak component caused by noise is often higher than
the corresponding peak of the effective signal. To extract the
instantaneous frequency ridge more accurately, an improved
peak search algorithm is proposed [49].

(1) The coordinates (n0, k0) and (n1, k1) of two adjacent
peaks at the starting point are obtained based on the basic
peak search method, and the first derivative at the two points
is calculated by d0 = d1 =

k1−k0
n1−n0

.
(2) The frequency search range is set as (k1 − p, k1 + p) at

time n2, where p should be sufficiently large to ensure that the
instantaneous frequency is within the search range.Moreover,
all of the searched peaks in the range are inserted into array
B according to the magnitude order of the amplitude.

(3) The maximum value B(1) of B is taken, and d2 and
ε2 are calculated by d2 =

B(1)−k1
n2−n1

and ε2 = |d2 − d1|,
respectively.
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(4) After setting the threshold value s based on refer-
ence [49], ε2 and s are compared. If s is larger, B(1) is the
frequency at time n2. Otherwise, the next point of array B is
taken as the frequency, and steps (3) and (4) are repeated until
B(i) is smaller than s. Thus, B(i) is the frequency at time n2
and the point (n2, k2) is derived.
(5) Steps (1), (2), (3) and (4) are repeated with (n2, k2)

instead of (n0, k0), and in this way the frequency at each time
can be obtained.

The improved peak search method can effectively avoid
the false peak values extracted by the traditional peak search
method.

C. INSTANTANEOUS FREQUENCY ESTIMATION OF A
MULTICOMPONENT SIGNAL BASED ON THE
ITERATIVE FRSST
There may be different strength and frequency vibration
signals in the rolling bearing at the same time. Based on
the iterative FRSST, the instantaneous frequency of each
component vibration signal is extracted in turn. The specific
steps are as follows:

(1) In the (α, u) plane, the position of the strongest signal
component (_α01,

_u01) and the corresponding parameter esti-
mation

{
_a01, ϕ̂01,

_

f 01,
_
µ01

}
are obtained according to (25)

and (26) by a 2-D search.
(2) The STFRFT with order _α01 of function x(t) = s(t)+

w(t) is defined as (34), where s(t) is the multicomponent
signal and w(t) is Gaussian white noise.

X
_
α01
STFRFT (u) = S

_
α01
STFRFT (u)+W

_
α01
STFRFT (u) (34)

where S
_
α01
STFRFT (u) and W

_
α01
STFRFT (u) are the STFRTs of the

multicomponent signal and the noise signal, respectively.
At this time, most of the energy of the first component is con-
centrated in a narrow band centered on the real instantaneous
frequency of the component, while the noise and other signals
do not show obvious energy accumulation.

(3) The time-frequency energy of the FRSST for the signal
is obtained by (32), and the instantaneous frequency ridge is
obtained by the improved peak search in Section IV.B.

(4) The time domain signal corresponding to the frequency
component is recovered by (33).

(5) By repeating the above steps for the remaining com-
ponents x ′(t) = x(t) − _s1(t) until the amplitude of the
residual signal is lower than a predetermined threshold value,
the instantaneous frequency ridge and time domain signal
estimation for each component of the multicomponent signal
can be obtained.

D. EVALUATION INDEXES
In this paper, a time-frequency energy concentration index
and two error analysis indexes are introduced to represent
the effectiveness of the FRSST, namely, the Renyi entropy,
instantaneous frequency extraction error and the improve-
ment of the signal-to-noise ratio (SNR), respectively.

(1) Renyi entropy

The Renyi entropy can be used to quantitatively analyze
the energy concentration of time-frequency analysis methods,
and it is an important index to evaluate the time-frequency
resolution. The Renyi entropy is defined as

Rβ (TF(t, f ))=
1

1−β
log2

∫
∞

−∞

∫
∞

−∞

TFβ (t, f )dtdf (35)

where TF(t, f ) is the time-frequency distribution and
β = 3. A smaller Renyi entropy implies a better time-
frequency energy aggregation and a higher time-frequency
resolution.

(2) Estimation error of the instantaneous frequency
The real instantaneous frequency is f (t), and the estimate

is
_

f (t). The mean absolute error between them is used to
represent the estimation error of the instantaneous frequency,
and its expression is as follows:

σ =
1
m

m∑
i=1

∣∣∣_f (i)− f (i)∣∣∣ (36)

where m is the number of samplings.
(3) The improvement of the SNR
To analyze the anti-noise ability of the algorithm intu-

itively, the SNR is introduced; it is the ratio of the signal
energy to the noise energy. The input signal is set as v(t) =
s(t)+w(t), where s(t) is the useful signal andw(t) is the noise.
Then, the input SNR (SNRin) is formulated as

SNRin =

m∑
i=1

s2(i)

m∑
i=1

w2(i)
. (37)

The output SNR is the ratio of the energy of the useful
signal to the energy of the residual noise in the noise reduced
signal _v(t). The output SNR (SNRout ) is formulated as

SNRout =

m∑
i=1

s2(i)

m∑
i=1

[_v(i)− s(i)]2
. (38)

The improvement of the SNR (SNRd if) is the difference
between SNRout and SNRin, which is calculated by

SNRdif = SNRout − SNRin. (39)

V. EXPERIMENT ANALYSIS
In this paper, the FRSST algorithm is compared with the
SST, the VMD-SST and PSST based on the simulated sig-
nal and a rolling bearing’s actual data. In the comparison
part of the simulated signal, by constructing different sim-
ulation signals, we verified that the FRSST algorithm has
a high time-frequency concentration, is non-fragile to the
frequency modulation rate, has noise robustness and fea-
tures nonsensitivity to cross-frequency signals. For the actual
signal, the outer ring fault signal of a rolling bearing was
obtained from the QPZZ-II fault simulation platform for
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comparison and verification. The energy concentration of the
time-frequency distribution of the rolling bearing vibration
signal and the estimation accuracy of the instantaneous fault
frequency are compared and verified.

A. SIMULATION SIGNAL ANALYSIS
1) THE HIGH TIME-FREQUENCY CONCENTRATION
OF THE FRSST
To verify the time-frequency concentration of the FRSST,
the nonlinear frequency modulation signal is used in the
simulation experiment, and it is modeled as

S(t) = exp(j2π(40t − 50t2 + 70t3)). (40)

The sampling frequency fs is 1024 Hz that means the
proposed approach collects 1024 samples/second, and the
sampling time is one second. Based on the SST and FRSST
methods, the time-frequency distribution of the signal is
shown in Fig. 2.

FIGURE 2. The time-frequency distribution of the signal: (a) The
time-frequency distribution based on the FRSST; (b) The time-frequency
distribution based on the SST.

As shown in Fig. 2, when the frequency modulation rate
is low, the SST and FRSST algorithms have similar time-
frequency concentrations. However, with the increase of

the frequency modulation rate, the FRSST can still ensure
good time-frequency concentration, while the time-frequency
energy of the SST is dispersed. Therefore, the time-frequency
concentration of the SST decreases in the period with a large
frequency change rate, while the frequency change rate has no
effect on the FRSST. According to (35), the Renyi entropies
of the two algorithms are shown in Table 1, and it can be seen
that the FRSST has better time-frequency concentration than
the SST.

TABLE 1. The Renyi entropies of the SST and FRSST.

2) NON-FRAGILE OF THE FRSST TO THE FREQUENCY
MODULATION RATE
A multicomponent LFM simulated signal is constructed as
follows:

S1(t) = s1(t)+ s2(t)+ s3(t)+ s4(t) (41)

where the math model of each component is written as

s1(t) = 1.5 exp(j0+ j2π (50t + 0t2)) (42)

s2(t) = 2 exp(j0+ j2π (120t + 5t2)) (43)

s3(t) = 3 exp(j0+ j2π (190t + 15t2)) (44)

s4(t) = 3.5 exp(j0+ j2π(260t + 35t2)) (45)

The sampling frequency fs is 1000 Hz that means the
proposed approach collects 1000 samples/second, and the
sampling time is one second. The time domain waveform and
the frequency spectrum of S1(t) are shown in Fig. 3.

Since the simulation signal is nonstationary, the frequency
component of the signal can no longer be identified by the fast
Fourier transform (FFT), as shown in Fig. 3 (b). The proposed
FRSSTmethod is used to process the multicomponent signal.
According to the calculation steps shown in Section IV.C,
a time-frequency representation of each component signal
is obtained by the FRSST and a similar representation of
the simulation signal S1(t) can be obtained by adding those
representations, which is shown in Fig. 4.

To illustrate the effectiveness of the FRSST, the instan-
taneous frequency estimation of each component and the
estimation error of the instantaneous frequency of the FRSST
algorithm is compared with the corresponding figures for
the VMD-SST and PSST algorithms. The instantaneous fre-
quency trajectories shown in Fig. 5 are extracted by the
improved peak search algorithm in Section IV.B. As shown
in Fig. 5, with the increase of the frequency modulation rate,
the estimation errors of the instantaneous frequency by the
VMD-SST and PSST algorithm grow, while the estimation
error of the FRSST algorithm is less affected by the fre-
quency modulation rate. To further illustrate the non-fragile
of the FRSST algorithm to the frequency modulation rate,
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FIGURE 3. The time domain waveform and the frequency spectrum of
S1(t): (a) The time domain waveform; (b) The frequency spectrum.

FIGURE 4. The time-frequency representation of S1(t) based on the FRSST.

the relationship between the frequency modulation rate and
the estimation error of the instantaneous frequency is shown
in Fig. 6 by changing the frequency modulation rate in the
range of 0-100 in steps of 5. The Renyi entropy changing with
the frequency modulation rate is shown in Fig. 7.

As shown in Fig. 6, with the increase of the frequency
modulation rate, the estimation error of the instantaneous
frequency based on the VMD-SST and PSST increases grad-
ually, and the error variation amplitude also increases. The
estimation error based on the FRSST algorithm is less than
the estimation errors of the VMD-SST and PSST algorithms,

FIGURE 5. Instantaneous frequency trajectories.

FIGURE 6. The relationship between the frequency modulation rate and
the estimation error of the instantaneous frequency.

furthermore, the error variation amplitude changes little with
the increase of the frequency modulation rate. Therefore,
we know that the FRSST method has a strong non-fragile to
the frequency modulation rate. For the VMD-SST and PSST,
the derivative of the STFTwith respect to time is calculated to
obtain the instantaneous frequency, which will introduce the
estimation error of the instantaneous frequency, and the sim-
ulation results are consistent with the result of (19). While in
the FRSST, Equation (31) is used to replace the estimation of
the instantaneous frequency on the STFT, and the estimation
accuracy of the instantaneous frequency of each component
is greatly improved. As shown in Fig. 7, the Renyi entropy of
the VMD-SST and PSST increases with the increase of the
frequency modulation rate, and the time-frequency concen-
tration decreases. However, the Renyi entropy of the FRSST
does not change much, and its time-frequency concentration
is higher than the time-frequencies of the VMD-SST and
PSST. This behavior occurs because the time-frequency con-
centration of the STFT decreases with the increase of the
frequency modulation rate, while the corresponding concen-
tration of the STFRFT is not affected by the frequency modu-
lation rate. Through the comparison of the above performance
indexes, it can be seen that the FRSST algorithm has a strong
non-fragile to the frequency modulation rate.
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FIGURE 7. The Renyi entropy changing curve.

3) NOISE ROBUSTNESS OF THE FRSST
To verify the noise robustness of the FRSST, different SNRs
are added to the signal in (41), and the signals with noise are
obtained as

S2(t) = S1(t)+ η(t) (46)

where S1(t) is as shown in (41) and η(t) is Gaussian white
noise. SNRin=−2 dB, which is taken as an example for
experimental comparison and demonstration. Instantaneous
time-frequency representation of the signal is shown in Fig. 8
when SNRin=−2 dB. The following quantified indicators
including the instantaneous frequency estimation of each
component and the improvement of the SNR are consid-
ered. The advantages of the FRSST are compared with the
VMD-SST and PSST. The comparison result of the instan-
taneous frequency trajectories is displayed in Fig. 9, which
shows that the instantaneous frequency trajectories based on
the VMD-SST method have the lowest accuracy and have
many burrs. Compared with the VMD-SST, the accuracy of
the instantaneous frequency based on the PSST is improved,
but there are still many burrs. The estimation accuracy of
the instantaneous frequency is higher and the instantaneous
frequency trajectories are smoother based on the FRSST
algorithm. To further illustrate the noise robustness of the

FIGURE 8. Instantaneous time-frequency representation of S2(t) based
on the FRSST.

FIGURE 9. Instantaneous frequency trajectories.

FRSST method, the relationship between SNRin and SNRdif
is shown in Fig. 10 by changing SNRin in the range of
[-15 15] dB in steps of 1 dB.

FIGURE 10. The improvement of the SNR with different SNRin.

As shown in Fig. 10, with the increase of SNRin, the SNRdif
of the FRSST is more than those of the VMD-SST and PSST,
which implies that the FRSST has strong noise robustness.
This finding is sensible because both the VMD-SST and the
PSST are based on the STFT, which has poor noise immunity.
Furthermore, the FRSST method uses the STFRFT instead
of the STFT and makes full use of the noise immunity of the
STFRFT. Thus, the FRSST has strong noise robustness.

4) NONSENSITIVITY OF THE FRSST TO CROSS-FREQUENCY
SIGNALS
When the instantaneous frequency of the signal is crossed,
there will be cross interferences in the time-frequency anal-
ysis. To verify the effectiveness of the FRSST for the
cross-frequency signal, a multicomponent signal with a cross
frequency is constructed as

S3(t) = s5(t)+ s6(t) (47)

where the math model of each component is written as

s5(t) = 3 exp(j0+ j2π (190t + 5t2)) (48)

s6(t) = 2 exp(j0+ j2π (160t + 30t2)) (49)
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FIGURE 11. Instantaneous time-frequency representation and instantaneous frequency trajectories of a cross-frequency
signal: (a) Instantaneous time-frequency representation based on the VMD-SST and the instantaneous frequency
trajectories; (b) Instantaneous time-frequency representation based on the PSST and instantaneous frequency trajectories;
(c) Instantaneous time-frequency representation based on the FRSST and the instantaneous frequency trajectories.

The FRSST, VMD-SST and PSST algorithms are used
to estimate the instantaneous frequency, and the results are
shown in Fig. 11.

As shown in Figs. 11 (a) and (b), the instantaneous fre-
quency energy of the VMD-SST and PSST at the intersection
are divergent, and the instantaneous frequency is marred by
confusion and ambiguity. In Fig. 11(c), the FRSST has a high
time-frequency resolution, and the instantaneous frequency
ridge is clear and still effective. It can be seen that the duration
of the cross ambiguity based on the VMD-SST and PSST is
0.3 s, and the corresponding duration of the FRSST is less
than 0.1 s on the left side of the intersection, which greatly
reduces the frequency estimation error. Thus, the accuracy of
the instantaneous frequency estimation of the FRSST is still

better than the corresponding accuracies of the VMD-SST
and PSST for cross-frequency signals and the FRSST is still
valid for such signals.

B. ACTUAL SIGNAL ANALYSIS OF A FAULT BEARING
The equipment used in this paper is the QPZZ-II fault sim-
ulation platform which is a rotating machinery vibration and
fault simulation platform, as shown in Fig. 12. The compo-
nents of the QPZZ-II are shown in Fig. 12(a). Fig. 12(b) is
a part of the simulation platform with a fault bearing and
the sensor is marked. The simulation schematic diagram is
shown in Fig.12 (c). The tachometer is XB40-I type. The
bearing type is NU205EM, the front end is normal bearing,
and the back end is fault bearing to be tested. The acceleration
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FIGURE 12. The experimental platform: (a) QPZZ-II fault simulation
platform; (b) The sensor installation position; (c) The simulation
schematic diagram.

sensor is CA-YD-188 type and the drive motor is YVF801-4
which is AC variable frequency motor with speed range of
75-1450rpm. The load type is CZ-0.5 which is the magnetic
powder brake and it is radial force with maximum torque of
5N·m. The rotational speed of the rotating disc that is installed
on the transmission shaft is measured by the tachometer, and
the rotating frequency of the bearings is obtained. The vibra-
tion signal of the fault bearing is measured by the acceleration
sensor to provide the experimental data of the fault bearing for
the following. Moreover, the main parameters of the bearing
are shown in Table 2.

TABLE 2. The main parameters of the bearing.

When the rotational speed of a rolling bearing is constant,
the high amplitude and fast attenuation impact will be pro-
duced in the vibration signal because of the collision between
the fault point and its correspondingmating surface. Andwith
the continuous operation of a rolling bearing, the impact will
occur repeatedly at a fixed time interval, the repetition fre-
quency is the fault characteristic frequency (IFF) which is the
IF harmonics.When the outer ring, inner ring, rolling element
or cage of rolling bearing fails, the calculation formulas of
IFF [50] are as follows:

IFFo =
nfr
2

(
1−

d
D

cosϕ
)

(50)

IFFi =
nfr
2

(
1+

d
D

cosϕ
)

(51)

IFFb =
Dfr
2d

[
1−

(
d
D

)2

cos2 ϕ

]
(52)

IFFc =
fr
2

[
1−

d
D

cosϕ
]

(53)

where IFFo, IFFi, IFFb, IFFc represent the IFF of outer ring,
inner ring, rolling element and cage respectively, n is the
number of rolling bodies, d is the diameter of rolling body,
D is the diameter of pitch circle, ϕ is the contact angle and fr
is the IF.

The feasibility of the FRSST method was verified by mea-
suring the fault signals of an outer ring rolling bearing with
rising speed and complex fluctuated speed.

1) THE INSTANTANEOUS FREQUENCY ESTIMATION OF A
ROLLING BEARING WITH RISING SPEED
The fault signal of the outer ring of the rolling bearing under
the condition of rising speed is analyzed. During the test,
the sampling frequency is 25600 Hz and the sampling time
is 4 s. Only the acceleration signal collected by the vertical
acceleration sensor is used for the test analysis, and its time
domain, frequency domain waveform and instantaneous rota-
tional frequency curve are shown in Figs. 13 (a), (b) and (c),
respectively. According to (50), the theoretical value curve of
the instantaneous fault frequency is shown in Fig. 13 (d).

If the amplitudes of the instantaneous fault frequency IFFo
and 2 and 3 times frequency are more prominent, the bearing
fault can be judged [51]. The time-frequency energy distribu-
tion based on the FRSST, VMD-SST and PSST algorithms
are shown in Fig. 14.

As shown in Fig. 14, 1, 2 and 3 times of the IFF can be
extracted by the FRSST. The time-frequency concentrations
of the FRSST, VMD-SST and PSST are analyzed by the
Renyi entropy, and the results are shown in Table 3. Accord-
ing to the comparison in Table 3, the Renyi entropy of the
FRSST is the smallest and the time-frequency concentration
is the highest. The IFF trajectories shown in Fig. 15 are
extracted by the improved peak search algorithm. The esti-
mation error of the IFF based on the FRSST method is the
least, and it is 2.1856 Hz less than the corresponding error
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FIGURE 13. The signal preprocessing results for actual signals: (a) Time
domain diagram; (b) Frequency domain waveform; (c) Instantaneous
rotational frequency curve; (d) Instantaneous fault frequency curve.

of the VMD-SST and 1.1879 Hz less than the corresponding
error of the PSST method.

In order to further verify the effectiveness of the FRSST
algorithm, the comparison results of Renyi entropy and

FIGURE 14. Instantaneous time-frequency representations: (a) FRSST;
(b) VMD-SST; (c) PSST.

TABLE 3. The Renyi entropy.

estimation error of IFF of the other three cases are obtained
by changing the fault type of a rolling bearing under the same
speed condition, as shown in Table 4. The estimation error of
IFF based on the FRSST method is the least for the four fault
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FIGURE 15. The IFF estimation for actual signals.

TABLE 4. The Renyi entropy and Estimation error of IFF under different
type of faults.

types. On average, the estimation error is 2.2180 Hz less than
the corresponding error of the VMD-SST and 1.1862 Hz less
than the corresponding error of the PSST method.

2) THE INSTANTANEOUS FREQUENCY ESTIMATION OF A
ROLLING BEARING WITH FLUCTUATED SPEED
The fault signal of the outer ring of the rolling bearing
with complex fluctuated speed is analyzed. The sampling
frequency is 25600 Hz and the sampling time is 15 s. The
acceleration signal collected by the vertical acceleration sen-
sor with adding noise whose SNB is -2dB is used for the test
analysis. And its time domain diagram and the theoretical
value curve of IFF are shown in Figs. 16 (a), (b), respectively.

The time-frequency energy distribution based on the
FRSST, VMD-SST, PSST and PCT algorithms are shown
in Fig. 17. The time-frequency concentrations of the FRSST,
VMD-SST, PSST and PCT are analyzed by the Renyi
entropy, and the results are shown in Table 5.

TABLE 5. The Renyi entropy.

According to the comparison in Table 5 and Fig. 17, it can
be seen that FRSST algorithm has good noise immunity and
the time-frequency concentration of the FRSST is the highest.
The anti-noise performance of PCT algorithm is higher than
that of VMD-SST, but the time-frequency concentration is

FIGURE 16. The signal preprocessing results for actual signals: (a) Time
domain diagram; (b) Instantaneous fault frequency curve.

poor. The PSST algorithm is a combination of the PCT and
the SST algorithm, so it not only keeps the good anti-noise
performance of the PCT algorithm, but also improves the
time-frequency concentration. But comparing Table 3 and
Table 5, we can get that the Renyi entropy of the FRSST for a
rolling bearing with fluctuated speed is larger than the Renyi
entropy of the FRSST for a rolling bearing with rising speed.
So the FRSST is more suitable for estimating IFF of a rolling
bearing with uniform acceleration.

Through theoretical analysis and experimental verifica-
tion, it can be seen that FRSST algorithm has high accuracy
in instantaneous frequency estimation of a rolling bearing
with uniform change speed, and as the algorithm of instan-
taneous frequency estimation, FRSST can also be widely
used in rotating machinery in manufacturing industry, sound
signals, radar signals and so on. However, for the rotating
machinery with complex rotating speed, the algorithm still
needs to be improved. The future research on FRSST under
complex speed is mainly divided into two categories. One is
that multiple LFM signals are used to approximate vibration
signals under complex rotating speed which has been studied
bymore andmore scholars, and FRSST is used to estimate the
instantaneous frequency. The other is to use the local informa-
tion characteristics of the signal to study the variable window
length adaptive FRSST algorithm, the signal in the appropri-
ate window length range presents linear, so the instantaneous
frequency estimation accuracy of a rolling bearing under
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FIGURE 17. Instantaneous time-frequency representations: (a) FRSST;
(b) VMD-SST; (c) PSST; (d) PCT.

complex speed is improved. The second category will be our
next research work.

VI. CONCLUSION
To improve the accuracy of the IF estimation and the energy
concentration of the time-frequency distribution for a mul-
ticomponent strong frequency modulation signal, the time-
frequency analysis method of the FRSST is proposed. First,
the signal with the largest energy is extracted by the STFRFT,
and its time-frequency energy distribution is obtained by the
SST. Second, because the vibration signals of the rolling bear-
ing are mostly multicomponent signals, the time-frequency
distribution of each component signal is obtained by iterative
processing. Finally, the time-frequency energy distribution
of a multicomponent signal is obtained by superposing the
distribution of each component signal. Using the proposed
algorithm, the instantaneous frequencies of the simulation
signals with different frequency modulation rates, different
SNRs and cross-frequency are extracted, as is the IFF of the
fault signal. The study draws the following main conclusions:

A. THE HIGH TIME-FREQUENCY CONCENTRATION
OF THE FRSST
Compared with the SST, VMD-SST and PSST, the FRSST
improves the energy concentration of the time-frequency dis-
tribution greatly. For simulation signals, the Renyi entropies
of the SST, VMD-SST and PSST increase with the increase
of the frequency modulation rate, and the time-frequency
concentrations decrease. However, the Renyi entropy of the
FRSST does not change much, and the time-frequency con-
centration is higher than the SST, VMD-SST and PSST.

B. NON-FRAGILE OF THE FRSST TO THE FREQUENCY
MODULATION RATE
By the simulation of the signal with a different frequency
modulation rate, it can be seen that with the increase of
the frequency modulation rate, the estimation error of the
instantaneous frequency based on the VMD-SST and PSST
increases gradually. The estimation error based on the FRSST
is less than the estimations errors of the VMD-SST and
PSST, and the error variation amplitude changes little with the
increase of the frequency modulation rate. Thus, the FRSST
is non-fragile to the frequency modulation rate.

C. NOISE ROBUSTNESS OF THE FRSST
With the increase of the input SNR, the improvement of the
SNR of the FRSST is more than the corresponding improve-
ment of the VMD-SST and PSST. Hence, it can be seen that
the FRSST has strong noise robustness and is more suitable
for practical engineering applications.

D. NONSENSITIVITY OF THE FRSST TO THE
CROSS-FREQUENCY SIGNAL
The time-frequency energy of the VMD-SST and PSST
at the intersection is divergent, and the instantaneous fre-
quency is marred by confusion and ambiguity. In addition,
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the accuracy of the instantaneous frequency estimation based
on the FRSST is still better than the corresponding accuracies
for the VMD-SST and PSST for a cross-frequency signal.

E. THE FRSST ALGORITHM IMPROVES THE ACCURACY OF
THE IFF ESTIMATION
The FRSST algorithm is applied to extract the IFF of a rolling
bearing under rising speed and fluctuated speed. Compared
with the VMD-SST and PSST algorithms under rising speed,
the estimation error of IFF based on the FRSST method is
the least for the four fault types. On average, the estimation
error is 2.2180 Hz less than the corresponding error of the
VMD-SST and 1.1862 Hz less than the corresponding error
of the PSST method.

APPENDIX
Acronyms are used in the paper. To facilitate the readers to
read the paper, acronyms are listed in the following table in
the order they are encountered.
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