
Received July 7, 2020, accepted July 15, 2020, date of publication July 20, 2020, date of current version August 4, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3010543

A Molecular Interactions-Based Social Learning
Particle Swarm Optimization Algorithm
YUN HOU 1, GUO-SHENG HAO2, YONG ZHANG 1, (Member, IEEE),
FENG GU 3, XIA WANG2, AND TING-TING ZHANG2
1School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221008, China
2School of Computer Science and Technology, Jiangsu Normal University, Xuzhou 221116, China
3Department of Computer Science, College of Staten Island, The City University of New York, Staten Island, NY 10314, USA

Corresponding author: Guo-Sheng Hao (hgskd@jsnu.edu.cn)

This work was supported in part by the National Science Foundation of China under Grant 61876185 and Grant 61877030, in part by the
Society Development Foundation of Xuzhou under Grant KC19213, and in part by the Cernet Foundation for Technology Innovation for
Next Generation of Internet under Grant NGII20190513.

ABSTRACT Social learning particle swarm optimization (SL-PSO) allows individuals to learn from others
to improve the scalability with easy parameter settings. However, it still suffers from the poor convergence
for those multi-modal problems due to the loss of swarm diversity. To improve both the diversity and the
convergence, this paper proposes a novel algorithm to apply the mechanism of molecular interactions to
SL-PSO, in which the molecular attraction aims to improve the convergence, and the molecular repulsion
intends to enhance the diversity. In the experiments, we compare our algorithm with the SL-PSO algorithm
and other representative PSO and evolutionary algorithms on 49 benchmark functions. The results show the
performance of the proposed algorithm is better than that of the SL-PSO algorithm and other representative
PSO and evolutionary algorithms on average. This work builds the solid foundation for the integration of
the molecular interaction mechanism with PSO and other optimization algorithms.

INDEX TERMS Convergence, diversity, learning, molecular interactions, particle swarm optimization.

I. INTRODUCTION
Particle swarm optimization (PSO) is a computational
method that seeks the optima of a problem by iteratively
updating of particles’ positions. PSO was proposed by
Kennedy and Eberhart in 1995 [1], [2] to simulate social
behaviors, representing the movement in a bird flock or fish
school. Due to few or no assumptions about the optimization
problems, PSO has been widely applied in many fields, such
as power systems [3], [4], image processing [5]–[7], and
motor parameter settings [8], [9].

Social Learning PSO (SL-PSO) [10] was proposed by
Cheng and Jin in 2015. SL-PSO introduced the learning
strategy that imitated behaviors in social learning to tra-
ditional PSO to gain the advantages of high convergence
speed and strong optimization ability. SL-PSO performs well
in low dimensional problems and has promising results for
high dimensional problems. However, due to the inability
to effectively balance the convergence and diversity of pop-
ulation, SL-PSO has some limitations in the optimization
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of complex functions. For example, the optimization results
are often not ideal for some multi-modal problems of
ill-condition.

Molecular interactions include attractive and repulsive
forces between molecules, and help scientists understand a
molecular function and its behavior in different areas includ-
ing protein folding [11], [12], drug design [13], [14], volt-
age sensors [15], [16], and nanotechnology [17]. However,
molecular interactions have only few applications in swarm
intelligence. In the limited work, we are aware that the repul-
sion is generally used to increase the population diversity
while the attraction is used to increase the population conver-
gence. Studies have different focuses, such as the diversity
among population [18] and the diversity and convergence
equilibrium among the particle swarms [19].

In PSO, the tradeoff between the convergence and the
diversity needs to be balanced. We introduce the molecular
interactions into SL-PSO in this paper to control the distri-
butions of particles in the search space. The contributions of
this paper lie in four folds below. Firstly, we apply the con-
cept of molecular interactions including attractive forces and
repulsive forces to SL-PSO to improve both the convergence
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and the diversity of particles. Secondly, we propose the new
position update strategy by predefining a threshold to con-
trol the convergence speed using attractive forces and cali-
brate the threshold for given optimization problems. Thirdly,
we calculate the repulsive force according to the collision of
elastic objects to improve the diversity of particles to update
their positions, and add the initialization policy to avoid pre-
mature convergence. Finally, we test our proposed algorithm
on different optimized benchmark functions and compare
with SL-PSO and other representative PSO and evolutionary
algorithms to show its effectiveness.

The rest of the paper is organized as follows. Section 2
introduces the related work. Then the basics of the con-
ventional PSO algorithm and the SL-PSO algorithm are
described in Section 3. Section 4 presents the SL-PSO algo-
rithm based on molecular interactions, analyzes its time
complexity, and justifies its convergence. The experiments
and results are presented in Section 5. Section 6 gives the
discussions about some related issues. Finally, this paper is
concluded in Section 7.

II. RELATED WORK
A. SOME PSO VARIANTS
One of the most important problems in the traditional PSO
algorithm is the premature convergence when the particles
are trapped in a local optimal and the particles’ velocities tend
to be zero. Many modifications have been recently proposed
to improve the performance and overcome the disadvantages
of the PSO algorithm. For example, Mendes et al. [20] pro-
posed an efficient and simple PSO algorithm called fully
informed particle swarm (FIPS), which used all the infor-
mation of the particle neighborhood to adjust its movement
velocity. Liang et al. [21] proposed a comprehensive learn-
ing PSO (CLPSO) with a new effective learning strategy,
with which particles updated each decision variable by learn-
ing from different historical local best positions. Orthog-
onal learning was introduced in PSO by Zhan et al. [22]
to learn from both global and local orthogonal directions.
Chen et al. [23] presented an organizational dynamic adjust-
ment PSO based particle filter algorithm, which allowed the
particles to be adaptive to the dynamic environment and
reach the new global optimum. Jin et al. [24] combined PSO
with the gradient method to avoid premature convergence.
Du et al. [25] presented a particle swarm optimization with
limited information called LIPSO, in which particles are
influenced by the top individuals of the population sorted by
performance. Niu et al. [26] proposed a new variant of PSO,
in which particles not only exchange social experience with
others that are from their own sub-swarms, but also are
influenced by the experience of particles from other fellow
sub-swarms, named Symbiosis-based Alternative Learning
Multi-swarm Particle Swarm Optimization. Yang et al. [27]
proposed a level-based learning swarm optimizer to set-
tle large-scale optimization, which separates particles into
a number of levels according to their fitness values and

randomly selects two predominant particles from two differ-
ent higher levels in the current swarm to guide the learning of
particles.

In addition to abovementioned algorithms, some other
improved PSO algorithms include adaptive PSO based on
clustering [28], a memetic PSO for dynamic multi-modal
optimization [29], developmental swarm intelligence in
PSO [30], parasitic behavior integrated PSO [31], genetic
learning embedded PSO [32], diversity purposed neigh-
borhood search enforced PSO [33], biogeography learning
based PSO [34], a generalized theoretical deterministicmodel
based PSO [35], parallel implementation based multi-swarm
PSO [36], adaptive time-varying topology connectivity based
PSO [37], jumping time-varying acceleration coefficients
incorporated PSO [38], the global best-guided PSO [39],
the inter swarm interactive learning strategy PSO [40], and
the PSO with dual-level task allocation [41]. Although these
variants of PSO algorithms improve the performance, they
also suffer from the burden of the multi-parameter settings.
For the purpose of easy parameters setting and the per-
formance enhancement, social learning PSO was proposed,
in which each particle learns from one of the better particles
in the current swarm and only one dimension-dependent
parameter control method is applied [10]. However, it still
may suffer from the tradeoff between the diversity and the
convergence.

B. SOME REPULSIVE-ATTRACTIVE ALGORITHMS
Molecular interactions, a ubiquitous physical phenomenon,
have inspired many researchers to apply the concepts in
different applications, such as medical treatment, materials,
sensors and so on. Zandevakili et al. [19] proposed the grav-
itational search algorithm (GSA) by using centrifugal force,
which was called as the repulsion. A distance threshold value
was used, beyond which the repulsion worked according to
the gravity formula. Although it used both the gravity and the
centrifugal force, it has not been applied to PSO algorithms.
In addition, it suffers from high time complexity and compli-
cated parameter settings.

Krink et al. [42] first proposed an attractive-repulsive
framework, in which, the particle velocity update based on
the repulsive mechanism was contrary to traditional PSO.
The diversity was calculated at each iteration and used to
switch between the attractive and the repulsive phases. When
the diversity fell below a certain threshold value, the swarm
switched to the repulsion phase to increase its diversity.
When the diversity exceeded the threshold value, the swarm
switched to the attractive phase, the particles had a normal
behavior, and the swarm tended to converge again. However,
it simply used the learning as the attractive force and the
collision as the repulsive force. Therefore, the update strategy
of positions was simple and the improvement of the perfor-
mance was limited. Its related applications can be referred
to [43], [44].

Mo et al. [45] presented another attractive and repulsive
fully informed PSO. In their study, the attraction meant
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learning from particles with better fitness around them, and
the repulsion referred to moving away from particles with
the worse fitness. However, the attraction and the repulsion
were only conceptually proposed and used. Blackwell and
Branke [18] introduced the repulsive force to the dynamic
multi-swarms, which focused on the dynamic multi-peak
optimization problem. The repulsion mechanism was added
to ensure the optimal solution tracked only by one swarm that
repulsed other swarm for more peaks, but the attractive force
was not used.

III. BASICS OF PSO AND SL-PSO
In the canonical PSO, each solution is regarded as a point
in the search space, called a ‘‘particle’’. Each particle has
the fitness determined according to the optimization prob-
lems. There is a velocity property for each particle, and it
is dynamically updated according to the flying experience
of the particles and the population. In each generation, each
particle follows two other particles. The first one is its own
historical optimal particle, called the personal optimal and
labeled as Pbest. The second one is the optimal particle that
the entire population has found so far, called the global best
position and denoted as Gbest. Particles update their statuses
according to the following formulas as shown in Equation (1)
and Equation (2).

Vi,j (t + 1) = w · Vi,j (t)+ c1 · r1 · (Pbesti,j(t)

−Xi,j(t))+ c2 · r2 · (Gbestj(t)− Xi,j(t)) (1)

Xi,j (t + 1) = Xi,j (t)+ Vi,j (t + 1) (2)

where j = 1, 2, . . ., D, represents the dimension; i = 1, 2,
. . ., m, represents the particle; Xi,j represents the positions
for the jth dimension of the ith particle; Vi,j represents the
velocity of the jth dimension of the ith particle; r1 and r2 are
random values uniformly distributed in [0,1]; c1 and c2 are
the acceleration coefficients; and w is the inertia weight used
to balance between flight inertia and changing momentum.

SL-PSO is inspired by social learning behaviors, which
apply the learning behavior of ‘‘imitation’’ to PSO algo-
rithms. The SL-PSO algorithm changes the selection mecha-
nism of the canonical PSO, in which particles select Gbest
and Pbest to learn, while in SL-PSO, the poor particles
(called as imitators) learn from good particles (called as
demonstrators).

The SL-PSO algorithm includes three components, namely
fitness evaluation, swarm sorting, and behavior learning.
Firstly, we calculate the fitness of each particle to sort the
population. In the sorted population, the ith particle learns
from the kth particle who dominates it according to the
fitness. So the kth demonstrator is randomly selected from
the (i+1)th to mth particles in the sorted population as the
learning object. In each generation, a particle maybe acts as
a demonstrator for different imitators more than once. The
specific formula is shown in Equation (3).

Xi,j (t + 1) =

{
Xi,j (t)+1Xi,j (t + 1) , if pi(t) ≤ pLi
Xi,j (t) , otherwise

(3)

where Xi,j (t+1) is the particle behavior modification, which
is composed of three components, the inertial component, the
imitation component, and the social influence component as
shown in Equation (4), where Xi,j (t) is the inertial component
same as that in the canonical PSO; Ii,j (t) is the imitation
component aiming to learn from demonstrators in the current
swarm as shown in Equation (5);Ci,j (t) is the social influence
component whose purpose is to learn from the collective
behavior of the swarm as shown in Equation (6); pLi is the
learning probability as shown in Equation (7); and r1, r2, r3
are random values within (0,1). In Equation (5), k ∈ (i+1,m)
is the particle sequence of the demonstrator. In Equation (6),
Xj (t) is the mean position and calculated according to Equa-
tion (8). In Equation (7), M is the base swarm size, n is the
dimension, α is a constant, empirically, α = 0.5.

1Xi,j (t + 1) = r1(t) ·1Xi,j (t)+ r2(t) · Ii,j (t)

+r3(t) · ε · Ci,j (t) (4)

Ii,j (t) = Xk,j (t)− Xi,j (t) (5)

Ci,j (t) = Xj (t)− Xi,j (t) (6)

pLi = (1−
i− 1
m

)α·log(d
n
M e) (7)

Xj (t) =

∑m
i=1 Xi,j
m

(8)

In each iteration of PSO, the swarm go through three compo-
nents including fitness evaluation, swarm sorting, and behav-
ior learning to evolve to the next iteration until the satisfactory
results are achieved. The SL-PSO algorithm abandons the
mechanism of saving Pbest and instead uses the demon-
strator as the learning object. Therefore, the complexity of
the algorithm is reduced, and the value of the acceleration
factor does not need to be considered. Although the algo-
rithm is simple and applicable, it can still be improved for
the following reasons: (1) The exchange of spatial informa-
tion between particles, especially the communication of the
distance information between particles, is not considered;
(2) During the process of the particle evolution, particles learn
from a random better particle in each iteration, resulting in
slow convergence. Therefore, the SL-PSO algorithm is suit-
able for uni-modal functions, and for complex multi-modal
functions, its performance is not competitive.

IV. MOLECULAR INTERACTION BASED
SL-PSO (MISL-PSO)
This section introduces the main idea of this paper and the
improvement strategies in detail of molecular interactions
based SL-PSO (MISL-PSO). Its time complexity and conver-
gence are also analyzed.

A. FRAMEWORK OF MISL-PSO
Learning plays an important role in PSO.Humans, at different
ages, learn in various ways. It is reported that children learn
by imitation. Then imitative learning gives way to the condi-
tional learning when children grow up. With the conditional
learning, one can quickly master a series of social knowledge
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FIGURE 1. Flowchart of the Proposed MISL-PSO.

and skills [46]–[48]. The SL-PSO algorithm mainly uses the
imitation learning to improve the selection mechanism of the
algorithm. However, the blind imitation will reduce the diver-
sity of the population, resulting in the decline of the ability to
jump out from the local optimum. Therefore, we consider the
conditional learning and set up the information interaction
mechanism to make feedbacks among particles to balance
the diversity and convergence. The conditional learning [10]
is characterized by adding conditional restrictions within a
certain range. It can be used for avoiding premature by pre-
venting particles from agglomerating, which helps control the
diversity of population.

In order to balance the tradeoff between the convergence
and the diversity of PSO, we introduce a molecular force
field, bywhich there are always repulsive forces and attractive
forces. With repulsive forces, the molecules move away from
each other after collisions when they fall into the repelling
radius. And when out of this radius, the attraction force takes
effect. Through this mechanism, when there is no other exter-
nal forces, large-scale aggregation or diffusion of particles
will be prevented.

We put forward molecular interactions based PSO by
introducing the attraction and repulsion to balance the
convergence and the diversity. The implementation of our
algorithm is based on the SL-PSO framework. Fig. 1 shows
the flowchart of the MISL-PSO algorithm. From the figure,
we can see there are five steps in the MISL-PSO algorithm:
(1) calculating the fitness of each particle; (2) sorting the
particles according to their fitness values; (3) comparing the
distances among particles; (4) applying attractive operations

or repulsive operations according to the distance; (5) finally,
executing the initialization strategy based on the total fitness
value.

The MISL-PSO algorithm takes advantage of molecular
interaction forces to adjust the position of particles to achieve
a balance between the convergence and the diversity. For this
goal, three key issues need to be studied: (1) the determi-
nation of the range of the particle interaction fields; (2) the
determination of attraction forces between particles; (3) the
determination of repulsion forces between particles.

B. THE RANGE OF PARTICLE INTERACTION FIELDS
In the PSO algorithm, most particles distribute near the local
optimal and the global optimal. Once particles aggregate,
it is difficult to disperse without the external forces, which
results in the decline of the exploration ability. To this end,
it is necessary to consider the adjustment of their positions
by particles interactions carried out by the attraction and the
repulsion. The first thing is to determine the distance range for
the trigger of interaction. Euclidean distance is considered for
particles Xi and Xj as shown in Equation (9).

dis(Xi,Xj) =
∥∥Xi − Xj∥∥ = √∑

k

(Xi,k − Xj,k )2 (9)

Based on this distance of particles, we can determine the
force field range with a radius R. When the distance between
two particles falls in the range, a repulsive action will be
trigged and the force brings the change of both the direc-
tion and the position, which thereby increases the diversity.
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Empirically, the force field decreases too quickly, so that
diversity cannot be maintained; if the range of force field
changes too slowly, the algorithm will fail to converge and
skip the optimal solution. Considering the linear relationship
between the convergence speed and the time, the size of the
force field will also decrease linearly with the time, as shown
in Equation (10).R = U − U ·

t
0.5 · Tmax

, t ≤ 0.5 · Tmax

R = 0, t > 0.5 · Tmax

(10)

where t is the current number of iterations; Tmax is the speci-
fiedmaximum number of iterations.When t is 0, R reaches its
maximum valueU ; when t is 0.5Tmax , R reaches its minimum
value 0. When t > 0.5Tmax , the force field is 0, there is
no repulsion. However, at this stage, when the total fitness
of the swarm is not changing, we use the re-initialization
strategy. The process of the intermolecular interaction can be
viewed as an optimization of the rearrangement of molecules
in the expectation of less energy. Therefore, this paper adds
an initialization strategy based on fitness changes. According
to the idea of the nature of molecular forces, we initialize all
but the optimal particles of the particle swarm when the total
potential energy or the total fitness, is not changing. This is a
repulsive strategy based on the fitness change.
U is defined as the maximum collision distance in the

solution space, which is related to the boundary range of
the function. Suppose that the kth dimension of the search
space has its upper value ubk and a lower value lbk , then we
formulate U as shown in Equation (11).

U = max
k

ubk − lbk
m

, k = 1, 2, · · · , n (11)

where n is the number of dimension of the search space.

C. ATTRACTION BETWEEN PARTICLES
There is the attractive force among particles. The value of the
attractive force is not only related with the distance but also
with the fitness: its value increases with the decrease of the
distance and increases with the fitness of the particles, which
ensures the learning from better particles.

In the SL-PSO algorithm, the imitated objects are ran-
domly selected from better demonstrators. However, the ran-
dom selection does not identify which one is better, and
the blindly optimal learning will quickly fall into the local
optimum which reduces the diversity of the population.
Therefore, we consider the attractive forces among particles.
A fixed attraction probability pk is used. When the random
value is less than pk , the random imitation learning behavior
is performed, otherwise, the best particle m is treated as the
learnt object. This can be formulated as Equation (12).

Xi,j (t + 1) = Xi,j(t)+1Xi,j(t + 1)

1Xi,j(t + 1) =

{
Xm,j(t)− Xi,j(t), r > pk
Xk,j(t)− Xi,j(t), r < pk

(12)

where particle k is the selected imitator. The algorithm for
particles attraction is given in Table 1.

TABLE 1. Particle attraction algorithm.

D. REPULSION BETWEEN PARTICLES
The repulsive force between molecules can be ignored if their
distances exceed a certain threshold. Otherwise, molecules
will make a collision, repulse and rebound. The way to
bounce determines whether the diversity of population has
been increased and whether the search space can be more
effectively explored.

We consider the repulsive force between particles from
two aspects: (1) Consider a wide range of bounces for some
particles to move far, therefore to improve the diversity of
the population. (2) Consider a small range of bounces for
other particles to avoid destroying the convergence of the
algorithm itself. The value of the repulsive force is calculated
as follows. When particles i and j collide with each other,
particle iwith dominated fitness performs a small range shock
on particle j with the dominating fitness. Thus, the position
update range of particle i is smaller than that of particle j,
taking both exploitation and exploration into consideration.
This is formulated as Equations (13) and (14).

Xi,k (t + 1) = −r5 · Xi,k (t)− r6 ·1Xi,k (t + 1) (13)

Xj,k (t + 1) = r6 · Xj,k (t)− r5 ·1Xj,k (t + 1) (14)

where r5 and r6 are random values in (0,1) and k stands for the
dimension. It is noted that Equation (12) and Equation (13)
are the improvements on Equation (3) according to molecular
repulsion. Where Xi,k (t + 1) and Xj,k (t + 1) are the particle
behavior modification, as is shown in Equation (4).

FIGURE 2. Particle Repulsion Process.

To better understand the collision motion of particles,
Fig. 2 shows the molecular collision rebound, where a and b
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are two moving molecules. The collision occurs when their
distance reaches the threshold of the repulsive rebound.
In Fig. 2, a’ and b’ are the positions after the collision.

Fig. 2 shows the actual physical repulsion process. On this
basis, this paper proposes an exclusion strategy. Considering
that the PSO algorithm is a process of random search, random
factors are added to Equations (12) and (13) to better realize
the process of exploration and exploitation.

E. MISL-PSO ALGORITHM
The algorithm consists of two steps. The first step is to
initialize the particle population and define the operator
parameters. The second step is to perform iterative learn-
ing. First, the swarm is sorted according to the fitness, then
the Euclidean distance is calculated to determine whether
the attraction strategy shown in Equation (12) or the exclu-
sion strategy shown in Equation (13) and Equation (14) is
implemented. Table 2 shows the details of the MISL-PSO
algorithm.

TABLE 2. MISL-PSO algorithm.

F. CONVERGENCE AND TIME COMPLEXITY ANALYSIS
Cheng and Jin [10] had given the proof of convergence for
the SL-PSO algorithm. Based on the SL-PSO algorithm, the
attractive mechanism in our algorithm accelerates the con-
vergence, and the repulsive mechanism is included to keep

the diversity. Therefore, we take the attractive and repulsive
mechanism in the analysis based on Cheng and Jin’s proof for
the convergence.

The update method of performing the random imitation
learning behavior is the same as that in the SL-PSO algorithm.
When learning from the optimal particle under a certain prob-
ability, we replace the random numbers r1, r2, and r3, with
their mathematical-expected value 0.5, and then Equation (4)
can be rewritten as Equation (15).

1Xi,j (t + 1) = 0.5 ·1Xi,j (t)+ 0.5 · (Xm,j (t)

−Xi,j (t))+ 0.5 · ε · (Xj (t)− Xi,j (t)) (15)

Compared with [10], it is equivalent to turning particle Xk in
Equation (12) into particle Xm in Equation (11), and the proof
is similar. Therefore, it can be concluded that the process
must converge. So, MISL-PSO can converge to the global
optima.

MISL-PSO mainly contains 4 components: the fitness
calculation, the group sorting, the attraction and repul-
sion mechanism, and learning behaviors. According to [10],
the complexity of the fitness assessment stage is different due
to various optimization problems, so we do not consider the
optimized problem factor here. In the fitness ranking stage,
the time complexity is Ts = O(m2), which is for the fitness
ranking stage, and m is the population size. In the learning
behavior stage, the time complexity is Tb = O(mn), which is
for the learning behavior stage, m is the population size, and
n is the decision variables’ dimension.
Now let’s consider the attraction and repulsion stages.

The model of the attraction mechanism is relatively simple,
in which only one judgment is added. Compared to SL-PSO,
our method doesn’t adopt the random selection when learning
from the optimal particles, and the time complexity of the two
algorithms can be considered as the same.

There are two main steps in the repulsion stage: (1) calcu-
lation of Euclidean distance, which is related to the number of
particles m; (2) update the position of the repulsive behavior,
which is related tom and the dimension n. Therefore, the time
complexity of our method is shown in Equation (16).

T = O( 12 · m · (m− 1)+ m · n)+ O(m2)+ O(mn) (16)

V. EXPERIMENTS AND RESULTS
In order to examine the performance of MISL-PSO,
the experiments mainly consider two kinds of optimization
functions, low-dimensional functions and high-dimensional
functions. For the comparison of the performance, an overall
ranking evaluation method is given. The best performance
is highlighted in bold. According to the t-test (significance
level α = 0.05) among MISL-PSO and state-of-the-art evo-
lutionary algorithms, the signals of ‘ 1 ’ ‘ −1 ’ and ‘ 0 ’
in the last column for each function indicate whether or not
MISL-PSO performs significantly better, significantly worse,
or comparably in comparing with its competitors. All the
results are in 30 independent runs.
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A. ALGORITHMS AND BENCHMARK FUNCTIONS
Except for the MISL-PSO algorithm, the SL-PSO algorithm
and the AR-GSA algorithm, a state-of-the-art PSO variant
is selected for the comparison, which uses ring topology
and elitist learning as non-greedy strategies in place of the
traditional update method based on Gbest and Pbest, called
the elitist learning PSO algorithm with scaling mutation and
ring topology(LSERPSO) [49]. These algorithms are classic
and excellent algorithms that have been verified by experi-
ments, and have excellent performance on low-dimensional
and high-dimensional multi-modal problems. For the conve-
nience of comparisons, we use the same parameters settings
in [10] for the SL-PSO. Besides, the population size and
the maximum number of fitness evaluations are set to the
same value for all algorithms. Other parameters are set as the
recommendation references.

Totally 49 benchmark functions are applied in this
work. Among them, 42 low-dimensional functions and
7 high-dimensional complex functions are included. These
42 low-dimensional functions are composed of 12 pop-
ular benchmarks and 30 benchmarks from CEC’17 [50]
function set. Besides, 7 high-dimensional functions include
CEC’08 [51] on large-scale complex optimization problems.
The optima fitness for all of these benchmark functions is 0.
In the following tests, 12 low-dimensional benchmark prob-
lems with dimension 30 are verified firstly, and then followed
by 30 low-dimensional functions with dimension 50. Finally,
7 high-dimensional functions with dimensions of 100, 500,
and 1,000 respectively are included.

B. LOW-DIMENSIONAL BENCHMARK FUNCTIONS
For the 42 low-dimensional functions, we label the 12 popular
benchmarks from f 1 to f 12, among which, f 1 to f 5 are
single-modal functions, f 6 is a discontinuous step function,
and f 7 to f 12 are multi-modal functions. The expressions and
ranges of the 12 benchmark functions are described in details
in [10]. TheMISL-PSO algorithm, the SL-PSO algorithm and
the above 2 algorithms were run for f 1 ∼ f 12.
These 12 functions have no operations such as rotations

and translations. Experiments show that the performance of
MISL-PSO is significantly improved compared with other
algorithms. As showed in Table 3, in addition to f 5, f 7, f 8,
f 10, and f 11, the results of other test functions are signifi-
cantly improved. Because of the attractive force, the results
of this algorithm will not be worse than the original algo-
rithm. For each algorithm, the average value is represented
by ‘‘mean’’ and the variance is represented by ‘‘std’’. In order
to further justify the above conclusion, the convergence pro-
files of one typical uni-modal function f 3 and one typical
multi-modal function f 9 are plotted in Fig. 3.

It can be seen from Table 3 and Fig. 3 that the performance
of the proposed algorithm is significantly improved on the
12 low-dimensional benchmark functions. For the uni-modal
problems f 1 ∼ f 8 and f 11, the MISL-PSO algorithm gains
improvements compared with the SL-PSO algorithm. For the

FIGURE 3. The Convergence Profiles.

multi-modal functions f 9, f 10, and f 12, great improvements
have also been made.

In order to further compare the performance of
the MISL-PSO algorithm with SL-PSO, AR-GSA and
LSERPSO algorithms, 30 test functions from the CEC’17
functions set are selected. Among them, f 13 ∼ f 15 are
unimodal functions; f 16∼ f 22 are simple multi-modal func-
tions; f 23∼ f 32 are hybrid functions; f 33∼ f 40 are compo-
sition functions. The result is shown in Table 4. It can be seen
that the proposed algorithm outperforms other algorithms
on f 14 ∼ f 16, f 21, f 23 ∼ f 27, f 29 ∼ f 31 and f 41, f 42,
while the improvement on the other optimization problems
is not obvious. We give the reasons as follows: (1) Most
of CEC’17 benchmark functions are composition functions
with rotation and translation operations. For composition
functions, the algorithm doesn’t have obvious advantages
due to its learning strategy. (2) The proposed algorithm tries
to make it out of local optimization as much as possible
and strengthen local search. However, because the repulsion
is randomly carried out, and the algorithm improvement is
decoupled from the dimension, so the effect is not obvious.

For test functions of f23 ∼ f32, as shown in Table 4 and
Fig. 4, MISL-PSO has achieved new improvements. It can
be seen that the performance of the MISL-PSO algorithm on
the hybrid test functions is beyond expectation. Therefore,
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TABLE 3. Results on Test Functions f1 ∼ f12 (D = 30).

we can say that the molecular interaction mechanism can not
only improve the performance of the SL-PSO algorithm, but
also show well performance on those optimization functions
that SL-PSO cannot well deal with.

In order to compare the performance of the algorithms
more comprehensively, the average time for each algorithm
to run all test functions in different dimensions is plotted
in Fig. 5, where the vertical coordinate is the average running
time in seconds. It can be seen that the running time of the
SL-PSO is the shortest, and that of the MISL-PSO is in
the middle position. For problems with the dimension 30,
although the time complexity of the MISL-PSO algorithm
increases, its time is not very long. What’s more, the optima
it gains is better than other algorithms, as shown in Table 3.
While for the problems with the dimension 50, the difference
between the running time of the MISL-PSO algorithm and
the SL-PSO algorithm is small and the improvement is also
obvious, as shown in Table 4.

Besides, in order to obtain better algorithm performance,
we have carried out an experimental test on the probabil-
ity parameter pk . Four representative functional problems
are selected, including a low-dimensional uni-modal prob-
lem f 8, a low-dimensional simple multi-modal problem
f 20, a low-dimensional complex rotation problem f 35,
and a high-dimensional complex combination function prob-
lem f 45.The results are shown in Fig. 6. In the figure,
the algorithm works best when pk = 0.9. Besides, it can
be seen from the experiment that this parameter is not sen-
sitive to problems, which increases the availability of the
framework.

C. HIGH-DIMENSIONAL TEST FUNCTIONS
In order to further test the performance of the improved
algorithm on high-dimensional functions, we use the 7 high-
dimensional test functions proposed on CEC’08. Table 5

shows the test results when the dimension is 100, 500, and
1,000 respectively. From the table, we can see that for the
dimension of 100, MISL-PSO performs better than SL-PSO
for all the functions. When the dimension increases to 500,
the performance of MLSI-PSO is better than SL-PSO for
four out of seven functions. After the dimension reaches
1,000, the average fitness values of MISL-PSO is better
than those of SL-PSO for five of seven functions. Therefore,
MISL-PSO perform better than SL-PSO for most of seven
high-dimensional functions.

D. AVERAGE RANK
In this section, we compare the performance of each algo-
rithm. For f 1∼ f 12 functions, Fig. 7 shows the Friedman test
chart at a significance level of 0.05, in which the horizontal
axis is the average sequence value, and the vertical axis is
displayed for each algorithm used in this article. The abscissa
corresponding to ‘‘∗’’ is the average sequence value of the
corresponding algorithm; the line segment centered on ‘‘∗’’
represents the length of the critical value domain CD. If the
line segments corresponding to the two algorithms do not
overlap, it indicates that the two algorithms are significantly
different, and the algorithm with a small average order value
is significantly better than the algorithm with a large average
order value. If the line segments corresponding to the two
algorithms overlap, then there is no significant difference.
We do the same ranking and average sequence value cal-
culations for 30 low-dimensional functions with the dimen-
sion 50 too as shown in Fig. 8. From Fig. 9, we know that
MISL-PSO has the first average rank for all the scenarios in
low-dimensional functions. What’s more, we can see from
Fig. 8 and Fig. 9 that MISL-PSO is significantly better than
other algorithms.

For the 7 high-dimensional functions, we calculate their
average value for each function. Then we use Friedman test
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TABLE 4. Results on Test Functions of CEC’17 (D = 50).

(significance level α = 0.05) to compare the correlation
betweenMISL-PSO and SL-PSO as shown in Fig. 9. It can be
seen that the ranking of MISL-PSO is also the better. In con-
clusion, compared with other algorithms, the performance of
MISL-PSO has been greatly improved.

VI. DISCUSSIONS
In this paper, we apply the molecular interaction mechanism
into SL-PSO to improve the performance. The experimen-
tal results show that the proposed MISL-PSO outperforms
SL-PSO, the classical PSO algorithms, and other represen-
tative evolutionary algorithms. Below we discuss the related
issues in this work.

Although the similar mechanism has been applied to the
traditional PSO algorithm, it only uses simple concepts of

the attractive force and the repulsive force, in which the
attractive force is the learning from other particles in PSO,
and the repulsive force represents moving away from worse
particles. They lack of the real integration of molecular con-
cepts and calculation into PSO. In our work, we integrate
the molecular mechanism including the attractive force and
the repulsive force into SL-PSO. The attractive force is more
flexible since particles learn from better particles or the global
optimal according to the predefined threshold. This prevents
the premature problem. The repulsive force is decided by the
physical distance between particles, and the dominating par-
ticle has less shock than the dominated particle, thus to keep
the diversity of particles. The introduction and integration of
the attractive force and the repulsive force guarantee both the
convergence and the diversity.
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FIGURE 4. Results of MISL-PSO and SL-PSO on Functions f13, f22, f23, and f29.

TABLE 5. Test results at the CEC ’08 function with a dimension of 100, 500, 1,000.

SL-PSO improves the traditional PSO by learning bet-
ter particles instead of the local and global optima for

easy parameter settings and improved performance. In this
paper, based on SL-PSO, we introduce the molecular
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FIGURE 5. Average running time.

mechanism into SL-PSO to further improve the performance
by enhancing both of the convergence and the diversity. The
results show the proposed MLSL-PSO performs better than
SL-PSO and most of other algorithms for all the compared
low-dimensional functions. However, for high-dimensional
functions, MLSL-PSO also has better performance than
SL-PSO in general and has comparable performance to most
of other algorithms. If we consider the overall performance by
the overall score, MLSL-PSO achieves the best performance.

In the paper, we analyze the time complexity of the pro-
posed MLSL-PSO algorithm and it has the same complexity
as the SL-PSO algorithm. The experimental results show
that the time consumption is comparable to the SL-PSO
algorithm and especially when the dimension increases. This
is consistent to our analysis. Therefore, the proposed algo-
rithm improves the SL-PSO algorithm without significant

computational costs. We will convey this issue in our further
work.

In the attractive force, we decide the particles learn from
better ones or the global optima by the threshold. Therefore,
the threshold is an important factor for the performance.
An inappropriate choice of the threshold will lead to the
loss of the diversity or divergence. To achieve the balance of
the diversity and the convergence, we calibrate the threshold
using experiments. It has been shown that 0.9 is the best
choice for the chosen bench functions with four different
types of problems. In other functions, we use the calibrated
threshold of 0.9. However, the choice of threshold may be
different for various functions and applications. We will sys-
temically study this for different types of problems in our
future work.

In the repulsive force, the force field range is used to
decide when particles should collide. The force field range
decreases with the increase the number of iterations. We have
done this to improve the exploitation.When they collide, they
don’t follow the rule of the physical collision of two objects.
We set up two random values to control the speed and the
direction noises, thus to increase both the exploration and the
exploitation. Therefore, in both the attractive force and the
repulsive force, we intend to achieve both of the convergence
and the diversity.

This work integrates the molecular mechanism into
SL-PSO and it is a framework to apply promising technolo-
gies into PSO. Although we applied the attractive force and

FIGURE 6. Tests on the Probability Parameter pk.

VOLUME 8, 2020 135671



Y. Hou et al.: Molecular Interactions-Based SL-PSO Algorithm

FIGURE 7. Friedman test of f 1 ∼ f 12 functions at significance level
of 0.05.

FIGURE 8. Friedman test of f 13 ∼ f 42 functions at significance level
of 0.05.

FIGURE 9. Friedman test of low dimension functions at significance level
of 0.05.

the repulsive force into SL-PSO in this work, we can apply
them into any other PSO algorithms and other evolutionary
algorithms. This will enhance both of the diversity and the
convergence. We choose SL-PSO since its overall perfor-
mance is promising. We will investigate the combination and
integration of the molecular mechanism into other improved
swarm optimization algorithms in the future.

FIGURE 10. Friedman test of high dimension functions at significance
level of 0.05.

VII. CONCLUSIONS AND FUTURE WORK
This paper introduces the molecular interaction into PSO
to balance the convergence and diversity of the algorithm.
Two operations simulating molecular forces are added to
SL-PSO, the attractive operation and the repulsive opera-
tion. From various aspects, it is verified that the proposed
algorithm outperforms most of the popular algorithms. The
improved algorithm has better performance in dealing with
low-dimensional problems and comparable performance for
higher-dimensional complex problems. It also proves that the
molecular interaction mechanism plays a key role in improv-
ing the optimization ability.

The molecular interaction mechanism is only a conditional
learning method, and its time complexity is not obviously
high. However, when this mechanism is combined with the
algorithm, it can bring improvement without destroying the
performance of the original algorithm. The further work to
be carried out mainly includes: (1) Use new indicators, espe-
cially the domination landscape theory [52] to reduce the time
complexity of the algorithm without losing the accuracy of
control, (2) Construct a more efficient and concise attrac-
tive and repulsive operation framework applicable for most
swarm algorithms to improve their performance.
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