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ABSTRACT Anomaly detection aims to detect anomaly with only normal data available for training.
It attracts considerable attentions in the medical domain, as normal data is relatively easy to obtain but it is
rather difficult to have abnormal data especially for some rare diseases, making training a standard classifier
challenging or even impossible. Recently, generative adversarial networks (GANs) become prevalent for
anomaly detection and most existing GAN-based methods detect outliers by the reconstruction error. In this
paper, we propose a novel framework called adGAN for anomaly detection using GAN. Unlike existing
GAN-based methods, adGAN is a discriminative model, which uses the fake data generated from GAN as
an abnormal class, and then learns a boundary between normal data and simulated abnormal data. Thus it is
able to output the anomaly scores directly similar as one-class SVM (OCSVM), without any reconstruction
process. We explicitly design adGAN with two key elements, i.e., fake pool generation and concentration
loss. The fake pool is created by incrementally collecting the fake data produced by intermediate-state GAN,
which are likely surrounding the normal data distribution. The concentration loss is innovatively introduced
to penalize large standard deviations of discriminator outputs for normal data, aiming to make the distribution
of normal data more compact and more likely to be separated from the distribution of the potential abnormal
data. The trained discriminator is finally used as an anomaly detector. We evaluated adGAN on three datasets,
including ab-MNIST for synthetic anomaly detection, the ISIC’2016 for skin lesion detection, and the
BraTS’2017 for brain lesion detection. The extensive experiments demonstrate that adGAN 1is consistently
superior to its competitors on all three datasets.

INDEX TERMS Anomaly detection, concentration loss, fake pool, GAN.

I. INTRODUCTION In the medical image analysis domain, the conventional

In this paper, we consider a specific task of anomaly detec-
tion, for which there is only normal data available for training.
It is of great interests in medical image analysis as well as
in clinical routine examinations, because healthy (or normal)
data is often easy to obtain but it is rather difficult to obtain
abnormal data, especially for some rare diseases. The key
challenge of the task is from the lack of abnormal data for
training a detector.
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parametric and non-parametric statistical models and one-
class SVM have been widely applied to anomaly detection.
Parametric models usually refer to Gaussian or Gaussian
mixture models, which estimate the density distribution of
normal data from training set to predict the abnormality of
a test sample. For example, Sidibe et al. [1] built a Gaus-
sian mixture model from multiple healthy optical coherence
tomography (OCT) images for abnormality prediction of any
new images. Parametric models often assume that the normal
data distribution is a Gaussian or a mixture of Gaussian dis-
tributions, and therefore work well only under the conditions
of simple data distributions. In comparison, non-parametric
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statistical models, such as Gaussian process, are more capa-
ble of modeling complex distributions but have more com-
putational loads. Ziegler et al. [2] developed a Gaussian
process model for pixel-level anomaly detection, which can
predict the Gaussian distribution of each pixel’s intensity
within the grey matter region in a healthy brain according
to the age, gender, and volume of grey and white matter.
Both parametric and non-parametric models are bottom-up
generative approaches, and therefore are limited to modeling
distributions of normal data with low dimension. In contrast,
one-class SVM is a top-down classification-based method
for anomaly detection, which constructs a hyperplane as a
decision boundary that best separates normal data and the
origin point in a transformed (often high-dimensional) feature
space, and meanwhile maximises the distance between the
origin and the hyperplane. For example, Mourdo-Miranda
et al. [3] performed anomaly detection by training a one-class
SVM using fMRI images from healthy population. Seebock
et al. [4] also used one-class SVM to detect the abnormal
regions on retinal OCT images by training on super-pixels
from healthy retinal OCT images.

While the conventional approaches have been widely used
in the medical domain, there is one serious drawback to
restrict their performance, i.e., the feature representation of
images needs to be manually designed in advance. Without
the need to extract hand-crafted features, generative adver-
sarial networks (GANSs) are recently becoming popular for
medical anomaly detection due to their capability of implic-
itly modeling more complex data distribution than the con-
ventional approaches. The first GAN for anomaly detection,
called AnoGAN, was proposed by Schlegl et al. [5] for retinal
OCT images. The basic idea is to train a generator in the
AnoGAN which can generate only normal image patches,
such that any abnormal patch would not be well reconstructed
by the generator. A fast version of the AnoGAN called f-
AnoGAN [6] was proposed by the same authors later on, with
an additional encoder included to make the generator become
an auto-encoder.

In this paper, we propose an alternative novel anomaly
detection method based on GAN. The existing GAN-based
anomaly detection methods [S5], [6] are patch reconstruc-
tion based, of which the main purpose is to reconstruct
the corresponding healthy counterpart given a new image
patch. In contrast, our method is a patch-level discriminative
model, which directly learns the boundary of the normal
data distribution and is able to output the anomaly score
of a new image patch without the reconstruction process.
To the best of our knowledge, such a discriminative GAN-
based anomaly detection model has not been explored before.
We term our approach as adGAN. The proposed adGAN
is evaluated on three different public datasets: a modified
MNIST dataset for synthetic anomaly detection (termed as
ab-MNIST), the ISIC’2016 dataset for skin lesion detection,
and the BraTS’2017 for brain lesion detection. The exten-
sive experiments demonstrate that adGAN is consistently
superior to its competitors, including the well-known one-
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class SVM and the recent GAN-based methods on all three
datasets.

Il. RELATED WORK

Since the proposed adGAN can be considered as a special
application of the GANSs, in this section, we briefly review
the fundamentals of relevant GAN models and their appli-
cations for anomaly detection. The conventional approaches
to anomaly detection for medical image analysis have been
introduced in the previous section.

GANSs have achieved great success in generating data for
learning models [7]-[11]. The original GAN [7] architecture
consists of two networks, a generator G and a discriminator
D. The generator G maps a random vector z from a prior
distribution to an image space while the discriminator D maps
an input image to a probability of being real or fake. The
entire GAN framework is trained by optimizing a minimax
loss function in an adversarial manner: G is encouraged to
generate realistic images and meanwhile D is trying to distin-
guish between real images and generated fake images. After
convergence, D is able to reject generated images that are too
fake, and G can produce realistic images whose distribution is
close to the real data distribution. DCGAN [8] replaces fully
connected networks in the original GAN [7] with deep con-
volutional networks for both G and D, and is trained with the
same minimax loss function by gradient descent. GANs are
also extended to the conditional setting in [11] and have been
used in many image-to-image translation applications [12],
[13]. Unfortunately, GAN is not easy to train: the minimax
loss function of GAN or DCGAN can lead to gradient van-
ishing problem, especially when the discriminator is trained
to be very strong.

WGAN [9] alleviates the gradient vanishing and mode
collapse problems by designing a new Wasserstein metric
to explicitly measure the distance between two distributions.
Specifically, the discriminator (also called critic) is trained
to output an approximated Wasserstein distance between the
real data distribution and the generated data distribution. And
the generator is then optimized to minimize that distance to
push two distributions closer. The training of WGAN can be
further improved by using gradient penalty [10]: instead of
using weight clipping in the original WGAN, gradient penalty
[10] penalizes the norm of gradient of the critic with respect
to its inputs and achieves better generated results.

It is aware that variants of GANs for anomaly detection
were developed in recent years. In medical imaging domain,
one representative for anomaly detection is AnoGAN [5].
AnoGAN learns a mapping between a random distribution
and the image manifold of the normal class. Specifically,
it first trains a DCGAN to generate fake images that look
normal. For a test image, AnoGAN then seeks the optimal
vector in the latent space through back-propagation such that
the difference between the generated image and the test image
is minimum, where anomaly detection is performed based
on that difference. It is worth noting that during inference,
AnoGAN relies on a heavy optimization process [5], thus
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resulting in a high computational load. Schlegl et al. [6]
later on modified the AnoGAN model by adding an encoder
to the generator, such that any real image can be directly
mapped to the latent space and the encoded latent feature can
then generate the reconstructed healthy counterpart. In this
way, optimization process is not required during anomaly
detection, thus resulting in a fast AnoGAN (f-AnoGAN).

Besides applications in the medical domain, GANs have
also been applied to anomaly detection in the domain of natu-
ral images or videos recently [14]-[20]. For example, similar
to the f-AnoGAN, an adversarially learned one-class classi-
fier (ALOCC) [14] was recently proposed where the auto-
encoder (as the generator) aims to reconstruct the original
input images while the discriminator aims to differentiate the
reconstructed image from the corresponding original image.
Different from the f-AnoGAN, during testing, ALOCC uses
the probabilistic output of the discriminator as the abnormal-
ity score for the reconstructed input, by assuming that the
discriminator would give high scores for the reconstruction
of original normal images but low scores for that of originally
abnormal images. Ravanbakhsh et al. [15] trained GANs
using normal frames and corresponding optical-flow images
to learn an internal representation of the normality in crowded
scenes, which is then applied for abnormal events detection
in videos. Deecke et al. [17] detected anomaly by searching
for a good representation of a sample in the latent space of
the generator, and the sample is treated anomalous if such a
representation is not found. Pidhorskyi et al. [19] developed
a probabilistic approach to compute how likely a sample is
generated by the inlier distribution using autoencoder. Perera
etal. [20] extended ALOCC by further explicitly constraining
the latent space to exclusively represent the given class.

Ill. ADGAN FOR ANOMALY DETECTION

The proposed adGAN is built on the improved WGAN with
gradient penalty [10]. The core idea in adGAN is to counter-
feit anomaly using the fake data generated from intermediate-
state GAN, which are then combined with normal data to
learn a boundary between normal data and simulated abnor-
mal data. We designed the adGAN framework with two key
components: fake pool generation and concentration loss,
and experimentally showed that they are crucial for the supe-
rior performance of adGAN.

A. FAKE POOL GENERATION

In medical imaging domain, although the appearances of
lesion regions differ from healthy regions in an image,
to some extent they share more visual similarity compared
to the similarity between medical and non-medical image
domains. In other words, the distribution of visual features
from abnormal regions is neither heavily overlapped nor far
away from the feature distribution of normal regions. Instead,
it is approximately surrounding or in the boundary area of the
distribution of normal regions. Since we would like to use the
generated data to simulate the abnormal class, the generated
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data should ideally come from such surrounding area of the
distribution of normal regions.

During the training phase of WGAN, the generated data
distribution is gradually getting closer to the real data dis-
tribution as the generator aims to minimize the Wasserstein
distance between two distributions, thus we hypothesize that
the generated data from the intermediate-state WGAN are
likely to locate in the boundary area of the real data distribu-
tion. Motivated by this, we propose the “‘fake pool’, which
is collected by incrementally saving the generated images
during WGAN training phase.

The details of using fake pool are described in Algorithm 1
(line 1-13). We first train a WGAN with gradient penalty [10]
using healthy images only, which aims to produce realistic
health-looking images gradually (line 2-9), starting from ran-
dom noises. The model parameters of the improved WGAN,
i.e., the critic’s parameters w and the generator’s parameters
0, are updated as in line 2-6 and line 7-9, respectively. Note
that we use the hyper-parameters directly from [10]. In order
to optimally approximate the Wasserstein distance, the critic
is updated n.,isic times per generator’s update. The WGAN is
trained for N iterations, and a number of n fake images are
collected from the current generator into the fake pool after
every k iterations (line 10-12).

B. CONCENTRATION LOSS
After the fake pool is created, the critic D,, in the improved
WGAN will be retrained using the same set of healthy images

Algorithm 1 The Proposed adGAN With a Generator Gy and
a Critic Dy, Where 6 and w Represents the Model Parameters.
We Use Default Parameter Values of A = 10, ngiric = 5 and
Gradient Penalty (GP) as in [10]
Require: training iteration N for generating fake pool, train-
ing iteration M for the critic afterwards.

1: fori < N do

2 fort =1,..., nerisic do

3 Sample real data x ~ IP, and fake dataX ~ Gy(z)

4 L. =ED,X) — E(D,(x)) + A- GP

5: w < Adam(V L., w)
6: end for
7
8
9

Sample m fake data X ~ Gyg(z), z ~ p(z)
Lg = - E(Dw®)
: 0 < Adam(VyLg, 0)
10: if i % k == 0 then

11: Generate and collect n fake samples into fake
pool.

12: end if

13: end for

14: forj <M do

15: Reset D,, with random initialization

16: Sample real data x ~ P, fake data X ~ fake pool

17 L. =ED,®) — E(Dy(X)) + a-S(D,,(x)) + A- GP

18: w < Adam(V,,L/, w)

19: end for
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as well as the generated images in fake pool with a new con-
centration loss function. Recall that the original loss function
for the critic in WGAN is defined as

L. = E(DywX) — EDw(x) + 4 - GP ey

where GP stands for the gradient penalty term of which
detailed form can be found in [10], X is its corresponding
weight, and E denotes the expectation. This loss aims at
maximizing the critic output for real data x meanwhile mini-
mizing the critic output for fake data X from generator. Thus
the value of the critic output could potentially be used to
measure the (ab)normality of any input image to the critic,
i.e., relatively large output value indicates that the input image
is more likely normal, while relatively small output indi-
cates that the input image is more likely abnormal. However,
the original loss (Eq. 1) only maximizes the between-class
distance (e.g., the distance between real data and fake data)
without considering any within-class distance. For anomaly
detection, ideally the between-class distance should be larger
(e.g., the normal data is relatively far away from the abnormal
data) than the within-class distance (e.g, the normal data is
relatively close to each other). Thus, we innovatively add
a concentration term into the original loss to decrease the
standard deviation of critic output for real data, resulting in
the new loss function (termed as concentration 10ss):

L, = E(Dw(X) — E(Dy(x)) + & - S(Dy(x)) + 1 - GP (2)

where the concentration term S(-) can be specifically repre-
sented as:

S(Dw(x)) = VE((Dy(x) — E(Dy(x)))?) 3)

and « is its corresponding weight.

With this new loss (also see lines 15-18, Algorithm 1),
it not only helps to maximize the critic output for real data
x and minimizes the critic output for fake data X from the
fake pool (i.e., increase the between-class distance), but also
simultaneously helps to minimize the standard deviation of
the critic output for real data x (i.e., decrease the within-class
distance). Intuitively, at the later stage of WGAN training
phase, the generated data would look realistic to the real
data, thus the distribution of images in the fake pool and the
distribution of real images (inevitably) have some overlap
in the original critic output space. Adding this concentration
term would make the critic outputs for the real images more
compactly distributed, which would reduce the within-class
distance and in turn make these two output distributions more
separable.

Note that the new loss only concentrates on reducing the
within-class distance of normal data, and there is no con-
straint on the within-class of abnormal data (i.e., it allows
large standard deviation of the critic output of fake data from
the fake pool). This is because abnormal data could come
from any complicated multi-mode density distribution, such
that their standard deviation of critic output could be naturally
large.
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FIGURE 1. The architecture of the proposed adGAN. Top: the generator
architecture; Bottom: the discriminator (critic) architecture. The numbers
around each cuboid indicate the spatial size and the number of

input or output channels for each convolutional layer.

C. THE adGAN ARCHITECTURE

The architecture of adGAN is shown in Figure 1. Specifically,
the generator (top) takes a 128-dimensional random noise
as input. Such input connects a fully connected layer with
4096 neurons, and then is reshaped to 256 feature maps with
spatial size 4 x 4. These feature maps go through 3 trans-
posed convolutional layers with 5 x 5 kernel, each of which
doubles the spatial size and halves the number of feature maps
except the last one, which outputs a 32 x 32 task-dependent
image (e.g, RGB three-channel or grayscale one-channel
image).

The critic (bottom) is made up of four convolutional layers
and one fully-connected layer. It takes 32 x 32 images as
input, and analogously halves the size of feature maps at every
convolutional step using 5 x 5 kernel with stride 2. The num-
ber of feature maps starts at 64 at the first convolutional layer,
and is doubled at every layer before the fully connected layer.
Intuitively, the critic may have a symmetrical architecture
with the generator (i.e., three rather than four convolutional
layers followed by a fully-connected layer). However, such
an architecture would make the output neuron of the last
convolutional layer encode local information, thus would
be unlikely to achieve the objective of anomaly detection
which often needs to consider image-scale information. Thus,
we add another convolutional layer in the critic using a 4
x 4 kernel, which takes the entire feature maps from the
previous layer into consideration and results in feature maps
of dimension 1 x 1 x 512, followed by a reshape operation
and a fully-connected layer to produce the final output.

Both the generator and the critic use LeakyReLU [21]
nonlinearities. The generator includes batch normalization
[22] modules while the critic omits them as the batch nor-
malization violate the penalization form of the gradient with
respect to each input independently [10].
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IV. EVALUATION

The proposed adGAN is evaluated on three datasets: ab-
MNIST (a modified MNIST dataset), and two real medical
datasets ISIC (skin lesion detection on International Skin
Imaging Collaboration 2016 dataset [23]) and BraTS (brain
lesion detection on Brain Tumor Segmentation benchmark
2017 dataset [24]-[26]). For all the experiments, the area
under Receiver Operating Characteristic (ROC) curve (AUC)
is reported as the evaluation metric. This section is organized
as follows: the experimental results and analysis on the three
datasets are described in Section IV-A, IV-B, IV-C, respec-
tively. Then the comparison with the state-of-the-art anomaly
detection methods and an ablation study are presented in
Section IV-D and Section I'V-E.

The proposed adGAN is implemented in Tensorflow.
When training WGAN, the hyper-parameters A and ngpisic
were set to 10 and 5 respectively, following the same setting
as in [10]. The Adam optimizer [27] was used with 10™* as
the learning rate; the batch size m was set to 64. For fake pool
(FP) generation, we set n to 64 and k to 100, which means the
generator inserts 64 images into FP for every 100 iterations
during training. For the new loss function, the weight of
concentration loss term « was set to 1, and the effects of
different o values are further discussed in Section I'V-E.

For all three datasets, the model was trained for
200,000 iterations (N in Algorithm 1) to generate the fake
pool; the critic with the proposed new loss function was then
further trained for another 150,000 iterations (M in Algo-
rithm 1). This setting is consistent across all experiments.
There may be room to find an optimal early-stop criteria; it
could be a potential future research direction.

A. ANOMALY DETECTION ON ab-MNIST

The proposed method is first evaluated on ab-MNIST (a
modified MNIST). MNIST is a dataset of grey-scale hand-
written digits from O to 9. To create the ab-MNIST, we use
the official training set with 60,000 images for training
adGAN. For testing, the official test set containing non-
overlapped 10,000 images are treated as the normal class,
and 10,000 abnormal images are artificially synthesized by
adding some random square noises into the test set (random-
ness is applied to location, size and pixel intensity). Exam-
ples of the normal digit and the synthetic abnormal digits are
illustrated in Fig. 2.

FIGURE 2. Examples of the synthetic abnormal digits (left) and normal
digits (right) on ab-MNIST.
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During training, the proposed fake pool incrementally col-
lects the generated images at every 100 iterations. There is no
mode collapse happened during the training, demonstrating
the superiority of WGAN [10] compared to the original GAN
[7], [8]. All digits in the fake pool are treated as abnormal
class, which are combined with the normal digits in the train-
ing set to retrain the critic using the proposed loss function
with the concentration term (Eq. 2).

TABLE 1. AUC values of different methods for anomaly detection on
ab-MNIST.

OCSVM  adGAN  adGAN(c)
AUC 0.89 0.99 0.97
ab-MNIST ab-MNIST
1.04. £
1.0 ——
208
© ——
4 ! .
Lo6q .
g
<
z 0.4
£ — OCSVM  0.89
0.2 —:— adGAN 0.99
--- adGAN(c) 0.97 0.9
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate 0CSVM adGAN adGAN(c)

FIGURE 3. ROC curves of OCSVM, adGAN and adGAN(c) on ab-MNIST
dataset (Left), and boxplots of AUC values of 10 repeated experiments
(Right).

We choose the well-known one-class SVM (OCSVM) [28]
as a baseline and compare our method to it first (see Table 1)
since they are both discriminative models. The full compar-
ison with the state-of-the-art methods will be described in
Section IV-D. Note in Algorithm 1, after training WGAN,
there are two options to train the critic with the new loss
function using the real data and the fake data in FP: 1) reset
the weights of the critic with random initialization and train
it from scratch; and 2) carry the weights of the critic from
WGAN and fine-tune it. We term the former as adGAN and
the latter as adGAN(c) and evaluate both variants. As shown
in Table 1, both adGAN and adGAN(c) give higher AUC
values than OCSVM (i.e., adGAN 0.99 vs adGAN(c) 0.97 vs
OCSVM 0.89), where adGAN and adGAN(c) have a 10%
and a 7% improvement, respectively. The ROC curves of
OCSVM, adGAN and adGAN(c) on ab-MNIST dataset are
shown in Fig 3 (Left).

To further evaluate the stability of the proposed model,
we repeat the experiment 10 times and visualise the varia-
tions of the AUC values using boxplots for both adGAN and
adGAN(c). The corresponding boxplots are shown in Fig 3
(Right). In contrast, we also plot the boxlot of the AUC values
of OCSVM for the 10 experiments, although OCSVM does
not have such variations in performance due to its nature of
convexity. It could be observed that the variations of the AUC
values of adGAN and adGAN(c) are very small, which indi-
cates that the proposed model is stable and its performance is
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reproducible. We also perform a statistical test and the tiny
p-value (p < 1079) indicate that the performance of the
proposed model is significantly better than OCSVM.

B. SKIN LESION DETECTION ON ISIC

Skin lesion detection dataset is from the International Skin
Imaging Collaboration (ISIC) challenge [23] in International
Symposium on Biomedical Imaging (ISBI) 2016. It contains
900 RGB skin images with pixel-level annotations delineat-
ing lesion regions. Exemplar images along with their anno-
tations are shown in Fig. 4. It can be seen that even for
the healthy regions, there are large variations in appearance,
colour, illumination and texture.

ol -1+ [+1°

FIGURE 4. Exemplar RGB images (first row) and their annotations
(second row) of skin lesions in the ISIC.

We exclude some images due to heavy hairs and artificially
imposed noises, resulting in a subset of 660 images in our
experiments. All images are resized to 128 x 160 and then
patches of size 32 x 32 pixels with 75% overlap rate are
extracted. If a patch contains no lesion area, we refer it
a healthy patch; on the other hand, if more than 75% of
a patch is lesion area, this patch is considered as a lesion
patch. This results in 25744 healthy patches for training, and
7,332 healthy patches and 8,608 lesion patches for testing.

Examples of generated skin patches at the 1,000-th,
10,000-th and 200,000-th iterations during fake pool genera-
tion stage are shown in Fig. 5. As expected, it can be seen that
the generated skin patches start from having relative single
brown colour (Fig. 5, Left), to having varying colour patterns
which are similar to the training set (Fig. 5, Middle). After
training, there are more details formed within the patches,
such as skin texture and speckle, so that the generated patches
look more realistic (Fig. 5, Right).

FIGURE 5. From left to right: examples of generated skin patches at the
1,000-th, 10,000-th and 200,000-th iteration in the adGAN training phase.
Best viewed in colour.

Similarly as in Section IV-A, we evaluate both adGAN
and adGAN(c) against the baseline OCSVM (see Table 2).
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Partially due to the relative high contrast between healthy and
lesion patches, using OCSVM can already achieve an AUC
value of 0.96. However, the proposed adGAN outperforms
OCSVM. For example, adGAN and adGAN(c) obtain AUC
values of 0.97 and 0.98, which have 1% and 2% improvement,
respectively. In contrast to the ab-MNIST dataset, adGAN(c)
is slightly better than adGAN. We attribute this phenomenon
to the fact that ISIC is a more complicated real clinical dataset
compared to the relative simple MNIST, thus fine-tuning the
weights of critic is a better strategy than the random initial-
ization. The ROC curves of OCSVM, adGAN and adGAN(c)
on ISIC dataset and the boxplots of 10 repeated experiments
are shown in Fig 6. The clear gaps in the distributions of
AUC values between methods indicate that adGAN(c) indeed
performs best, and the improvement is not from the random-
ness of the model. Statistically, the performances of both
adGAN(c) and adGAN are significantly better than OCSVM
(» < 1073).

To further evaluate the visual performance, we select
some exemplar patches of true positives (TP), false positives
(FP), true negatives (TN) and false negatives (FN) (Fig. 7).
Given the fact that a lower critic output value indicates a
higher anomaly score and vice versa, we show those healthy
patches with the lowest critic output values (aka FP shown
in Fig. 7(a)); the lesion patches with the highest critic output
values (FN, Fig. 7(b)); the healthy patches with the highest
critic output values (TN, Fig. 7(c)) and the lesion patches with
the lowest critic output values (TP, Fig. 7(d)).

It is shown that some healthy patches with high anomaly
scores (Fig. 7(a)) contain some ‘‘abnormal” regions, such
as red or dark spots, hair and scale marks, which is rea-
sonable for adGAN to consider them as abnormal with low
scores. Note that some healthy patches in blue colour are
misclassified as abnormal. This is because the fact that the
number of blue healthy patches in the training set is limited,
thus the distribution of this kind of health patches cannot be
well represented. For the lesion patches with low anomaly
scores (Fig. 7(b)), it can be observed that their appearance
is relatively homogeneous and smooth with low intensity
contrast, which makes them look normal and it is difficult
to identify the lesion regions within the patches compared
with the easy cases (Fig. 7(d)). For TN and TP (Fig. 7(c)
& (d)), adGAN works as expected: clear and homogeneous
patches are classified as normal with the highest critic output
values, while the patches containing large dark lesion regions
are classified as abnormal with the lowest critic output values.

C. BRAIN LESION DETECTION
Brain lesion detection dataset is from BraTS 2017 dataset,
which is a benchmark for magnetic resonance (MR) brain

TABLE 2. AUC values of different methods for anomaly detection on ISIC.

OCSVM  adGAN  adGAN(c)
AUC 0.96 0.97 0.98
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FIGURE 6. ROC curves of 0CSVM, adGAN and adGAN(c) on ISIC dataset
(Left), and boxplots of AUC values of 10 repeated experiments (Right).

FIGURE 7. Exemplar patches of (a) false positives, (b) false negatives, (c)
true negatives, and (d) true positives for skin lesion detection.

tumor segmentation [24]-[26] released in the International
Conference on Medical Image Computing and Computer
Assisted Intervention (MICCAI) 2017 BraTS challenge.
In this dataset, each subject contains 4 MR modalities (T1,
T1 contrast, T2 and FLAIR) as well as pixel-level annotations
indicating tumor regions. In our experiments, we use the
FLAIR modality only from each subject to detect complete
tumor regions as the lesion regions, which include all tumor
sub-regions, such as edema, necrosis, enhancing and non-
enhancing tumor. Exemplar FLAIR images are shown in the
first column of Fig. 10.

We randomly split 210 high grade gliomas subjects into
146 training and 64 testing cases. All images are normalized
to have zero mean and unit standard deviation as in [29].
We extracted patches of size 32 x 32 pixels within brain
regions (ignoring the background regions) from each slice
of 3D MR volumes, resulting in 68,098 healthy patches for
training, and 28,878 healthy patches and 3,523 lesion patches
for testing.

Examples of generated brain patches at the 1,000-th,
10,000-th and 200,000-th iterations are shown in Fig. 8.
The generated brain patches started from very noisy patches
(Fig. 8, Left)) to the patches with less noise, and parts of
brain structures such as cerebrospinal fluid (CSF) and sulci
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(Fig. 8, Middle)) are formed. And realistic-looking patches
showing detailed brain texture and structures are generated
when training is finished (Fig. 8, Right)).

FIGURE 8. From left to right: examples of generated brain patches at the
1,000-th, 10,000-th and 200,000-th iteration of adGAN training phase.

The performance comparison between OCSVM and the
proposed adGAN is summarized in Table 3. Compared to
previous anomaly detection tasks, brain lesion detection is
more challenging due to the larger variations in appearance
and structure between subjects as well as noises and artifacts
in MR images. In this case, the baseline OCSVM gives a AUC
value of 0.88 while adGAN(c) achieves 0.92, which has a
4% improvement. It is noted that adGAN gives worse result
(0.84) compared to OCSVM, which confirms that training the
critic from scratch is not a good option for complex data. The
ROC curves of OCSVM, adGAN and adGAN(c) on BraTS
dataset and the boxplots of the AUC values of the 10 repeated
experiments are shown in Fig 9. From the boxplots, it can
also be observed that adGAN(c) not only produces higher
mean AUC value of 10 repeated experiments when compared
to adGAN, but also gives much smaller variance, indicating
the stronger stability of the fine-tuned model. Furthermore,
statistical testing shows that adGAN(c) is significantly better
than both OCSVM and adGAN (p < 107).

Fig. 10 shows examples of anomaly detection of brain
lesion patches using adGAN(c) and OCSVM. AdGAN(c)
localizes the lesion regions more accurately while OCSVM
produces some false positives or false negatives. Note that
adGAN only requires healthy patches and no patch labels are
needed during the training phase.

Based on the results presented in Tables 1-3, except for
the ab-MNIST dataset, adGAN(c) outperforms adGAN for
both ISIC and BraTS datasets which contain more complex
real clinical data. On the other hand, although adGAN(c) is
slightly worse than adGAN on ab-MNIST, it still outperforms
OCSVM by a large margin. Thus, we apply the fine-tuned
strategy for the critic in the remaining of this paper.

TABLE 3. AUC values of different methods for anomaly detection on
BraTs.

OCSVM  adGAN  adGAN(c)
AUC 0.88 0.84 0.92

D. COMPARISON WITH THE STATE-OF-THE-ARTS
In this section, we further compare adGAN with other
state-of-the-art methods on all three datasets, including a
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FIGURE 9. ROC curves of 0CSVM, adGAN and adGAN(c) on BraTS dataset
(Left), and boxplots of AUC values of 10 repeated experiments (Right).

FIGURE 10. Examples of anomaly detection on BraTS. (a) FLAIR images;
(b) adGAN results; (c) OCSVM results. Regions within red rectangles are
detected abnormal.

traditional generative approach kernel density estimation
(KDE) [30], [31] as well as the most recent GAN-variant
methods [5], [6], [14]. The comparison results are summa-
rized in Table 4. It clearly shows that the proposed adGAN
outperforms KDE by a large margin, indicating the supe-
riority of discriminative learning and strong representation
capability of neural networks.
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In more details, here we compare adGAN to the original
WGAN [10], and DCGAN [8], which were designed to model
the input image distribution and aim to produce realistic-
looking samples of input images. When WGAN or DCGAN
is well trained, we simply take the critic as the anomaly
classifier to perform anomaly detection, while the generator
is not used. From Table 4, it can be observed that both WGAN
and DCGAN do not perform well. For example, WGAN
obtains about 0.85, 0.81, 0.86 AUCs for ab-MNIST, ISIC
and BraTS respectively, which are about 12%, 17% and 6%
lower compared to adGAN; DCGAN gives worse results.
The main reason that WGAN or DCGAN do not perform
well is that after training, the generator can generate realistic-
looking fake data, thus the discriminator (or critic) is trained
to differentiate the real data and the fake data mainly based
on subtle features such as the checkerboard-like artifacts
induced by the generator architecture [17], [32]. Thus, such
a discriminator is not optimal for anomaly detection: the
fake data is too realistic to mimic abnormal class. On the
contrary, the fake pool of adGAN collects the fake data from
the intermediate-state GAN from which the fake data is more
suitable to represent abnormal class.

TABLE 4. Comparison (AUC value) with the state-of-the-art methods on
three datasets.

ab-MNIST  ISIC  BraTS
KDE [31] 0.58 0.71 0.73
DCGAN [8] 0.72 0.57 0.82
WGAN [10] 0.85 0.81 0.86
AnoGAN [5] 0.75 0.93 0.75
AnoGAN-mean 0.82 0.94 0.75
f-AnoGAN [6] 0.98 0.92 0.84
ALOCC [14] 0.91 0.97 0.87
adGAN 0.97 0.98 0.92

In the following, we compare adGAN to some state-of-
the-art GAN-based anomaly detection methods including
AnoGAN [5], [6] and ALOCC [14] in more details.

As shown in Table 4, AnoGAN obtains the AUCs of 0.75,
0.93, 0.75, respectively for ab-MNIST, ISIC and BraTsS,
which perform worse than the proposed adGAN. Addition-
ally, in our experiments, we found that for a test image,
the anomaly score computed by AnoGAN is sensitive to the
initialization of the iterative process to find the optimal latent
space point. In other words, there exists a large variety of the
anomaly scores for the same image depending on different
initializations. Therefore, we conduct another experiment:
for each test image, we test it five times but using different
initializations in testing, then the mean value of the five
anomaly scores is computed as the final abnormal score
for that image (denote as AnoGAN-mean in Table 4). This
operation increases the performance of AnoGAN notably
with AUCs increased to 0.82, 0.94 for ab-MNIST, ISIC while
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remains the same 0.75 for BraTS. However, testing a single
image for five times is obviously computational expensive.

It is worth noting that even for a single test, AnoGAN
has very high computational cost during inference, as each
test image has to go through an optimization process to find
its corresponding place in the latent space (which requires
approximately 200 iterations per test). In contrast, the pro-
posed adGAN has no optimization process during inference
and is fast for testing. We also experiment with a fast ver-
sion of AnoGAN [6] (f~AnoGAN in Table 4). It improves
the performance as well as the inference speed. Specifi-
cally, it achieves a slightly better AUC value (0.98) on ab-
MNIST than adGAN (0.97). However, adGAN outperforms
f-AnoGAN on both ISIC and BraTS, which are real clinical
datasets.

ALOCC gives higher AUCs than AnoGAN, but still per-
forms worse than adGAN. It obtains the AUCs of 0.91, 0.97,
0.87 for ab-MNIST, ISIC and BraTS§, which are 6%, 1% and
5% lower than adGAN, respectively. Note that ALOCC gives
higher AUCs on ISIC than that on ab-MNIST and BraTS. One
possible reason is that skin patches are relatively homoge-
neous and easier to be reconstructed by the auto-encoder of
ALOCC while brain patches contain some structural infor-
mation, making the reconstruction more challenging.

In addition, in our experiments we find that ALOCC is
difficult to train. It is important to train the auto-encoder
and the discriminator with different learning rates: if the
discriminator learns too fast, the auto-encoder would fail to
reconstruct any images but only produce noise images; if
the auto-encoder learns too fast and produces high-quality
reconstructed image quickly, the discriminator would hardly
distinguish the differences and degenerate, which always
gives a probability predictions p(x) ~ 0.5 for all the inputs.
Moreover, as stated in [14], it is also crucial to decide when to
stop the training procedure of ALOCC. In contrast, adGAN
originates from WGAN [10] and is easy to train without the
mode collapse issue.

We plot anomaly scores of normal (green) and abnor-
mal (red) test data from different methods on three datasets
in Fig. 11. AAGAN (bottom row) gives more distinguishable
class-specific distributions of the anomaly scores, while the
other methods produce heavily overlapping distributions of
the decision scores. Also, it can be observed that the effect
of concentration loss in adGAN is distinctive: the score dis-
tribution of normal class is more compact and peak-shaped,
making them more separable from the wide-spread score
distribution of abnormal class.

E. ABLATION STUDY
Lastly, we conduct an ablation study to investigate the effects
of two components in adGAN: the concentration loss and the
fake pool generation.

1) EFFECT OF THE CONCENTRATION LOSS
To evaluate the effects of the concentration loss in Eq. 2,
we vary the weight values « on all three datasets systemat-
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FIGURE 11. The plots of anomaly scores of normal (green) and abnormal
(red) test data using different methods. From left to right: ab-MNIST, ISIC,
and BraTsS. Best viewed in colour.

ically, ranging from O to 5. Note that setting @ = 0 is equiv-
alent to the original loss function without the concentration
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term (Eq. 1). The curves of AUC values using different o are
plotted in Fig 12.

From these curves, we have three observations. Firstly,
setting @ = 1 achieves the highest AUC value on ISIC and
BraTS, while it can get competitive results on ab-MNIST.
Secondly, adGAN is not sensitive to o on ab-MNIST and
BraTS as their AUC curves become stable and flat when
« > 1. Howeyver, it is more sensitive to « on ISIC. For exam-
ple, the AUC value drops dramatically when « increases.
This may be partially because for three-channel RGB image
patches from the ISIC dataset, adGAN is more likely to
overfit the training set with a large o value. Thirdly, setting
a = 0 (the original loss function in Eq. 1) does not perform
well on all three datasets. Specifically, as shown in Table 5,
adGAN(a¢ = 0) gives AUC values of 0.85, 0.90, 0.77 for
ab-MNIST, ISIC and BraTS, respectively, which are even
lower than the baseline OCSVM. This is a solid evidence
showing that the proposed concentration loss is a crucial part
of adGAN for anomaly detection.

TABLE 5. The effects of concentration loss term and fake pool on
ab-MNIST, ISIC and BraTS datasets.

ab-MNIST  ISIC  BraTS
stdWGAN 0.86 0.64 0.68
2-class SVM 0.88 0.69 0.45
2-class CNN 0.80 0.72 0.54
adGAN(a = 0) 0.85 0.90 0.77
adGAN 0.97 0.98 0.92

ab-MNIST Isic

Lo{//r__r,/+—_1_*ﬂ 10

0.8 0.8
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FIGURE 12. AUC values using different weights « in the concentration
loss.

To further show the effectiveness of the concentration loss,
we compare adGAN with two other baselines after the fake
pool is generated: two-class SVM and two-class CNN with
an architecture similar to the critic shown in Fig 1. We train
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these two powerful classifiers to separate the real data and
the generated data in the fake pool and then use the trained
models as the anomaly detectors. As shown in Table 5, these
two baseline models perform much worse than adGAN and
low AUC values indicate that sometimes they do not work at
all. One possible reason is that the distribution of generated
images in the fake pool and the distribution of real images
have some overlap inevitably. Thus, maximizing the between-
class distance only is not able to well separate these two dis-
tributions. The concentration loss additionally minimizes the
within-class distance simultaneously, making the real images
distributed more compactly, which is easier to be separated
from other distributions (see Fig 11).

2) EFFECT OF FAKE POOL
To evaluate the effect of fake pool, we experiment by directly
training a WGAN with Eq. 2 (termed as std WGAN in Table 5)
in the training set, without fake pool generation phase. And
after training, the critic of std WGAN is then used for anomaly
detection. It is shown in Table 5 that stdWGAN fails and
gives low AUC values, indicating that the fake pool gener-
ation is also an important component in adGAN for anomaly
detection. Simply penalizing large standard deviation of the
WGAN critic output is more likely to introduce overfitting
during training and cannot generalize well for unseen data.
Based on all the ablation experiments, it can be concluded
that both fake pool and concentration loss term are curial
components of adGAN. Removing any one of them would
make adGAN fail for anomaly detection.

V. DISCUSSION AND CONCLUSIONS

Obtaining data (e.g., images) from rare disease is rather
difficult. Therefore, developing approaches that are capa-
ble of detecting anomaly in the presence of normal data
is a very important area for biomedical research. Different
from the reconstruction-based methods using GANs in the
existing biomedical abnormal detection literature, in this
paper we propose an alternative novel framework adGAN for
anomaly detection with two key elements: fake pool genera-
tion and a new concentration loss. The fake pool counterfeits
abnormal data by collecting the generated samples from the
intermediate-state GAN, and the concentration loss penalizes
large standard deviations of the critic outputs for real data,
which helps to reduce the within-class distance and make
two output distributions more separable when learning the
decision boundary between normal data and simulated abnor-
mal data. We experimentally show that both components are
crucial for the framework and removing either of them would
make the model fail to work. The proposed adGAN is evalu-
ated on three datasets, including the modified MNIST dataset
for synthetic anomaly detection, the ISIC’2016 for skin lesion
detection, the BraTS’2017 for brain lesion detection and
achieved AUC values of 0.97, 0.98, 0.92, respectively. The
extensive experiments demonstrate that adGAN is consis-
tently superior to the state-of-the-art anomaly detectors on
all three datasets. Moreover, since adGAN is a discriminative
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model and is able to give anomaly scores directly without the
process of reconstruction, it enables real-time inference and
can be deployed for clinical usage.

The significance of our proposed method to the anomaly
detection community is three-fold: firstly, we propose
an approach outperforming the state-of-the-arts; secondly,
we present insights of how to develop GAN for anomaly
detection by concentrating on the within class variance; and
lastly, we provide a wide application in the medical domain
where normal data is relatively easy to obtain but rather
difficult to have abnormal data, especially for rare diseases.
Future work includes the exploration of optimal early-stop
criteria and the extension of adGAN to the condition where a
small portion of lesion data is also available.
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