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ABSTRACT The state-of-the-art machine learning approaches are based on classical von Neumann
computing architectures and have been widely used in many industrial and academic domains. With the
recent development of quantum computing, researchers and tech-giants have attempted new quantum circuits
for machine learning tasks. However, the existing quantum computing platforms are hard to simulate
classical deep learning models or problems because of the intractability of deep quantum circuits. Thus, it is
necessary to design feasible quantum algorithms for quantum machine learning for noisy intermediate scale
quantum (NISQ) devices. This work explores variational quantum circuits for deep reinforcement learning.
Specifically, we reshape classical deep reinforcement learning algorithms like experience replay and target
network into a representation of variational quantum circuits. Moreover, we use a quantum information
encoding scheme to reduce the number of model parameters compared to classical neural networks. To the
best of our knowledge, this work is the first proof-of-principle demonstration of variational quantum circuits
to approximate the deep Q-value function for decision-making and policy-selection reinforcement learning
with experience replay and target network. Besides, our variational quantum circuits can be deployed in
many near-term NISQ machines.

INDEX TERMS Communication network, deep reinforcement learning, quantum machine learning,
quantum information processing, variational quantum circuits, noisy intermediate scale quantum, quantum
computing.

I. INTRODUCTION
Deep Learning (DL) [1] has been widely used in many
machine learning domains, such as computer vision [2]–[4],
natural language processing [5], communication network
congestion control [6], and mastering the game of Go [7].
The successful deployment of DL is primarily attributed to
the improvement of new computer architectures associated
with powerful computing capabilities in the past decades.

The associate editor coordinating the review of this manuscript and

approving it for publication was Minho Jo .

Many researchers also utilized DL-based data analysis meth-
ods on fundamental physics researches such as quantum
many-body physics [8]–[10], phase-transitions [11], quantum
control [12], [13], and quantum error correction [14], [15].
In the meantime, great efforts from both the physics and
machine learning community have dedicated to and empow-
ered quantum computation. Quantum computing machines
have been brought to the market (e.g., IBM’s and D-Wave’s
hardware solutions [16], [17]), but a large-scale quantum
circuits cannot be faithfully employed upon the quantum
computing platforms due to the lack of quantum error
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correction [18], [19]. Therefore, Mitarai et al. design
approximate quantum algorithms, circuits and encoding
schemes [20] on the devices with noise tolerance. More
specifically, the work takes the advantages of quantum entan-
glement [20], [21] in quantum computing to reduce the model
size into an essentially small number and take advantage
of the iterative optimization to reduce the quantum circuit
depth to a practically low value such that hybrid quantum-
classical algorithms can be realized on the available quantum
platforms which are named as noisy intermediate-scale quan-
tum (NISQ) machines [21], [22].

By taking the strengths of quantum computing with sig-
nificantly fewer parameters [21], variational quantum cir-
cuits on NISQ have succeeded in implementing standard
classification and clustering algorithms on classical bench-
mark datasets [20], [23], [24]. Besides, it is also possible
to employ quantum circuits for implementing new DL algo-
rithms like generative adversarial networks [25] (GAN) on
NISQ machines. These frameworks and development pave
the way towards applications of near-term quantum devices
for quantum machine learning. However, to the best of our
knowledge, variational circuits on current NISQ computing
for deep neural network based decision making and policy
selection problems have not been discussed, which constrains
the application of NISQ in many machine learning scenarios
with sequential decision making.

Since reinforcement learning (RL) and deep reinforcement
learning (DRL) are two paradigms of complex sequential
decision-making systems and satisfy the requirements of
automatic policy learning under uncertainty, ourwork focuses
on the empowerment of DRL on NISQ computation, which
refers to an agent interacting with the environment to gain
knowledge of backgrounds and deriving the policy of deci-
sion making accordingly [26], [27]. We propose a novel vari-
ational quantum circuit feasible on the current NISQ platform
hybridized with iterative parameter optimization on a classi-
cal computer to resolve the circuit-depth challenges. Further-
more, we generalize variational quantum circuits to standard
DRL based action-value function approximation [27], [28].
Finally, we analyze the policy reward and thememory cost for
performance of our variational quantum circuits (VQC) based
DRL in comparison with standard RL and DRL approaches
in the context of frozen-lake [29] and cognitive-radio [30]
environments. The frozen lake is a simple maze environment
in openAI Gym [29] and is a typical and simple example that
is demonstrated in standard RL. Cognitive radio is a wireless
technology that enables for optimizing the use of available
communication channels between users and has been stud-
ied by the standard machine learning technique [6], [30].
Under current limitations on the scale of quantum machines
and the capabilities of quantum simulations, we select the
frozen-lake and cognitive-radio environments for the proof-
of-principle quantum machine learning study. To the best of
our knowledge, this work is the first demonstration of vari-
ational quantum circuits to the DRL-based decision-making
and policy-selection problems.

II. REINFORCEMENT LEARNING
Reinforcement learning is a machine learning paradigm in
which an agent interacts with an environment E over a num-
ber of discrete time steps [26]. At each time step t , the agent
receives a state or observation st and then chooses an action
at from a set of possible actions A according to its policy
π . The policy is a function mapping the state st to action
at . In general, the policy can be stochastic, which means
that given a state s, the action output can be a probability
distribution. After executing the action at , the agent receives
the state of the next time step st+1 and a scalar reward rt . The
process continues until the agent reaches the terminal state.
An episode is defined as an agent starting from a randomly
selected initial state and following the aforementioned pro-
cess all the way through the terminal state.

Define Rt =
∑T

t ′=t γ
t ′−trt ′ as the total discounted return

from time step t , where γ is the discount factor that lies in
(0, 1]. In principle, γ is provided by the investigator to control
how future rewards are given to the decision making function.
When a large γ is considered, the agent takes into account
future rewards no matter what a discount rate is. As to a
small γ , an agent can quickly ignore future rewards within
a few time steps. The goal of the agent is to maximize the
expected return from each state st in the training process.
The action-value function or Q-value function Qπ (s, a) =
E[Rt |st = s, a] is the expected return for selecting an action
a in state s based on policy π . The optimal action value
function Q∗(s, a) = maxπ Qπ (s, a) gives a maximal action-
value across all possible policies. The value of state s under
policy π , V π (s) = E [Rt |st = s], is the agent’s expected
return by following policy π from the state s. The classical
temporal difference (TD) error [26] is used to update value
function in reinforcement learning tasks.

A. Q-LEARNING
Q-learning [26] is a model-free RL algorithm. Before the
learning process begins, Q is initially assigned to an arbitrary
fixed value (chosen by the programmer). Then, at each time,
the agent selects an action at (using, e.g., ε-greedy policy
derived from Q), observes a reward rt , and enters a new
state st+1 (that may depend on both the previous state st
and the selected action), and then Q is updated with the
learning rate α. The Q-learning is an off-policy learner since
it updates its Q-value using the observed reward rt and the
maximum rewardmaxaQ (st+1, a) for the next state st+1 over
all possible actions a. The updating is done according to the
benchmark formula:1

Q (st , at)←Q (st , at)

+α
[
rt+γ max

a
Q (st+1, a)−Q (st , at)

]
. (1)

B. STATE-ACTION-REWARD-STATE-ACTION (SARSA)
An SARSA [26] agent interacts with the environment and
updates the policy based on the undertaking actions. The Q

1The formula and loss are from the original DQN work Mnih et. al. [28].
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value represents the possible reward received in the next time
step for taking action at in state st , plus the discounted future
reward received from the next state-action observation, and
is updated by temporal difference with transitions from state-
action pair (st , at ) to state-action pair (st+1, at+1), adjusted
by the learning rate α as: 2

Q (st , at)← Q (st , at)

+α [rt + γQ (st+1, at+1)− Q (st , at)] . (2)

C. DEEP Q-LEARNING
The action-value function Q(s, a) can be explicitly repre-
sented by a two-dimensional table with a total number of
entries s × a, that is, the number of possible states times
the number of possible actions. However, when the state
space or the action space is large or even continuous the
tabular method is unfeasible. In such a situation, the action-
value function is represented with function approximators
such as neural networks [27], [28]. This neural-networks-
based reinforcement learning is called deep reinforcement
learning (DRL).
The employment of neural networks for function approx-

imators to represent the Q-value function has been studied
extensively [27], [28] and succeeded in many tasks like play-
ing video games. In this setting, the action-value function
Q(s, a; θ ) is parameterized by θ , which can be derived by a
series of iterations from a variety of optimization methods
adopted from other machine learning tasks. The simplest
form is the Q-learning. In this method, the goal is to directly
approximate the optimal action-value function Q∗(s, a) by
minimizing the mean square error (MSE) loss function:

L(θ )=E[(rt+γ max
a′

Q(st+1, a′; θ−)−Q(st , at ; θ))2]. (3)

Here, the prediction is Q(st , at ; θ ), where θ is the param-
eter of the policy network, and the target is rt +
γ maxa′ Q(st+1, a′; θ−), where θ− is the parameter of the
target network and st+1 is the state encountered after playing
action at at state st . The loss function in DRL is normally hard
to converge and is likely to get divergent when a nonlinear
approximator like a neural network is used to represent the
action-value function [28]. There are several possible culprits.
When the states or observations are serially correlated with
each other along the trajectory, thereby violating the assump-
tion that the sample needs to be independent and identically
distributed (IID), the Q function changes dramatically and
changes the policy at a relatively large scale. In addition,
the correlation between the action-value Q and the target
values rt + γ maxa′ Q(st+1, a′) can be large. Unlike the
supervised learning where the targets are given and invariant,
the setting of DRL allows targets to vary withQ(s, a), causing
Q(s, a) to chase a nonstationary target.

The deep Q-learning (DQL) or deep Q-network (DQN)
presented in the work [28] addressed these issues through two
mechanisms:

2We follow the classical SARSA definition from Sutton et. al. [26].

FIGURE 1. Frozen-Lake environment for the variational quantum DRL
agent. In this frozen-lake environment, the RL agent is expected to go
from the start location (S) to the goal location (G). There are several holes
(H) on the way, and the agent should learn to avoid stepping into these
hole locations. Furthermore, we set a negative reward for each step the
agent takes. The agent is expected to learn the policy that going from S to
G with the shortest path possible. In this work, we train the agents on
three configurations of the frozen-lake environment shown in (a), (b) and
(c) separately.

• Experience replay: To perform experience replay, one
stores each transition the agent encounters. The tran-
sition is stored as a tuple in the following form:
(st , at , rt , st+1) at each time step t . To update the Q-
learning parameters, one randomly samples a batch of
experiences from the replay memory and then performs
gradient descent with the following MSE loss function:
L(θ ) = E[(rt+γ maxa′ Q(st+1, a′; θ−)−Q(st , at ; θ ))2],
where the loss function is calculated over the batch
sampled from the replay memory. The key importance
of experience replay is to lower the correlation of inputs
for training the Q-function.

• Target Network: θ− is the parameter of the target net-
work and these parameters are only updated at every
finite time steps. This setting helps to stabilize the
Q-value function training since the target is relatively
stationary compared to the action-value function.

III. TESTING ENVIRONMENTS
To study the performance of a reinforcement learning
agent, we need to specify the environment for the test.
Wewill consider the frozen-lake [29] and cognitive-radio [30]
environments. The reason why we choose the frozen-lake
environment is two-fold. First is that it is a fairly simple
and commonly tested example in standard RL, and if the
dimension of the problem size is not too large, the sim-
ulation is feasible with available quantum simulators and
NISQ devices, and the time consumption for the experiment
is reasonable too. The second is that we want to demon-
strate that quantum circuits are capable of learning sequential
decision making process (also called policy). The choice
of cognitive-radio environment is that we want to demon-
strate some kinds of real-world applications and the com-
plexity of this environment is comparable to the frozen-lake
environment.

A. FROZEN LAKE
The first testing environment we consider in this work is the
frozen lake, a simple maze environment in openAI Gym [29].

VOLUME 8, 2020 141009
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FIGURE 2. Cognitive-Radio environment for the variational quantum DRL
agent. In the cognitive-radio environment, the agent is expected to select
a channel that is free of interference in each time step. For example,
there is a primary user (PU) that will occupy a specific channel in each
time step periodically. Our agent, which is the secondary user (SU), can
only select the channels that are not occupied without the knowledge of
the PU in advance. The agent is expected to learn the policy through the
interaction with the environment.

In this environment, the agent standing on a frozen lake
is expected to go from the start location (S) to the goal
location (G) (see Fig. 1). Since the lake is not all frozen,
there are several holes (H’s) on the way, and the agent should
learn to avoid stepping into these hole locations, otherwise
the agent will get a large negative reward and the episode
will terminate. Furthermore, the agent is also expected to take
the shortest possible path. In order to accomplish this, we set
a little negative reward on each move. Here we demonstrate
three different configurations of the frozen-lake environment,
as shown in Fig.1, for the training.
The frozen-lake environment mapping is:
• Observation: observed records of all time steps.
• Action: there are four actions LEFT, DOWN, RIGHT,
UP in the action space. How to choose the action
in a variational quantum circuit will be described
in Sec. VI-A.

• Reward: The rewards in this environment are +1.0 for
successfully achieving the goal, −0.2 for failing the
task, which is stepping into one of the holes. Moreover,
to encourage the agent to take the shortest path, there is
also a −0.01 reward for each step taken.

B. COGNITIVE RADIO
In the second testing environment we study the proposed
variational quantum-DQN or -DQL (VQ-DQN; VQ-DQL)
agent in a real-world application. We consider the cognitive-
radio experiment. In this setting, the agent is expected to
select a channel that is not occupied or interfered by a pri-
mary user (see Fig. 2). If the agent succeeds, then it will
get +1 reward, otherwise it will get −1 reward. Note that
the episode will terminate if the agent collects three failed
selections or the agent plays more than 100 steps. This task
is crucial for the modern wireless multi-channel environment

FIGURE 3. Cognitive-Radio environment with periodical
channel-changing pattern for the variational quantum DRL agent.
We provide three configurations for the cognitive-radio experiment; the
first setting (a) is the main configuration for experiments on a different
number of channels and experiments in noisy situations. The other two
configurations in (b) and (c) are only tested in the case of 4 channels,
the purpose of these additional experiments is to demonstrate that the
proposed framework is generally applicable in different scenarios.

since channels are possibly occupied or under interference.
For the demonstration in this work, we consider that there are
n possible channels for the agent to select and the channel-
changing by the primary user follows a simple periodic pat-
tern with n time-steps in a full cycle. Three different con-
figurations of the cognitive-radio environment in the case of
four channels for the training considered here are illustrated
in Fig.3.

The cognitive-radio environment mapping is:
• Observation: ns3 [30] statistics with the radio channels
capacity, with a customized channel number = n. (e.g.,
a state of [1 0 0 0] represents for n = 4 channels and a
primary user on the 1st channel.)

• Action: selecting one channel for the secondary user
accessing a radio channel out of n channels. How to
choose the action in a variational quantum circuit for the
cognitive-radio scenario will be described in Sec. VI-A.

• Reward: −1 for a collision with the primary user; +1
for no collision. The list of score presenting rewards in
the testing environments is shown in Table 1. Agent can
achieve a maximum score of 100.
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TABLE 1. List of rewards in our frozen-lake and cognitive-radio testing
environments. In the frozen lake, the environment is non-slippery. This
setting encourages the agent not only to achieve the goal but also to
select the shortest path.

C. VARIATIONAL QUANTUM DEEP Q-LEARNING

FIGURE 4. Overview of variational quantum circuits for DRL. In this work,
we study the capability of variational quantum circuits in performing DRL
tasks. This DRL agent includes a quantum part and a classical part. Under
current limitations on the scale of quantum machines and the capabilities
of quantum simulations, we select frozen-lake and cognitive-radio
environments for the proof-of-principle study. The proposed framework is
rather general and is expected to solve complicated tasks when
larger-scale quantum machines are available.

IV. VARIATIONAL QUANTUM CIRCUITS AND DEEP
Q-LEARNING
The variational quantum circuit is a hybrid quantum-classical
approach which leverages the strengths of quantum and clas-
sical computation. It is one type of quantum circuits with
tunable parameters which are optimized in an iterative man-
ner by a classical computer. These parameters can be seen
as the weights in artificial neural networks. The variational
quantum circuit approach has been shown to be flexible
in circuit depth and somewhat resistant to noise [31]–[33].
Therefore, even though there is still lack of quantum error cor-
rection and fault-tolerant quantum computation in the NISQ
devices, the quantum machine learning algorithms powered
by variational quantum circuits can circumvent the complex
quantum errors which exist in the available quantum devices.
Previous results in [20], [23], [34] have demonstrated that the
variational quantum circuits can model any function approxi-
mators, classifiers and even quantum-many-body physics that
are intractable on classical computers. For example, the work
in [20] shows that a variational quantum circuits can approx-
imate an analytical function f (x).

It is hard to simulate quantum circuits of a large number
of qubits via classical computers. For example, a quantum
circuit with 100 qubits corresponds to a computational state
space of dimensions 2100. This huge number of computa-
tional state-space dimensions exceeds the storage and thus the
computational capability of classical computers. Recently,
Google demonstrated that a 53-qubit quantum computer can
successfully sample, by quantum measurement, one instance
of the probability distribution of a quantum circuit a million
times in around 200 seconds while it is estimated that such
calculation to generate such amount of large size of random
numbers will take 10000 years on state-of-the-art classical
supercomputer [35]. In this study, we consider a small-scale
simulation to demonstrate the possibility of running DRL
applications on a quantum computer. The scale we con-
sider here (several qubits) is still simulable by a quantum
simulator on a classical computer. The hope is that when
a larger scale, for example, 100-qubit quantum computer
is available, we may be, with some small changes to the
variational quantum circuits, able to implement a VQ-DQL or
VQ-DQN agent that is impossible to be simulated on a clas-
sical computer. For a review on the advantages of quantum
computers over classical computers, see [36]. In this work,
we attempt to expand the expressive power of variational
quantum circuits for the action-value function of DRL. In
certain cases, the variational quantum circuits require fewer
parameters than a conventional neural network [21], making
them promising for modeling complex environments. Con-
sider a physical systemwith a size of 100 qubits; it is basically
impossible to simulate this system on any currently available
supercomputer, or this system requires a significant amount
of classical computing resources beyong what is currently
available to simulate. Therefore, the expressive power we
consider here is that potentially some applications of a very
large size may be represented either by a quantum circuit of
an intermediate size of qubits or in theory by a classical neural
network while the quantum circuit would require a fewer
number of parameters than the classical neural network.

In Fig. 4, we present the overview of our proposed vari-
ational quantum circuit based DRL and its relevant compo-
nents. The RL agent includes a quantum part and a classical
part. The quantum part of the variational quantum circuit
takes two sets of parameters and outputs measurement results
that determine possible actions to take. The classical part
of a classical computer performs the optimization procedure
and calculates what new sets of parameters should be. Fig.5
shows a generic quantum circuit architecture for DRL (the
detailed description of the quantum circuit will be presented
later), and the algorithm for the VQ-DQL or VQ-QDN is
presented in Algorithm 1. We construct two sets of circuit
parameters with the same circuit architecture. The main cir-
cuit parameters are updated every step, while the target circuit
parameters are updated per 20 steps. For experience replay,
the replay memory is set for the length of 80 to adapt to
the frozen-lake testing environment and the length of 1000
for the cognitive-radio testing environment, and the size of

VOLUME 8, 2020 141011



S. Y.-C. Chen et al.: Variational Quantum Circuits for Deep Reinforcement Learning

training batch is 5 for all of the environments. The process
of optimization needs to calculate gradients of expectation
values of quantum measurements, which can be conducted
by the same circuit architecture and slightly different param-
eters, respectively [37]. Further, we encode the state with
computational basis encoding. In the frozen-lake environ-
ment [29] we consider, there are totally 16 states. Thus,
it requires 4 qubits to represent all states (see Fig. 5). In the
cognitive-radio experiments, we apply similar method and
circuit architectures with different number of qubits to match
the number of possible channels (see Fig. 6). Besides, [38]
provides a general discussion about the different encoding
schemes. We discuss next the concept of computational basis
encoding and the quantum circuits for the frozen-lake and
cognitive-radio problems.

FIGURE 5. Generic variational quantum circuit architecture for the deep Q
network (VQ-DQN). The single-qubit gates Rx (θ) and Rz (θ) represent
rotations along x-axis and z-axis by the given angle θ , respectively. The
CNOT gates are used to entangle quantum states from each qubit and
R(α, β, γ ) represents the general single qubit unitary gate with three
parameters. The parameters labeled θi and φi are for state preparation
and are not subject to iterative optimization. Parameters labeled αi , βi
and γi are the ones for iterative optimization. Note that the number of
qubits can be adjusted to fit the problem of interest and the grouped box
may repeat several times to increase the number of parameters, subject
to the capacity and capability of the quantum machines used for the
experiments.

It has been shown that artificial neural networks (ANN)
are universal approximators [39], meaning that in theory,
a single hidden layer neural network can approximate any
computable function. However, the number of neurons in
this hidden layer may be very large, which means that this
model contains so many parameters. In machine learning
applications, in addition to the capability of approximation,
one needs to consider the amount of resources the model
consumes.

A. COMPUTATIONAL BASIS ENCODING AND QUANTUM
CIRCUIT FOR THE FROZEN LAKE PROBLEM
A general n-qubit state can be represented as:

|ψ〉=
∑

(q1,q2,...,qn)∈{0,1}n
cq1,...,qn |q1〉⊗|q2〉⊗|q3〉⊗. . .⊗|qn〉 ,

(4)

where cq1,...,qn ∈ C is the amplitude of each quantum state
and each qn ∈ {0, 1}. The square of the amplitude cq1,...,qn
is the probability of measurement with the post-measurement
state in |q1〉⊗|q2〉⊗|q3〉⊗. . .⊗|qn〉, and the total probability

FIGURE 6. Variational quantum circuits for the cognitive-radio
experiments. The basic architecture is the same as the circuit used in the
frozen-lake experiment. The main difference is that we have different
number of qubits in order to fit the number of channels.
In cognitive-radio experiments, all circuits are with two layers (grouped
box repeated twice), regardless of the number of channels. In the
3-channel case, since the number of possible state is 32, which is greater
than the number of computational basis of a 3-qubit system (which is
23 = 8). We use a 4-qubit system to accommodate the all possible states
while the number of parameters is not increased.

should sum to 1, i.e.,∑
(q1,q2,...,qn)∈{0,1}n

||cq1,...,qn ||
2
= 1. (5)

We discuss the procedure, adopted here, to encode classical
states to the quantum register of the variational quantum
circuit. Let us take the frozen-lake environment [29] shown
in Fig.1 as an example. There are 4× 4 = 16 possible states
and we label each possible state with an integer in the range
from 0 to 15.We need a 4-qubit system to include all possibil-
ities of 16 states. The decimal number is first converted into
a binary number and then encoded into the quantum states
through single-qubit unitary rotations. In other words, each
classical state can be denoted by a four-digit binary number
b1b2b3b4, where b1, b2, b3, b4 can only take the value of 0 or
1, and then the corresponding encoded quantum state will be
|b1〉 ⊗ |b2〉 ⊗ |b3〉 ⊗ |b4〉.

141012 VOLUME 8, 2020
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Algorithm 1 Variational Quantum Deep Q Learning
Initialize replay memory D to capacity N
Initialize action-value function quantum circuit Q with random parameters
for episode = 1, 2, . . . ,M do

Initialise state s1 and encode into the quantum state
for t = 1, 2, . . . ,T do

With probability ε select a random action at
otherwise select at = maxa Q∗(st , a; θ ) from the output of the quantum circuit
Execute action at in emulator and observe reward rt and next state st+1
Store transition (st , at , rt , st+1) in D
Sample random minibatch of transitions

(
sj, aj, rj, sj+1

)
from D

Set yj =
{
rj for terminal sj+1
rj + γ maxa′ Q(sj+1, a′; θ ) for non-terminal sj+1

Perform a gradient descent step on
(
yj − Q(sj, aj; θ )

)2
end for

end for

We propose the following single-qubit unitary rotation
method to encode the classical input states from the testing
environment into the quantum circuit of Fig. 5. In quantum
computing, the single-qubit gate with rotation along the j-axis
by angle θ is given by

Rj(θ ) = e−iθσj/2 = cos
θ

2
I − i sin

θ

2
σj, (6)

where I is an identity matrix and σj is the Pauli matrix with
j = x, y, z. The rotation angles for Rx(θi) and Rz(φi) in Fig. 5
are chosen to be

θi = π × bi, (7)

φi = π × bi, (8)

where i represents the index of qubit i andπ here is the radian.
In the quantum circuit with four input qubits, the index is
the set {1, 2, 3, 4}. The rotational angle parameters θi and
φi are for state preparation and are not subject to iterative
optimization.

Take the state labeled 11 observed by the agent as an
example. The decimal number 11 of the state is first converted
to the binary number 1011, and then this classical state will be
encoded into a quantum state |1〉 ⊗ |0〉 ⊗ |1〉 ⊗ |1〉 = |1011〉.
The detailed procedure is as follows. In this case, the binary
digits b1, b2, b3, b4 are 1, 0, 1, 1 respectively. Then according
to Eqs. (7) and (8), One can obtain the values of θi and
φi as (θ1, θ2, θ3, θ4) = (π, 0, π, π ) and (φ1, φ2, φ3, φ4) =
(π, 0, π, π ). One can furthermore obtain from Eq. (6)

Rx(π ) = −iσx , (9)

Rz(π ) = −iσz, (10)

and

Rx(0) = I , (11)

Rz(0) = I . (12)

When the two quantum gates for encoding, Rz(θi)Rx(φi),
operate on each qubit in initial state |0〉 as shown in Fig. 5,

the resultant qubit state becomes either

Rz(π )Rx(π ) |0〉 = (−iσz)(−iσx) |0〉 = |1〉 (13)

or

Rx(0)Rx(0) |0〉 = II |0〉 = |0〉 . (14)

Thus one obtains for b1, b2, b3, b4 being 1, 0, 1, 1, respec-
tively, a quantum state |1〉 ⊗ |0〉 ⊗ |1〉 ⊗ |1〉. Other classical
states can be encoded into their corresponding quantum states
in the sameway. This procedure is applicable for all the exper-
iments in this work, including cognitive-radio experiments,
regardless of the number of qubits.

In the quantum circuit, the controlled-NOT (CNOT) gates
are used to entangle quantum states from each qubit.

R(αi, βi, γi) = Rz(αi)Ry(βi)Rz(γi) (15)

represents the general single qubit unitary gate with three
parameters. Parameters labeled αi, βi and γi are the ones for
iterative optimization.

The variation quantum circuit is flexible in circuit depth.
A shallow circuit that well represents the solution space
can still achieve approximately the goal of certain tasks
although a more sophisticated and deeper circuit may have
better performance. But it remains a challenge to choose the
right effective circuit that can parametrize and represent the
solution space well for a general task while maintaining a
low circuit depth and a low number of parameters [40]. It
has been empirically demonstrated that a strongly entangling
low-depth circuit has the potential powers and advantages
to efficiently represent the solution space for some specific
problems [23], [24], [31], [40]. Thus we design the strongly
entangling circuit by appending a layer (i.e., the grouped box
in dashed lines in Fig.5) comprised of two-quibit CNOT gates
and parametrized general single-qubit unitary gates. Note that
the layer or grouped box in dashed lines may repeat several
times to increase the expressibility, entangling capability and
also the number of parameters [40]. To accommodate both the
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TABLE 2. Comparison of the number of parameters in classical Q-learning and variational quantum deep Q network (VQ-DQN).

use of NISQ machines and the performance of the variational
quantum circuits, in this work, the grouped box repeats two
times regardless of the testing environments. The number of
qubits can be adjusted to fit the problem of interest and the
capacity of the simulators or quantum machines. For exam-
ple, in the frozen-lake experiments and also the four-channel
cognitive-radio experiments that will be discussed later, there
are four input qubits and the grouped circuit repeats twice.
Therefore the total number of circuit parameters subject to
optimization is 4× 3× 2 = 24. It is often to add a bias after
the quantum measurement, the length of the bias vector is the
same as the number of qubits. The bias vector is also subject
to optimization. Therefore, the total number of parameters in
this example is 24+ 4 = 28 which is also listed in Table 2.

B. QUANTUM CIRCUIT FOR COGNITIVE
RADIO NETWORKS
In the experiments on the cognitive radio [30], the total
number of channels n that can be selected by the agent
at each time-step is known in advance. Since the occupied
channel changes from time to time, it is necessary to include
not only the channel but also the temporal information into
the observation. The observation is in the following form:
(channel, time). In our experimental setting, we consider that
the channel-changing by the primary user follows a simple
periodic pattern with n time steps in a full cycle (see Fig. 3
for the n = 4 case). Therefore, the number of possible states
is n2. Similar to the circuit architecture of the frozen-lake
experiments in Fig. 5, the variational quantum circuits for
cognitive-radio experiments are shown in Fig. 6. We choose
different qubit numbers to accommodate possible n2 states
of the n-channel cognitive-radio environment. Normally, n
qubits are used for the encoding and action (channel) selec-
tion of an n-channel cognitive-radio environment. However,
the 3-channel case is special since the number of possible
state is 32, which is greater than the number of computational
basis states of 3-qubit system (which is 23 = 8). We thus
use a 4-qubit system to accommodate the all possible states.
The scheme to encode the classical n2 states into their corre-
sponding quantum states in the cognitive-radio environment
is the same as that in the frozen-lake experiment introduced in
Sec.IV-A except that some quantum states are not used when
2nq > n2, where nq is the qubit number and n is the channel
number.

In addition, at each time step, the agent can select one of
the channels from the set of all possible channels, which is of
number n. This corresponds exactly to the n possible actions
that the agent can select. The action selection in our VQ-DQN
scheme is determined through the expectation values of n
qubits, which will be discussed in Sec.VI-A. Since nq > n

for channel number n = 3, we use the repeated quantum
measurements of only the first three qubits for the estimation
of the expectation values for channel or action selection.
At the same time, we would like to keep the number of
parameters to scale as n × (3 × 2 + 1). So for the special
case of n = 3, there is no single-qubit unitary operation
with optimization parameters acting on the fourth qubit in
the grouped box in Fig. 6(b). We note here that since the
number of possible qubit states 2n, which is greter than n2 for
n > 5, grows exponentially, leaving our variational quantum
circuit the possibilities to deal with more complex scenarios
with more possible states than the simple periodical channel-
changing pattern with n2 possible states when the number of
channels n becomes large.

V. DATA AVAILABILITY
The data that support the findings of this study are available in
the GitHub repository, https://github.com/ycchen1989/Var-
QuantumCircuits-DeepRL

VI. EXPERIMENTS AND RESULTS
A. ENVIRONMENT SETUP AND ACTION SELECTION
The frozen-lake testing environment is depicted in Fig.1. We
set up the experiment following the circuit architecture in
Fig. 5. For the cognitive-radio environment, we consider the
case where the external interference of the primary user fol-
lows a periodic pattern, i.e. sweeping over all channels from
1 to n in the same order (see, e.g., Fig.3 for the n = 4 case).
We set up the experiment following the circuit architectures in
Fig. 6 according to the number of channels n in the cognitive-
radio environment. This cognitive-radio environment offers a
feasible test-bed for quantum DQL (DQN) with a desirable
self-defined environment with lower action and space com-
plexity working in the current NISQ machines.

Next, we describe how to select an action in the variational
quantum circuit. The measurement output of the expectation
(ensemble average) values of the n-qubit quantum circuit is
an n-tuple. The index counting of the measurement qubit
output ports or wires is from zero to n − 1. The choice of
the action is just the index of the measurement qubit output
port or wire that has the largest expectation value. Taking
the four-qubit setting as an example, one then has the output
of [a, b, c, d] with a, b, c, d being numerical expectation
values obtained from a set of measurements. If the numeri-
cal value b is the largest value among the four expectation
values, then the action choice is 1. This action 1 will then
be sent to the testing environment. To be more specific, for
the frozen-lake environment, there are four actions LEFT,
DOWN, RIGHT, UP in the action space. The output ports or
wires of the four-qubit quantum circuit are labeled 0, 1, 2, 3
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and they correspond to the action LEFT, DOWN, RIGHT,
UP, respectively. If output wire 1 has the largest expectation
value, then the action that will be selected by the agent is to
go DOWN one step from the current state in the frozen-lake
environment. Similarly, there are n possible action choices,
Channel 1 to Channel n, in the cognitive-radio environment,
and they correspond to the output qubit ports or wires labeled
from 0 to n−1, respectively. If the output qubit wire 1 has the
largest measured expectation value, the agent (the secondary
user) will select Channel 2 as the action.

As described above, the next action that the agent selects
is determined by the expectation value of each qubit, not by
the random outcome of 0 or 1 of each qubit in each single
run of measurement. The expectation value can be calculated
analytically if we use the quantum simulator (for example,
PennyLane [42] or IBM Qiskit) on a classical computer, and
in this case the result is deterministic. If the agent is on a real
quantum computer, the expectation value is estimated with
a large number of measurement samplings, which should be
close to the value calculated theoretically by the quantum
simulator. Let us give a brief summary of the whole procedure
on a real machine with an example. Suppose the RL agent
receives a classical binary number for the state 1011. First,
this binary number will be converted into the quantum state
|1〉 ⊗ |0〉 ⊗ |1〉 ⊗ |1〉 by the encoding single-qubit gates
and then go through the quantum circuit blocks before the
measurements. If we measure the first qubit, for example,
we will get either 0 or 1, but which of these two possible
outcomes will appear is truly stochastic. Thus this single-shot
random measurement outcome is not enough for the agent to
decide the next move or action, and instead, the expectation
value is used. To find the expectation value, one needs to
measure an ensemble of identically prepared systems, or
perform an ensemble of measurements on a single quantum
system repeatedly prepared in the identical quantum state
|1〉 ⊗ |0〉 ⊗ |1〉 ⊗ |1〉, which is our case here. So the agent
will prepare the qubits in state |1〉 ⊗ |0〉 ⊗ |1〉 ⊗ |1〉 and let
it go through the quantum circuit blocks and then perform a
measurement on each qubit. This process will repeated for a
large number of times. The measurement outcome of being
in state |0〉 or state |1〉 in each measurement is purely random
and unpredictable. However, the probability of being in state
|0〉 and the probability of being in state |1〉 can be predicted.
The average value of all these repeated measurements is
the expectation value. For example, if the agent repeats the
process 1000 times and get 600 times of 1 and 400 times of 0
on the first qubit, then the expectation value of the first qubit
will be about 0.6. The procedure is the same for other qubits
when we consider multi-qubit systems.

Normally, the number of observations or measurements
needed to learn a discrete probability distribution on an n-
qubit system of size 2n is, in the worst case, linear in 2n.
This means that learning the probabilities may require a
number of measurements that scales exponentially with the
number of qubits n. However, what is necessary for our
algorithm to determine the next action by the QRL agent

here is to find the expectation value of each qubit in the
n-qubit system, rather than the expectation value on the n-
qubit computational state space. As a result, we only need
to measure discrete probability distribution of size n rather
than size 2n. Moreover, the measurements on each qubit of
the n qubits can be performed simultaneously in parallel.
Thus the number of repeated experiments (measurements)
to obtain the expectation values can be chosen to be a fixed
number, rather independent of n. Furthermore, our algorithm
does not require to find the exact expectation value of each
qubit, and only the qubit that has the largest expectation value
is concerned, making our DRL algorithm relatively robust
against noise and errors in the real quantum machines. We
note here that in the inference experiment with our trained
QRL model running on a real quantum computer discussed
in Sec.VI-E, the number of repeated measurements is set to
1024, and this number of measurement shots can already give
a fairly stable result.

B. NUMERICAL SIMULATION
The quantum circuits as constructed in Fig. 5 and Fig. 6
are numerically simulated with the software package Penny-
Lane [42]. We use the standard package PyTorch [43] to help
the linear algebraic manipulation to accelerate the simulation.
OpenAI Gym [29] provides the testing environment. In this
work, we choose an environment with low computational
complexity, the frozen-lake environment, to implement the
proof-of-concept experiments and choose the cognitive-radio
environment to study the possible real-world applications.

The optimization method is chosen to be RMSprop [44]
in which parameters are set to be learning rate = 0.01,
alpha = 0.99 and eps = 10−8, widely used in DRL. Note
that the learning rate, alpha and eps here are only for the
gradient descent optimization. Please do not be confused with
the aforementionedDRL hyperparameters. The batch-size for
the experience replay is 5. The ε-greedy strategy used in the
frozen-lake environment is the following:

ε ←−
ε

episode
100 + 1

, (16)

and in the cognitive-radio environment ε is updated in every
single step as:

ε ←− 0.99ε (17)

with initial ε = 1.0 for encouraging more exploration in early
episodes and shifting to more exploitation in later episodes.

C. SIMULATION WITH NOISE
To investigate the robustness of our proposed variational
quantum circuit-based DRL against the noise from current
and possible near-term NISQ devices, we perform addi-
tional simulations which include the noise from a real
quantum computer. The experiment setting is the same as
the previous experiments, except that the simulation back-
end is replaced with the Qiskit-Aer simulation software,
which has the capability to incorporate the noise models
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from the IBM quantum computers. We perform the noise-
model simulations for the 2-channel and 4-channel settings
in cognitive-radio experiments. The qubit properties, such
as relaxation time T1, dephasing time T2, qubit frequency,
gate error and gate length, of the IBM Q 20-qubit machine
ibmq-poughkeepsie, from which we download noise
data for the above mentioned noise-model simulations, are
listed in Tables 6, 9, and 8 in Appendix A.

The variational quantum circuits can be relatively robust
against noises because they involve a classical optimiza-
tion step and the related deviations can be absorbed by the
parameters during the iterative optimization process. Another
appealing feature of our quantum variational DRL algorithm
is the additional ability to tolerate errors and noises. The next
action that the agent selects in our algorithm is determined
by which qubit has the largest expectation value among all
the n qubits. In other words, although quantum gate opertions
and the measurement fidelity on NISQ devices are degraded
by noises and errors, as long as the qubit that has the largest
expectation value is the same as that on the ideal quantum
simulator, the DRL agent will select the same action.

D. PERFORMANCE ANALYSIS
In the frozen-lake experiment, we run 500 episodes on
all three configurations. Subfigures (a), (b), and (c) in
Fig. 7 correspond to the results of the environment configu-
rations (a), (b), and (c) in Fig.1, respectively. Take subfigure
(a) for example. The agent converges to the total reward
0.9 after the 198th episode. The results of the other two
configurations shown in subfigures (b) and (c) in Fig. 7 also
demonstrate the similar pattern. It is noted that, however, sev-
eral sub-optimal results occurr. This phenomenon is probably
due to the ε-greedy policy selection.

To demonstrate the stability of our quantum RL agents’
training process, we calculate the temporary mean value
and the standard-deviation boundary of the total rewards.
The mean and standard-deviation values are calculated from
the last 100 episodes. In the case that there are fewer than
100 episodes, we include all the episodes. The standard devi-
ation values are shown in gray color and the mean values are
in blue color in the right panel of Fig. 7. In our simulations,
the quantum RL agents’ average total reward (average score)
are with small standard-deviation values, meaning that they
are stable after training.

In the cognitive-radio experiment, we tested situations
where there are 2, 3, 4 and 5 possible channels with the
environment configuration shown in (a) of Fig. 3 for the
agent to choose, respectively. In all the four situations,
we run 500 episodes and the agent converges to the optimal
total reward value at around 100 iterations or episodes (see
Fig. 8). We further perform the simulations on the other two
4-channel environment configurations shown in (b) and (c) of
Fig. 3, the training result shown in Fig. 9 is comparable
to the 4-channel training result on environment configura-
tion (a) shown in Fig. 8. In the simulation with the noise
model from the IBMquantummachine (with the environment

FIGURE 7. Performance of the variational quantum circuits for DQL on
the frozen-lake experiment. Subfigures (a), (b), and (c) correspond to the
results of the environment configurations (a), (b), and (c) in Fig.1,
respectively. Take subfigure (a) for example. The left panel of subfigure
(a) shows that our proposed variational quantum circuits based
DQL-agent reaches the optimal policy in the frozen-lake environment
with a total reward of 0.9 at the 198th iteration. The gray area in the right
panel of the subfigure represents the standard deviation of reward in
each iteration during exploration with the standard reinforcement
learning reproducible setting for stability. The mean and the standard
deviation values of the average score (reward) are calculated from the
scores (rewards) in the past 100 episodes. The policy learned via quantum
circuit becomes more stable after the 301st iteration. The other two
experiments in subfigures (b) and (c) demonstrate the similar pattern.

configuration shown in (a) of Fig. 3), the agent converges
to the optimal total reward value at around 110 iterations
in the 2-channel and 4-channel settings (see Fig. 10), which
are comparable to previous ideal and noiseless simulations
in Fig. 8, showing that our proposed quantum circuit based
DRL is robust against noise in the current machines. The
mean and standard-deviation values of the total rewards for
cognitive-radio experiments are shown in the right panel of
Fig.9 and the bottom panels of Fig.8 and Fig.10. The small
standard-deviation values indicate that they are stable after
training.
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FIGURE 8. Performance of the Variational quantum circuits for DQL on the cognitive-radio experiment. In the cognitive-radio experiments,
we limit the maximum steps an agent can run to be 100, and the reward scheme is that for each correct choice of the channel, the agent will get a
+1 reward and −1 for incorrect selection. The maximum reward an agent can achieve under this setting is 100. The top panels of the figure show
that our proposed variational quantum circuits based DQL-agent reaches the optimal policy with a total reward of 100 in the 2-channel and
5-channel cases at only several iterations. For the cases of 3-channel and 4-channel, the agent also reaches near-optimal policy at only several
iterations. The gray area in the bottom panels of the figure represents the standard deviation of reward in each iteration during exploration with
the standard reinforcement learning reproducible setting for stability [41]. The mean and the standard deviation at each episode are calculated
from the rewards(scores) in the past 100 episodes. The policy learned via variational quantum circuits becomes more stable after around 100
iterations for all the four cases.This part of experiment is tested on the configuration (a) shown in Fig.3.

E. RUNNING ON A QUANTUM COMPUTER
We further upload our trained VQ-DQL (VQ-DQN) models
to the IBM Q cloud-based quantum computing platform to
investigate whether the models are feasible on a real quantum
computer. In the cognitive-radio experiment, we upload the
trained model parameters of the variational quantum circuit
of configuration (c) in the 4-channel case described in Fig.3.
Due to the limited resource available on the cloud-based
quantum computing platform, we exclusively carry out five
episodes of this specific experiment on the IBM Q backend
machine ibmq-valencia. The result of the experiment
conducted on the IBM Qmachine listed in Table3 has almost
the same total reward as that obtained by running on the
PennyLane or Qiskit quantum simulator. This demonstrates
that even if the training is on the simulation software without
the noise, the trained model of the variational quantum circuit
for DRL still performs well on the real quantum computer.
The reason for this is that our quantum DRL algarithm does
not require to find the exact expectation value of each qubit,
and only cares which qubit that has the largest expecta-
tion value. Thus, our algorithm is relatively robust against
errors and noises. In the frozen-lake experiment, we test
the trained model parameters for the environment configu-
ration (c) described in Fig. 1 also on the IBM Q machine
ibmq-valencia and carry out seven episodes of this spe-
cific experiment. The result listed in Table4 for the quantum
DRL model experiment conducted on the IBM Q quantum
computer is also comparable to that obtained by running on

FIGURE 9. Performance of the Variational quantum circuits for DQL on
the cognitive-radio experiment. This part of experiment is tested on
configurations (b) and (c) shown in Fig.3, and the results are comparable
to the results in Fig.8, which are tested on configuration (a) in Fig.3. This
demonstrates that our proposed quantum DRL (DQL) framework can be
trained on different scenarios.

the PennyLane or Qiskit quantum simulator. In these real-
machine experiments, the number of shots of quantum mea-
surements for the calculation or estimation of the expectation
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FIGURE 10. Performance of the variational quantum circuit for DQL on cognitive-radio experiment conducted on the IBM Qiskit Aer quantum
simulator with noise from the real quantum machine, ibmq-poughkeepsie. In this experiment, we investigated the robustness of the VQ-DQN against
the noise in quantum machines. The device noise is downloaded from remote real quantum machines and then incorporated with the simulator
software Qiskit Aer provided by IBM. This noisy backend then replaces the noiseless backend in previous experiments. The result of the experiment
shows that our proposed variational quantum circuits based DQL or DQN is robust against noise in the current quantum machines.

TABLE 3. Results of the trained VQ-DQL (VQ-DQN) for the cognitive-radio
experiment conducted on the IBM Q quantum computer,
ibmq-valencia. In this experiment, we test the trained quantum DRL
model in the cognitive-radio experiment of configuration (c) in the
4-channel case described in Fig.3. Even if the training is on the simulation
software without the quantum noise, the trained model still performs
well on the real quantum computer.

TABLE 4. Results of the trained VQ-DQL (VQ-DQN) for the frozen-lake
experiment conducted on the IBM Q quantum computer,
ibmq-valencia. In this experiment, we test the trained quantum DRL
model in the frozen-lake experiment of configuration (c) in Fig.1. Even if
the training is on the simulation software without the quantum noise,
the trained model still performs well on the real quantum computer.

values is 1024. The qubit properties, such as relaxation time
T1, dephasing time T2 and qubit frequency, gate error and gate
length, of the IBM Q 5-qubit machine ibmq-valencia
we use for the above mentioned two experiments are listed
in Tables 11, 10, and 7 in Appendix B.

F. QUANTUM ADVANTAGE ON MEMORY CONSUMPTION
Current NISQ machines are not suitable for deep quantum
circuit architectures due to the lack of quantum error cor-
rection. Therefore, to utilize these near-term NISQ machines

for more complex situations, it is urgent to develop quantum
circuits which are not so deep in quantum gates as there will
be more errors when the number of quantum gates increases.
With this constraint, the proposed variational quantum circuit
cannot have many parameters compared to classical neu-
ral networks. In this work, we show that for the cases we
consider, variational quantum circuits with fewer iterative
parameters can achieve comparable performances to classical
neural networks.

To compare the performance of our VQ-DQL (VQ-DQN)
models with classical counterparts, we need at least one
classical candidate. In the frozen-lake environment, the num-
ber of parameters in our proposed VQ-DQL is 28, while
in tabular Q-Learning, the table that needs to store all the
state-action information is of the size 16 × 4 = 64. Thus
our VQ-DQL method reduces the number of parameters by
(64− 28)/64 = 56.25%. In the cognitive-radio environment,
the classical counterpart that we compare is from the original
ns3-gym work [30], and it is a fairly simple neural network
consisting of a single hidden layer. From the results of Fig. 6
and Fig. 8 in that original paper, we can see that our agents
converge faster than the classical ones. For example, even in
the presence of noise, our agents can reach score very close to
100 at less than 10 iterations as shown in Fig.10 while in the
original paper [30], the agents reach score 100 inmore than 20
iterations. Moreover, in this example, our proposed quantum
circuit uses fewer parameters than its classical counterpart.
For a given problem, there are many possible neural network
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TABLE 5. Comparison of classical reinforcement learning algorithms with discrete action space and variational quantum deep Q networks (VQ-DQN).

architectures and it is impossible to exhaust all the possible
solutions. In our case, we select the neural network architec-
ture from the article which demonstrates the ns3 simulation
framework [30]. For the experiments we conduct and test in
the cognitive-radio environments with n possible channels,
the number of parameters is n× (3×2+1) in our variational-
quantum-circuit-based DQL (DQN), while it is 2×n2+2×n
in the neural network based RL [30]. In general, there is no
guarantee that a given neural network model or a variational
quantum circuit can scale as we wish when the complexity of
the problem increases. Therefore, in this work, the compari-
son in scaling is restricted to the cases we test. For example,
in the cognitive-radio experiment, we consider only the cases
with number of channels n ≤ 5.

In summary, the quantum advantage in our proposed
method refers to the less memory consumption, which means
there are less parameters in the quantum circuits. The quan-
tum advantage in terms of the parameters of the quantum
circuit relies on the data encoding schemes. For example,
the number of parameters in an amplitude coding may be
poly(log n) in contrast to poly(n) in a standard neural network.
However, it is hard to implement the amplitude encoding
scheme as there is no known efficient algorithm to prepare
classical vectors into quantum registers [45]. The computa-
tional basis encoding in our proposed variational quantum
DQL (DQN) involves n parameters, but there are n2 param-
eters in the neural network based RL [30], and n3 in the
tabularQ-learning, where n is the dimension of input vectors.
A comparison of classical reinforcement learning algorithms
with discrete action space and variational quantum deep Q
networks (VQ-DQN) is given in Table 5. The blue dotted lines
in Fig. 11 shows explicitly that the number of parameters
of our proposed VQ-DQN method grows linearly with the
dimension of the input vector, at least for the cases we test,
i.e., the number of channels n ≤ 5 in the cognitive-radio
experiments.

VII. DISCUSSIONS
A. OVERVIEW OF QUANTUM MACHINE LEARNING
A general review of the field of quantum machine learn-
ing can refer to [46], [47]. As for quantum reinforcement
learning, the early work can refer to [48], and in this work,
the authors use the amplitude amplification method to per-
form the action selection. However, such operations are
hard to implement on NISQ machines. In addition, in their

FIGURE 11. Comparison of memory consumption in different learning
schemes. The figure shows our proposed variational quantum circuits
based DQL-agent has the quantum advantage in memory consumption
compared to classical Q-learning and DQL (DQN). Specifically, in our
cognitive-radio channel selection experiment, we set up four different
testing environments with 2,3,4,5 possible channels, respectively. With
the classical Q-learning, the number of parameters grow with n3, and in
DQL (DQN), the number of parameters grow with n2. However, with our
proposed variational quantum circuits based DQL (DQN), the number of
parameters grows as n× (3× 2+ 1) only.

scheme [48], there is a need to encode the environment in
the quantum superposition state, which is not always pos-
sible when the agent interacts with classical environments.
To study the effect of computational agents coupled to envi-
ronments which are quantum-mechanical, refer to [49]. For
a review of recent developments in quantum reinforcement
learning, refer to this good review article [50]. For example,
recent work [51], [52] have proposed a framework called
projective simulation, and the key concept in this setting is
that the agent keeps memory of the transition history. Before
executing each action, the agent will simulate several possible
outcomes according to historical data stored in the memory.
It is conceptually related to thewell-knownMonte-Carlo Tree
Search [7], [53] and it is interesting to investigate the quantum
counterparts and possible quantum advantages.

B. MORE COMPLEX TESTING ENVIRONMENTS
We have applied our VQ-DQN to a simple maze problem,
the frozen lake environment in OpenAI Gym [29], and to a
classical spectrum control problem in cognitive radio with the
ns3-gym [30] environment. We choose the frozen-lake envi-
ronment as an environment with low computational complex-
ity to implement the proof-of-principle quantumDQL (DQN)
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TABLE 6. Qubit relaxation time T1, dephasing time T2 and qubit
frequency data of the 20-qubit machine ibmq-poughkeepsie
downloaded from the IBM Q system service at the time when the
numerical simulation in Sec.VI-C performed.

TABLE 7. Two-qubit coupling and CNOT gate error and gate length data
of the 5-qubit machine ibmq-valencia downloaded from the IBM Q
system service at the time when the experiment in Sec.VI-E performed.

experiments. We consider the cognitive-radio problem in a
wireless multi-channel environment, e.g. 802.11 networks
with external interference. The objective of the agent is to
select a channel free of interference in the next time slot.
We create a scalable reinforcement learning environment sim-
radio-spectrum (SRS) with a customized state and an action
echo in a real multi-channel spectrum scenario for the quan-
tum DQL (DQN) demonstration of a real-world application.

Different from the benchmark environments of complex
RL like Atari games, we use simple testing environments
to study the feasibility of quantum circuits-based DQL
(DQN). Although the mainstream benchmark environments
can be encoded with computational basis encoding or ampli-
tude encoding, the number of qubits needed is intractable
for numerical simulations on classical computers and also
exceeds currently commercially available quantum devices.
However, we could further investigate these complex RL
environments with the same setting proposed in this work
when large quantum machines are released.

C. SCALING UP THE ARCHITECTURE
In the proposed architecture, we require the observation of
the expectation value of each qubit in order to determine
the next action, which can be evaluated analytically by a

TABLE 8. Two-qubit coupling and CNOT gate error and gate length data
of the 20-qubit machine ibmq-poughkeepsie downloaded from the IBM
Q system service at the time when the numerical simulation in Sec.VI-C
performed. The two-qubit CNOT gate error and lengths are usually
different for different two-qubit coupling pairs due to different coupling
strength and different qubit frequencies in the qubit pairs.

quantum simulation software on a classical computer. While
in a real quantum computer, it is needed to perform multi-
ple samplings of repeated measurements. For example, in a
n-qubit circuit with the number of output actions to be n,
the number of samplings in the inference stage could be a
fixed number of 1024 as the the measurements on each qubit
of the n qubits can be performed simultaneously in parallel.
Thus number of samplings needed could be pretty much fixed
or may increase only slightly with the number of qubits n or
the number of possible output actions. Furthermore, in the
proposed quantum DRL algorithm, we only care which qubit
or action is the most probable with the largest expectation
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TABLE 9. Single-qubit U1, U2 and U3 gate errors, and readout error data of the 20-qubit machine ibmq-poughkeepsie downloaded from the IBM Q
system service at the time when the numerical simulation in Sec.VI-C performed. Different single-qubit gates have different gate lengths, but the gate
length of the same single-qubit gate is the same for every qubit. The gate lengths of the Identity (Id) gate, U1 gate, U2 gate, and U3 gate, are 113.7778 ns,
0.0 ns, 103.1111 ns, and 206.2222 ns, respectively.

value and do not need the exact probability. Thus, even
though repeated experiments (measurements) are needed for
our quantum DRL algorithm performed on a real quantum
computer, the probabilistic decision rules of choosing the
action corresponding to the highest frequency outcome with a
fixed number of measurements can give better performances
in terms of number of operations, such that the classical
simulation is still not favorable when larger architectures or
qubit numbers are considered.

D. SIMULABILITY ON A CLASSICAL COMPUTER
The hardness of simulability of quantum circuits does not
depend only on the number of qubits, but also on the structure
of the circuit. In the proposed circuit architecture with fixed
number of variational layers, the number of CNOT gates
scales linearly with the number of qubits n. Therefore, the cir-
cuit is not constant-depth. In addition, the circuit includes
quantum gates beyond the Clifford group, meaning that it is
not in the family of Clifford circuits. Thus, it is not obviously
classically simulable when the number of qubits is large. The
hardness of simulability of this model is also worth studying
theoretically.

E. FUTURE WORK: AMPLITUDE ENCODING SCHEME
Unlike the amplitude encoding, the computational basis
encoding has not fully employed the quantum advantages.
Although in a constraint condition of quantum simulators,
we can verify the feasibility of applying quantum circuits
for resolving DRL problems. The related empirical results
suggest that the quantum advantages outperform both tabular
Q-learning and neural network based RL. To obtain the ideal
quantum circuits with significantly fewer parameters, one can
apply amplitude encoding to reduce the complexity of param-
eters as small as poly(logn) in contrast to a standard neural

network with poly(n) parameters. Future work includes an
investigation of applying amplitude encoding scheme tomore
complex input data and variational quantum circuits to solv-
ing more sophisticated problems.

VIII. CONCLUSION
This is the first demonstration of variational quantum cir-
cuits to approximate the deep Q-value function with expe-
rience replay and target network. From the results obtained
from the testing environments we consider, our proposed
framework shows the quantum advantage in terms of less
memory consumption and the reduction of model parame-
ters. Specifically for the considered testing environments in
this paper, the variational quantum deep Q-learning involves
parameters as small as O(n), but the tabular Q-learning and
neural network based deep Q-learning haveO(n3) andO(n2)
parameters, respectively.

APPENDIX
NOISE INFORMATION OF THE IBM Q MACHINES USED IN
THE EXPERIMENTS
A. DEVICE PROPERTIES FOR THE NOISY SIMULATION
In Sec.VI-C, we perform the numerical simulation using the
IBM Qiskit simulator with the noise data downloaded from
the IBM Q 20-qubit machine ibmq-poughkeepsie at
the date 2019-07-28. The qubit relaxation time T1, dephas-
ing time T2 and qubit frequency data are listed in Table 6,
the single-qubit gate error, gate length and readout error data
are in Table 9, and the two-qubit coupling and corresponding
CNOT gate error and gate length data are listed in Table 8.
Note that the IBMQ system service is still under active devel-
opment, meaning that the noise data will change gradually.
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TABLE 10. Single-qubit U1, U2 and U3 gate errors, and readout error data of the 20-qubit machine ibmq-valencia downloaded from the IBM Q system
service at the time when the experiment in Sec.VI-E performed. The gate lengths of the Identity (Id) gate, U1 gate, U2 gate, and U3 gate, are 35.55556 ns,
0.0 ns, 35.55556 ns, and 71.11111 ns, respectively.

TABLE 11. Qubit relaxation time T1, dephasing time T2 and qubit
frequency data of the 5-qubit machine ibmq-valencia downloaded
from the IBM Q system service at the time when the experiment
in Sec.VI-E performed.

The single-qubit gates implemented on the IBMQ systems
are defined through a general single-qubit unitary gate

U (θ, φ, λ) =
(

cos(θ/2) −eiλ sin(θ/2)
−eiφ sin(θ/2) eiλ+iφ cos(θ/2)

)
, (18)

with u1(λ) = U (0, 0, λ), u2(φ, λ) = U (π/2, φ, λ), and
u3(θ, φ, λ) = U (π/2, φ, λ). The single-qubit gates listed
in Table 9 are defined asU1 = u1(π/2),U2 = u2(π/2, π/2),
andU3 = u3(π/2, π/2, π/2), respectively. In reality, theU1
gate is done using a frame change which means it is done in
software (gate time is zero) and thus its gate error is also set
to zero in Table 9.

B. DEVICE PROPERTIES FOR THE QUANTUM INFERENCE
The real IBM Q system we use in the experiments described
in Sec. VI-E is the 5-qubit machine of ibmq-valencia.
The qubit relaxation time T1, dephasing time T2 and qubit
frequency of each qubit are listed in Table 11, the single-
qubit gate error, gate length and readout error data are listed
in Table 10, and the two-qubit coupling and corresponding
CNOT gate error and gate length data are listed in Table 7.
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