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ABSTRACT Human Activity Recognition (HAR) has been attracting significant research attention because
of the increasing availability of environmental and wearable sensors for collecting HAR data. In recent
years, deep learning approaches have demonstrated a great success due to their ability to model complex
systems. However, these models are often evaluated on the same subjects as those used to train the model;
thus, the provided accuracy estimates do not pertain to new subjects. Occasionally, one or a few subjects
are selected for the evaluation, but such estimates highly depend on the subjects selected for the evaluation.
Consequently, this paper examines how well different machine learning architectures make generalizations
based on a new subject(s) by using Leave-One-Subject-Out Cross-Validation (LOSOCV). Changing the
subject used for the evaluation in each fold of the cross-validation, LOSOCV provides subject-independent
estimate of the performance for new subjects. Six feed forward and convolutional neural network (CNN)
architectures as well as four pre-processing scenarios have been considered. Results show that CNN
architecture with two convolutions and one-dimensional filter accompanied by a sliding window and vector
magnitude, generalizes better than other architectures. For the sameCNN, the accuracy improves from 85.1%
when evaluated with LOSOCV to 99.85% when evaluated with the traditional 10-fold cross-validation,
demonstrating the importance of using LOSOCV for the evaluation.

INDEX TERMS Deep neural networks, human activity recognition, model selection, convolutional neural
networks, feed forward neural networks, model evaluation, wearable sensor, leave-one-subject-out.

I. INTRODUCTION
Human activity recognition (HAR) aims to detect, identify,
and interpret human activities employing signals received
from the environment or from wearable sensors [1]. There
is a wide area of HAR applications including health
monitoring [2], ambient assisted living [3], and targeted
advertising [4]. Intraclass variability, interclass similarity, and
null-class dominance make HAR a difficult classification
task [5]–[7]. Intraclass variability refers to variations of the
same activity (e.g., walking) among different people or even
for the same person in different recording sessions, while
interclass similarity indicates similarity between different

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhanpeng Jin .

activities such as jogging and running. As large parts of the
data are not labeled or do not contain relevant activities, null-
class is dominant, which limits how usable the data is for
modelling [7].

There are two main categories of HAR approaches based
on the type of data used for recognition: vision-based and
sensor-based. Vision-based approaches require installation
of cameras; therefore, these systems are limited in terms of
the size and condition of the monitored space and raises
concerns around intrusiveness and privacy. On the other
hand, advances in sensor technology have enabled HAR with
wearable devices and decoupled activity monitoring from the
environment. Many sensors can be applied for HAR includ-
ing accelerometers, gyroscopes, magnetometer, and radio-
frequency identification [8]. Because of their robustness,
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diversity, availability, and wide acceptance among the pop-
ulation, wearable sensors are one of the most common
approaches for HAR applications [9].

To recognize human activities, many Machine Learn-
ing (ML) methods have been applied: for example, Hidden
Markov Models (HMM) [10], Decision Trees [11], Sup-
port Vector Machines (SVM) [12], Conditional Random
Fields [13], and K-Nearest Neighbor (K-NN) [14]. In recent
years, Deep Neural Networks (DNNs) have been quite pop-
ular in machine learning and have had a significant impact
on a variety of application domains [15], including object
recognition [16], natural language processing [17], and
energy management [18]. In HAR, DNNs, especially
Convolutional Neural Networks, have demonstrated great
success [1]. In deep learning architectures, multiple lay-
ers perform non-linear transformations, and input data
are transformed into hierarchical representations, each
one indicating different abstraction levels. In spite of
recent DNNs success in HAR, model selection remains a
challenge.

The model evaluation is essential for comparing results
obtained by different studies as well as for selecting the best
model. Studies typically use a single model or a subject-
specific model. A single model approach develops one model
by using data from all subjects (users) while subject-specific
approach results in one model per subject. In both cases,
the models are assessed by traditional hold-out or k-fold
cross-validation. The drawback of these traditional evalua-
tion methods is that data from the same person is present
in the training as well as in the testing set. Consequently,
the model may struggle to generalize to new (unseen) users
as parameters and hyperparameters were learned on the
same subjects as those used for the evaluation. Although,
the need for personalized models has been recognized [1],
it remains essential to evaluate generalization on new
subjects.

In HAR systems, the sliding window technique has been
widely used to increase accuracy [19]. However, most studies
used the sliding window technique before splitting data into
train and test. This results in parts of data being present in
both train and test datasets, as illustrated in Figure 1. Conse-
quently, the accuracy on the test set is not a true representation
of the model’s ability on unseen samples [19]. In addition
to the need of splitting data into train and test sets before
applying the sliding window technique, the impact of the
slidingwindow on the generalization to unseen subjects needs
to be explored.

Hence, this paper investigates the impact of the ML
model architectures and the sliding window technique on
the accuracy of HAR on previously unseen subjects. Two
types of deep learning models, Feed Forward Neural Net-
works (FFNNs) and Convolutional Neural Networks (CNNs),
are investigated in terms of how well they recognize activi-
ties for new subjects. Evaluation is performed using Leave-
One-Subject-Out Cross Validation (LOSOCV), a modified
k-fold cross-validation with each fold consisting of single

FIGURE 1. Sliding window approach before splitting the dataset into train
and test.

subject data. Experiments show that the CNN architectures
outperform FFNNs and that preprocessing including vector
magnitude and sliding window improves the activity recog-
nition accuracy. Moreover, the variability of the accuracy
among subject-based folds of the cross-validation highlights
the importance of using LOSOCV for the evaluation of HAR
models.

The rest of the paper is organized as follows: Section II
describes the background and Section III reviews related
work. Section IV presents the methodology, Section V
explains the experiments and discusses corresponding results.
Finally, Section VI concludes the paper.

II. BACKGROUND
This section first provides an overview of Artificial Neural
Network, in particular, Feed Forward Neural Networks and
Convolutional Neural Networks in terms of structure and
function.

A. FEED FORWARD NEURAL NETWORK
Artificial Neural Networks (ANNs)mimic the human brain to
solve nonlinear problems. Similar to the human mind, ANNs
learn to perform a task from examples without a need to be
explicitly programmed.

The Feed Forward Neural Network (FFNN) is a type of
ANN consisting of layers, namely, input, hidden, and output.
In this network, information moves in one direction, from the
input layer through the hidden layer(s) to the output layer. The
input nodes receive the signals while the nodes in the output
layer represent network outputs, in classification problems
the outputs are different classes. During training, samples
are passed forward through the network and the output of
each hidden neuron j in the first hidden layer is calculated
as follows:

yj = f (
N∑
i=1

(hi ∗ wij)+ bj) (1)

where hi are neuron inputs, wij are the synaptic weights con-
necting the i− th neuron in the input layer to the j− th neuron
in the hidden layer, bj is a j − th neuron bias, and N is the
number of input neurons. Finally, f is the activation function,
which is usually modeled as a Relu or Sigmoid function.
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FIGURE 2. Convolutional neural networks architecture.

The outputs of the neurons in the next layer are calculated
in the same way. At the output layer, the error is determined
using the calculated neuron output and the expected/desired
output, and the error is employed to update the weights using
the backpropagation approach.

The performance of FFNN is affected by the network
architecture and parameters including the number of lay-
ers, the number of neurons, and learning rates. Although
approaches for determining the network architecture and
parameters have being investigated [20], there are still no
general rules, and the selection is usually based on the trial-
and-error method [21], [22].

B. CONVOLUTIONAL NEURAL NETWORK
Convolutional Neural Networks (CNNs) are a type of deep
neural networks designed for data with a known grid-like
topology. As the name indicates, these networks employ the
convolution operation. CNNs have been usedwidely in image
recognition [23] due to their ability capture the topology of
images [24]. Then, due to its surceases with images, CNNs
have been employed in other areas, such as HAR [25], and
hand gesture recognition [26].

The CNN architecture consists of different layers such
as input, convolution, pulling, fully connected and output.
Figure 2 illustrates an example of a CNN architecture con-
sisting of one input, convolution, pooling layer, two fully
connected layers, and an output layer. The convolution layer
obtains feature maps by means of element-wise multiplica-
tion of filters (kernels) and input data or output from the
previous layer. After the convolution layer, the pooling layer
works on each feature map to reduce the spacial size by
down-sampling therefore reducing CNN computation. All the
nodes in the fully connected layers are connected to all the
nodes in the next layer, similarly to FFNN. Finally, at the
output layer, activation functions are used to obtain outputs;
for classification problems, Softmax is a common activation
function [27]. After the calculation of error, the weights in
the fully connected layers and learnable filters in the con-
volution layers are updated by applying a backpropagation
approach and optimization algorithms such as the gradient
descent.

III. RELATED WORK
This section first reviews human activity recognition works
and then discusses the approaches for evaluating HAR
models.

A. HAR APPROACHES
This section reviews recent works on a sensor-basedHAR and
focuses on the studies that used the MHEALTH dataset [28],
[29] because this dataset allows us to compare results with
literature.

Nguyen et al. [30] introduced a Feature-based and
Attribute-based (FE-AT) learning approach to tackle the
shortage of the labeled data in HAR datasets. They used a
random oversampling approach with the goal to create a more
balanced training dataset and attribute-based learning that
would tackle the insufficient data problem. FE-AT variants
based on three classifiers, SVM, K-NN, and Random Forest,
were applied to three public datasets, MHEALTH, DailyAnd-
Sport, and RealDisp. As they are specifically interested in
new activities, only a small number of samples from the target
activity is used for the training. Experiments showed that
FE-AT with Random Forest outperformed other approaches
for new activity recognition.

Mehmood et al. [31] evaluated seven supervised learning
algorithms in terms of HAR accuracy and classified activities
included in the MHEALTH dataset into three groups, namely
Ambulation, Transportation, and Exercise/fitness. Four activ-
ities, at least one from each group, were selected for eval-
uation: Waist Bends Forward, Standing Still, Cycling, and
Jump Front and Back. Results showed that the Fuzzy Rule
method with 99.79% accuracy outperformed Random Forest
(99.7%), MultiLayer Perceptron Neural Network (98.96%),
Decision Tree (98.58%), K-NN (95.95%), SVM (89.1%), and
Naïve Bayes (53.18%) for these activities.

Chowdhury et al. [32] proposed a posterior-adapted class-
based weighted fusion to integrate multiple accelerometers
data for HAR. They first evaluated SVM, Random Forest,
Binary Decision Tree, DNN, and Adaboost algorithms on
PAMAP2 andMHEALTH dataset and selected SVM because
of its high accuracy for further sensor fusion experiments.
The proposed fusion approach with SVM outperformed the
model-based and class-based weighted fusion approaches
on both datasets, PAMAP2 and MHEALTH. Moreover,
they investigated different accelerometer sensors configu-
rations in terms of the number of sensors and body loca-
tions. With the proposed approach, the combinations of sen-
sors Ankle+Wrist, Chest+Wrist, and Ankle+Chest+Wrist
achieved higher accuracy than a single sensor on any location.

Zdravevski et al. [33] evaluated six different classifiers,
namely K-NN, Logistic Regression, Naive Bayes, Random
Forest, Extremely Randomized Trees, and SVM in terms
of accuracy on five different datasets, DaLiAc, MHEALTH,
FSP, SBHAR, and SBHARPT. In the first step, they per-
formed feature extraction with a variety of techniques; for
MHEALTH dataset, this resulted in 3232 features. Next,
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to reduce the number of features, they used feature impor-
tance, drift sensitivity, and diversified forward-backward fea-
ture selection. With the MHEALTH dataset, this resulted in
99.8% accuracy.

Subasi et al. [34] investigated a user-dependent human
activity classification where an individual model is trained
for each subject and evaluated on the same subject. Eight
classifiers were evaluated: K-NN, ANN, SVM, C4.5, CART,
Random Forest, and Rotation Forest on the MHEALTH
dataset. The results show that SVM and Random For-
est methods achieved the same accuracy (99.89%); how-
ever, this approach requires an individual model for each
user.

Said et al. [35] proposed Deep Autoencoder with Low
Rank Dictionary Learning (DALRD) to extract features
from noisy sensor signals. Authors evaluated the proposed
DALRD on two datasets and compared it to five other feature
extraction techniques: Principle Component Analysis (PCA),
Linear Discriminant Analysis, Robust PCA, Deep Autoen-
coder (DA), and Supervised Regularization-based Robust
Subspace (SRRS). To examine the model robustness, they
introduced different levels of random noise into the dataset.
SRRS achieved the best accuracy, 98.1% on the MHEALTH
dataset, with clean data, but DALRD performed better than
the other approaches with noisy data.

Uddin and Hassan [36] presented a deep CNN for activity
recognition from body sensors. Gaussian kernel-based PCA
and Z-score normalization have been used in the preprocess-
ing phase. For the MHEALTH dataset, the mean accuracy of
the proposed CNN for all subjects was 93.9%,what was supe-
rior to Deep Belief Network (90.01%) and ANN (87.99%).

Ha et al. [37] also proposed a CNN for activity recognition
with the MHEALTH dataset. To capture spacial and temporal
dependencies among sensors, they used a 2D convolution
kernel and a 2D pooling kernel. In their experiments, the pro-
posed CNN with 2D kernels achieved better accuracy than
CNN with a 1D kernel. CNN-pff [38] architecture is also
based on CNN with a 2D kernel: it employs partial and
full weight sharing to learn modality-specific as well as
common (modality-independent) characteristics across
modalities. In their experiments CNN-pff outperformed other
models including HMM, SVM, Hidden conditional random
fields, 1D CNN, and 2D CNN.

Finally, differences between our work and the reviewed
studies can be categorized as follows:
• Nguyen et al. [30] and Chowdhury et al. [32] used
LOSOCV (10 Fold) and the MHEALTH dataset.
Nguyen et al. used oversampling method for making
the dataset balanced and Chowdhury et al. considered
only on eight different activities. Although we did apply
LOSOCV (10 Fold) evaluation, we did not use oversam-
pling and we are considering all 12 activities. Moreover,
we used CNN and evaluated accuracy variability among
different subjects.

• Mehmood et al. [31], Zdravevski et al. [33],
Said et al. [35], and Ha et al., [37] used hold-out

validation and Ha et al. [38] applied a hybrid of
leave-one-subject-out and hold-out validation methods.
In contrast, our work uses the Leave-One-Subject-Out
and Cross-Validation (10 Fold) approach.

• Subasi et al. [34] and Uddin and Hassan, [36] presented
user-dependent (each user separately) models. On the
other hand, our study considers a subject-independent
model and evaluates it on the new users.

In contrast to the reviewed works, our study examines the
impact of model selection and the sliding window technique
on the model’s ability to generalize on unseen subjects.

B. HAR EVALUATION
The recent research in the HAR field utilized different
approaches to validate their models making it difficult to
compare among studies even when they use the same dataset.
We can classify these validation methods into four main
categories.

1) HOLD OUT VALIDATION ( [31], [33], [35], [37])
The dataset containing readings from all subjects is split
randomly into train and test datasets. The main shortcoming
of this approach is that the same person’s data are in both,
train and test; therefore, the results do not indicate how the
model will perform on new users. Moreover, if the data are
split again, the results of the model probably will change.
Hold out validation can be carried out individually for each
subject where it has an additional disadvantage of needed a
separate model for each user.

2) K-FOLD CROSS-VALIDATION ( [36])
The dataset (from one person or all people) is split into k
parts; one part is reserved for evaluation and the remaining
parts are used for training. The process is repeated k times,
each time using a different part for evaluation. Although the
results from this approach are more reliable than the results
from the hold out approach, it does not evaluate accuracy for
new subjects.

3) LEAVE-SUBJECT(S)-OUT HOLD OUT (LSOHO) ( [38])
This is a variant of hold out validation, where one or more
subjects are considered for the validation and other subjects
for training the model. Although this approach evaluates on
new subjects, the disadvantage is that the accuracy depends
on the subject(s) selected for the evaluation.

4) LEAVE-SUBJECT(S)-OUT CROSS-VALIDATION
(LSOCV) ( [30], [32])
This is a variant of the k-fold cross-validation approach
but with folds consisting of subjects. Similarly to LSOHO,
LSOCV evaluates accuracy on new subjects, but LSOCV
gives more realistic accuracy estimates, as it uses different
subjects for evaluations in different folds. Moreover, LSOCV
in the model selection phase should lead to more robust
models. When each subject is one-fold, LSOCV becomes
Leave-One-Subject-Out Cross-Validation (LOSOCV).
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TABLE 1. Preprocessing methods for each scenario.

Consequently, in this paper LOSOCV is used because it
gives more realistic estimates of the model performance on
new subjects.

IV. METHODOLOGY
This study explores the impact of machine learning model
and data preprocessing on the system’s ability to generalize
on new subjects. The focus is on deep learning models as
they have shown great success in recent years [1]. As the
sliding window technique is commonly used for HAR due
to its ability to capture temporal behaviours, impact of this
technique as well as the effect of the sliding window size
is examined. Additionally, vector magnitude preprocessing
is considered as it reduces the number of features and, thus,
simplifies the model.

Consequently, this section first discusses data preprocess-
ing including normalization, vector magnitude, and sliding
windows technique, and then describes Feed Froward Neu-
ral Networks and Convolutional Neural Networks for HAR.
Finally, the evaluation methodology is described.

A. DATA PREPROCESSING
This section explains data preprocessing in preparation for
neural network models. Two types of preprocessing are con-
sidered: sliding window and vector magnitude; thus, four
different scenarios are designed, each one involving different
preprocessing steps. Normalization is applied first for all
scenarios, before any other processing. Table 1 shows the
preprocessing steps used for each scenario:

• Scenario-OR: The original features are used directly
without any further preprocessing.

• Scenario-MG: Features are created with the vector mag-
nitude method.

• Scenario-OR+W: The sliding window technique is used
directly on original features.

• Scenario-MG+W: Features are first created with the
vector magnitude method and then, the sliding window
technique is applied.

1) NORMALIZATION
Normalization is applied in order to bring all the features into
a similar range and avoid dominance of large-scale features.
There are different methods for normalization such as Min-
Max and Z-score [39], [40]. In this paper, a Min-Max nor-
malization, which is a common approach in HAR [41], [42],
is used. The Min-Max normalization scales the numbers in
a dataset to [0,1] range, which can significantly improve
the accuracy of the subsequent machine learning models.

The transformation function is presented as equation (2):

X∗new =
(
XOld − Xmin
Xmax − Xmin

)
(2)

where XOld , Xmax , Xmin are the original, maximum, and min-
imum values of the considered feature, respectively. X∗new is
the new normalized value of XOld ; it has values in range [0,1].
For normalization, the data is first split into train and test
based on the subjects. Minimum and maximum values for the
train part are extracted and used for normalizing both, train
and test sets. This way, we ensure that the data from the test
set is not used in the normalization process.

2) FEATURE CREATION WITH VECTOR
MAGNITUDE METHOD
The data was gathered from three different wearable sensors,
namely, acceleration, gyroscope, and magnetometer. These
sensors were placed on the chest, left-ankle, and right-lower-
arm and attached by using elastic straps. We calculate the
output magnitude feature for each sensor. For instance, for
acceleration from the chest sensor (Ac), we have:
With sensor-based activity recognition, data are gathered

from sensors such as accelerometer, gyroscope, and magne-
tometer placed on different body parts including ankle, lower
arm, and chest. These sensors provide three-dimensional
readings corresponding to three axes:

[Ac = (Ax ,Ay,Az)] (3)

The vector magnitude method takes advantage of this
multi-dimensional aspect of sensor readings, and for each
sensor creates a single feature representing vector magnitude:

Created Feature 1 : Ac = A2x + A
2
y + A

2
z (4)

Therefore, with vector magnitude method, equation (4),
each sensor is represented with one feature reducing the
number of features in 3:1 ratio.

3) SLIDING WINDOWS APPROACH
Data from HAR sensors are time series data, and, therefore,
there is a dependency between the prior and current values.
To capture these temporal dependencies, a well-designed
feature generation mechanism is required; in HAR tasks,
the sliding window technique illustrated in 3 is commonly
applied for this purpose. In the figure, R1, R2, and so on are
readings, each one consisting of several features obtained at
the same time step. If the sliding window size is w, the first
sample consists of first w readings. Next, the windows slides
for s steps, and the next sample consists of readings s + 1 to
s+w+ 1. The Figure 3 illustrates scenario with w = 10 and
s = 1.

B. DEEP LEARNING MODELS
This section describes different deep learning architectures
for HAR used in this study. The two main categories of
networks are considered: FFNN and CNN. For each category,
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FIGURE 3. Sliding windows approach: Window size = 10 and step = 1.

FIGURE 4. FFNN-4H for preprocessing scenario-MG+W and window
w = 10.

different topologies are examined in order to determine the
impact of architectures on activity recognition accuracy on
new subjects.

1) FEED FORWARD NEURAL NETWORK (FFNN)
To compare different architectures, two FFNN variants are
considered. Specifically, we are interested to find out how
the network size impacts accuracy. In all architectures the
number of inputs equals the number of features and the
number of outputs corresponds to the number of classes.
The two architectures are as follows:
• FFNN-4H: This FFNN architecture consists of 4 hidden
layers, with 128 neurons in each hidden layer. Figure 4
shows the architecture with the sliding windows w = 10
and preprocessing Scenario-MG+W; thus, with 7 fea-
tures, the input is 7*10.

• FFNN-6H: This FFNN architecture consists of 6 hidden
layers. The first four hidden layers have 128 neurons
each, and layers 5 and 6 have 64 and 32 neurons, respec-
tively.

Each FFNN is used with each of the four preprocessing
scenarios, and, for sliding window scenarios, different sliding
window sizes have been evaluated.

2) CONVOLUTIONAL NEURAL NETWORK (CNN)
As with FFNN, two CNN architectures have been con-
sidered. For both, the input is a matrix of dimension
Number Of Features×Window Size. As with FFNN, the out-
puts correspond to the classes. The two CNN architectures
are:
• CNN-1C: This CNN consists of one convolution layer
with 64 feature maps, one max-pooling layer (32), and
one fully connected layer with 32 neurons.

• CNN-2C: This CNN includes two convolution layers,
each with 64 feature maps, two max-pooling layers
(32, 32), and two fully connected layers with 64 and

32 neurons, respectively. As illustrated in Figure 5,
the sequence of layers are: Convolution, Max-pooling,
Convolution, Max-pooling, followed by the two fully
connected layers.

Both, CNN-1C and CNN-2C, can be used with one dimen-
sional kernels (1D); we refer to them as CNN-1C-1D and
CNN-2C-1D. In these methods, the kernel moves in one
direction.

Moreover, when siding window technique is used in
the preprocessing step, the CNN input is two-dimensional,
and, therefore, two dimensional kernels (2D) can be used.
We refer to the two CNN with 2D kernel as CNN-1C-2D and
CNN-2C-2D. In these methods, the kernel moves in both
directions, up and down.

The four combinations can be summarized as:
• CNN-1C-1D: CNN-1C architecture with 1D kernels.
This can be used for all preprocessing scenarios.

• CNN-1C-2D: CNN-1C architecture with 2D kernels.
This can be used only for scenarios with the sliding win-
dow: OR+WandMG+W. It cannot be used without the
sliding window (OR andMG) because in those scenarios
input data has only one dimension.

• CNN-2C-1D: CNN-2C architecture with 1D kernels.
This can be used for all scenarios.

• CNN-2C-2D: CNN-2C architecture with 2D kernels.
As CNN-1C-2D, this can be used only for the sliding
window scenarios OR+W and MG+W.

C. EVALUATION
As discussed in Section III, traditional approaches for evalu-
ating machine learningmodels, hold out validation and k-fold
cross validation, assess the model on new samples, but sam-
ples from the same subject are in both, training and test sets.
As this study is concerned with accuracy of the HAR models
on new subjects, Leave-One-Subject-Out Cross-Validation
(LOSOCV) is used. In LOSOCV, one subject is reserved for
the evaluation and the model is trained on remaining subjects.
The process is repeated each time with a different subject
reserved for the evaluation and results are averaged over all
folds (subjects).

Similar to LOSOCV, Leave-Subject(s)-Out Hold Out
(LSOHO), also evaluates models on new subjects, but
LSOHO error estimates are affected by the selection of the
subjects for the test set. As it will be illustrated in exper-
iments, LSOHO largely varies across the subjects, which
demonstrates the necessity of LOSOCV for the evaluation.

To calculate the performance metrics of LOSOCV, a con-
fusion matrix is used. A confusion matrix consists of True
Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN). TP and TN determine the number of
samples correctly identified as positive and negative, respec-
tively. FP and FN refer to the number of samples incorrectly
identified as positive and negative, respectively.

Accuracy evaluates the proportion of the samples cor-
rectly classified. It is a well-suited metric for the clas-
sification evaluation when the dataset is balanced or
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FIGURE 5. CNN-2C architecture used.

approximately balanced. Consequently, in addition to accu-
racy, this study uses precision, recall, and F1 score. These
metrics are calculated as follows:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(5)

Precision =
TP

TP+ FP
(6)

Recall =
TP

TP+ FN
(7)

F1 Score = 2 ∗
Precision ∗ Recall
Precision+ Recall

(8)

Precision quantifies the number of positive class predic-
tions that actually belong to the positive class. Recall quan-
tifies the number of positive class predictions made out of
all positive examples in the dataset. Finally, F1 score is the
harmonic mean of the precision and recall.

V. DATA AND RESULTS
This section first introduces the dataset and experiments and
the presents the results followed by the discussion of the
findings are.

A. DATA AND EXPERIMENTS
1) DATA
The experiments were carried out with the MHEALTH
(Mobile Health) dataset. This dataset includes recordings
of body motions and vital signs for ten individuals while
preforming various activities. Recorded movement data is
accompanied with twelve activity labels such as ‘Standing
still,’ ‘Sitting and relaxing,’ ‘Lying down,’ ‘Walking,’ and
so on. Accelerometer, gyroscope, and magnetometer sensors
on subject’s chest, right wrist, and left ankle measured the
movement experienced by various body parts, namely, accel-
eration, rate of turn, and magnetic field orientation. An addi-
tional sensor on the chest recorded ECG signals which can be
used for heart monitoring, but these data are not used here for
HAR as they do not directly relate to human motions.

At each reading time step, each of the three sensors,
accelerometer, gyroscope and magnetometer, records three
values corresponding to three axes. All three sensors are
mounted on an ankle and an arm, and only an accelerometer

TABLE 2. Number of input features for each scenario.

is mounted on the chest; this makes a total of 21 readings for
each time step.

2) EXPERIMENTS
As discussed in Section IV, four scenarios (OR,MG, OR+W,
MG+W) and six models (FFNN-4H, FFNN-6H, CNN-1C-
1D, CNN-1C-2D, CNN-2C-1D, CNN-2C-2D) are consid-
ered. The number of input features for each of the considered
scenarios is illustrated in Table 2. Columns ’Number of Initial
Features’ and ’Number of Input Features for ML’ indicates
the number of features before and after applying the sliding a
window technique.

As can be seen from the table, with the two scenarios that
include the sliding window technique, OR+W and MG+W,
different window sizes are considered. For Scenario-OR+W,
considered window sizes are 5, 10, and 15 and for Scenario-
MG+W, window sizes are 10, 20, and 50. The sliding win-
dow sizes are larger for Scenario-MG+W than for OR+W
because in MG+W there are only 7 features in contrast to
21 in OR+W. It is expected that fewer features will need
larger windows to adequately capture movement patterns.

Considering different window sizes results in eight sce-
narios. The six scenarios with the sliding window (OR+W
and MG+W with three different window sizes) are applied
with each of the six DL models, while the non-window sce-
narios (OR and MG) are applied with only four DL models
as they are not applicable for CNNs with 2D as discussed
in subsection IV-B2. This results in the total of 6 × 6 +
2 × 4 = 44 experiments.
All experiments were implemented in Python. For Deep

Neural Networks, the ’scikit-learn’ library was used [43].
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TABLE 3. Accuracy for different scenarios and models.

The experiments were executed on a computer with Ubuntu
OS, AMDRyzen 4.20 GHz processor, 128 GB DIMMRAM,
and four NVIDIA GeForce RTX 2080 Ti 11GB graph-
ics cards. Training the proposed DNNs is computationally
expensive; hence, GPU acceleration was utilized. Neverthe-
less, once the model is trained, it does not need significant
resources, and CPU processing is adequate.

B. RESULTS
The results were assessed based on designed scenarios, meth-
ods, and subjects. Finally, we compare the results for two
validation approaches, namely, 10-Fold Cross-Validation and
LOSOCV.

1) ACCURACY FOR DL MODELS AND SCENARIOS
This subsection compares the results obtained by different
models for each of the scenarios using LOSOCV. Table 3
shows the average accuracy for all cross-validation folds.
The accuracy of the best model for each of the four main
scenarios (OR, MG, OR+W, MG+W) is indicated with bold
values in the table. Note that the numbers here aremuch lower
than in many studies [33]; however, this is not caused by
the model itself, but by the evaluation approach as it will be
demonstrated later in this section.

For scenarios OR andMG, the highest accuracy is obtained
with models CNN-1C-1D and CNN-2C-1D, respectively. For
those two scenarios, the table does not present results for
CNN-1C-2D and CNN-2C-2D because 2D convolution can
only be used when window sliding technique is used, as dis-
cussed in Subsection IV-B2.

For Scenario-OR+W, the best result, 80.7% accuracy, has
been obtained by the CNN-1C-2D model with sliding win-
dow size 5. From the table, it can be observed that as the
window size increases from 5 to 10 and 15, the accuracy of
each model decreases.

For Scenario-MG+W, the best model was CNN-2C-1D,
with 85.1% accuracy. This value was the highest accuracy
for all scenarios and all models; thus, CNN-2C-1D with
vector magnitude and the sliding window size 50 was the best
approach. In Scenario-MG+W, as the window size increases
from 20 to 50, the accuracy improves for all models; however,
the same pattern does not hold when window size increases
from 10 to 20.

CNN-2C-2D results are superior to CNN-2C-1D results
for the Scenario-OR+W; however, for Scenario-MG+W,
the opposite pattern is observed. Moreover, in terms of CNN
architecture comparison (1C vs 2C), for Scenario-OR+W,
CNN-1C (1D or 2D) obtained better results than CNN-2C
(1D or 2D). For Scenario-MG+W, CNN-2C outper-
formed CNN-1C sometimes, but not all window sizes and
models.

As expected, adding the sliding window increases accu-
racy: comparing scenarios OR with OR+W and scenarios
MG with MG+W, it can be observed that for all models
adding the sliding window increases accuracy.

This subsection compared results based not only on accu-
racy but also on other metrics including precision, recall, and
F1 Score. Regardless of the metric used, the best model for
each scenario remained the same.

2) PERFORMANCE ANALYSIS FOR DIFFERENT SUBJECTS
Table 3 identifies the best model for each scenario, and
Table 4 analyzes the performance of the best model on indi-
vidual subjects. The first column includes the scenario and
the best model for that scenario. Rows for subjects 1 to
10 represent the folds of the subject-based cross validation:
for example, for subject 1 row, the model is trained using
subjects 2-10 and evaluated on subject 1. It can be observed
that the accuracy of the same model varies greatly among
subjects illustrating the need to use LOSOCV as opposed to
Leave-Subject(s)-Out Hold Out (LSOHO) in order to cap-
ture variability among subjects. Also, the standard deviation
is different across models, which means that some mod-
els are more consistent than others. This shows that if a
single generic model will be used for all users, the stan-
dard deviation should be considered when selecting the
model.

In terms of accuracy, for Scenario-OR with CNN-1C-1D
model, subjects 4, 3, and 9 have the highest and subjects 6, 8,
and 1 have the lowest accuracy. For Scenario-OR+W with
CNN-1C-2D model, subjects 3, 2, and 5 and 10 have the
highest and subjects 6, 1, and 7 have the lowest accuracy. The
patterns for scenarios MG and MG+W are similar; however,
the sequence of subjects is different. For the Scenario-MG,
the best results are for subjects 10, 3, and 9, and for Scenario-
MG+W, the order is for 9, 3, and 10.

It can be observed that subject 3 appears between the best
results for all models and scenarios. Subjects 9 and 10 are
between the best results for three out of four scenarios. Sub-
ject 6 is between the worst performing for all models and sce-
narios, while subjects 8 and 2 are also often among the worst
(three out of four and two out of four scenarios, respectively).
The similar subjects appearing among the best/worst in terms
of accuracy, irrelevant of the DL model, could be caused by
the similarity/dissimilarity of the target (validation) subject
to those present in the training set. For example, subject
3 being always among the best could be caused by its high
similarity to other subject(s). In contrast, subject 6 may be
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TABLE 4. Subject-level accuracy metrics for each scenario.

more different than the others, therefore resulting in lower
accuracy.

Comparing scenarios MG and MG+W, we can observe
that for every single subject the Scenario-MG+W works
better than Scenario-MG. The same pattern occurs for sce-
narios OR and OR+W for all the subjects except subject 4.
This indicates that even on the subject level, adding sliding
window in the preprocessing improves the accuracy.

In terms of recall, subject 10 accuracy appears as one of the
best results and subjects 3 and 9 are between the best results
in three out of four scenarios. Subject 8 exhibits the lowest
accuracy for all scenarios.

In terms of precision, subjects 3, 4, 9, and 10 show higher
accuracy than others while subjects 8 and 6 appear the most
often among the lowest accuracy group. Finally, considering
F1 score, subject 3 appears among the best performers for
all scenarios and subject 8 consistently belongs to the low
accuracy group.

FIGURE 6. Subject-level best method: The number of subjects for which
the model is the best.

For all performance metrics, accuracy, precision, recall,
and F1 score, subject 3 is among the group with high accu-
racy for all scenarios. Subjects 6 and 8 appear often in low
accuracy group for all metrics. As already mentioned when
discussing accuracy, metrics variability among subjects is the
result of different levels of similarity.

From table 4, it can be observed that the best model
for each subject is not the same; for example, for subject
1, the best model is CNN-2C-1D, and for subject 2 it is
CNN-1C-2D. Figure 6 shows the number of subjects for
which the model is the best. Considering the accuracy met-
ric, CNN-1C-2D was the best model for 4 subjects and
CNN-2C-1D for 3 subjects. FFNN-6Hwas not the best model
for any subjects; therefore, the figure does not show the
bar for this model. Although the overall best model was
CNN-2C-1D as shown in Table 4, CNN-1C-2D was better
for more subjects as illustrated in Figure 6.

3) THE EFFECT OF THE WINDOW SIZE ON ACCURACY
The window size impacts the accuracy of the DL model as
can be seen from Table 4. Here, we further investigate the
impact of window size. Figure 7 shows the average accuracy
for each model for Scenario-OR+W. It can be observed that
as the window size increases from 5 to 10, the accuracy
for all methods except FFNN-6H decreases. CNN-1C-2D
experiences significant decline from 80.7% to 67% while
FFNN-6H accuracy increases from 70.3% to 74.5%. The
opposite pattern happens when the window size is increased
from 10 to 15: for all methods except FFNN-6H, the accuracy
increases slightly. Nevertheless, the methods’ accuracy with
sliding window 15 is still lower than with sliding window
5 for all methods but FFNN-6H.

While Figure 7 shows the accuracy for Scenario-OR+W,
Figure 8 does the same for Scenario-MG+W. As the window
size increases from 10 to 20, the accuracy for FFNN-4H,
CNN-2C-1D, and CNN-2C-2D decreases and for FNN-6H,
CNN-1C-1D, and CNN-1C-2D increases. As the window
further increases to 50, the accuracy for all models increases.
It is interesting to note that with the increase of the window
size, the differences in accuracy among models reduces. For
example, at window size (10), the best and worst accuracy
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FIGURE 7. The impact of the window size on accuracy: Scenario-OR+W.

FIGURE 8. The impact of the window size on accuracy: Scenario-MG+W.

FIGURE 9. Comparison of scenarios OR and MG.

are 82.6% (CNN-2C-1D) and 73.7% (CNN-1C-2D), respec-
tively. But for window size (50), the best and worst accu-
racy are 85.1% (CNN-2C-1D) and 80.9% (CNN-1C-2D),
respectively.

4) PREPROCESSING IMPACT ON ACCURACY
Here preprocessing is investigated with respect to how it
affects accuracy. First, accuracy of scenarios OR and MG
is compared in Figure 9. It can be observed that as fea-
tures are reduced from 21 (Scenario-OR) to 7 (Scenario-
MG), the accuracy of more complex models, FFNN-6H and
CNN-2C-1D, increaseswhile the accuracy of simplermodels,
FFNN-4H and CNN-1C-1D, decreases.

FIGURE 10. Comparison of scenarios OR and OR+W.

FIGURE 11. Comparison of scenarios MG and MG+W.

Next, Figure 10 shows the comparison between scenarios
OR and OR+W based on the accuracy. Because 2D convolu-
tion is not applicable for Scenario-OR, the figure does not
include 2D models: CNN-1C-2D and CNN-2C-2D. It can
be seen that for all models the accuracy increases when the
sliding window technique is used. The difference between the
accuracy of Scenario-OR and Scenario-OR+Wwith window
size 5 is more than ten percent, which illustrates that even
small window size has a significant impact on the accuracy.

Scenarios MG and MG+W are compared in Figure 11.
As for Scenario-MG, 2D convolution is not applicable, 2D
models are not included in this figure. Again, the accuracy
increases when the window sliding technique is used. For
all window sizes, the accuracy of MG+W is more than ten
percent higher than the accuracy of MG, and for window
size 50, the MG+W accuracy is 20% higher than the MG
accuracy.

5) COMPARISON OF K-FOLD CROSS-VALIDATION
AND LOSOCV
As already noted, evaluation with LOSOCV exhibits lower
accuracy than the traditional k-fold cross-validation (CV)
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TABLE 5. Confusion matrix for 10-fold cross-validation and LOSOCV.

where data points from the same subject can be in both
training and test sets. However, LOSOCV gives the estimate
of error for the new subject while k-fold CV gives the estimate
for the subjects present in the training set.

To examine the impact of the evaluation on the perfor-
mance metrics, we compare the k-fold CV and LOSOCV
using the same model and the same preprocessing.

For LOSOCV, the overall best model as shown in Table 3
was CNN-2C-1D with the Scenario-MG+W, window
size = 50; thus, this model is used for comparison with
a k-fold CV. Specifically, a 10-fold CV is considered. For
the 10-fold CV, after data preprocessing including vector
magnitude and the sliding window technique, the data are
split randomly into 10 parts. As the split is random, same
subject data may appear in training and test sets. One part is
reserved for testing while remaining parts are used to train the
model. The process is repeated for each fold: the performance
metrics for each fold are shown in Table 6. The average accu-
racy with a 10-fold CV was 99.85%; however, the accuracy
of the same model with LOSOCV was 85.1% (Table 3).
This demonstrates the necessity of using LOSOCV when
the objective is to estimate accuracy of the model for new
subjects.

To further compare the traditional cross-validation (10-fold
CV) with LOSOCV, Table 5 shows the aggregation of 10 con-
fusion matrices from 10 folds for the two approaches. The
accuracy corresponding to this table for a 10-fold CV is
99.85% (the average accuracy in table 6), and for LOSOCV,
it is 85.1% (Table 3). Consequently, misclassification for 10-
fold CV is very low, for most classes zero or close to zero

TABLE 6. Performance metrics for each fold of the 10-fold
cross-validation.

while for LOSOCV, the number of misclassified samples for
some activities (classes) is significantly higher. This higher
LOSOCV misclassification is caused by differences among
subjects in the train and test datasets. Still, for some pairs
of classes, LOSOCV misclassification is zero, demonstrat-
ing that distinction between those classes generalizes well
for new subjects. As the overall accuracy with LOSOCV is
lower than with traditional 10-fold CV, there is a need to
improve performance for new subjects and/or develop HAR
personalization.

With the traditional k-fold CV, the CNN-2C-1D model
with Scenario-MG+W, window size = 50, demonstrated
performance metrics (accuracy, precision, recall, F1 Score,
and confusion matrix) comparable to those reported in lit-
erature [36] ; however, these metrics greatly differ from
LOSOCV which estimates the performance of the model for
new subjects. On the other hand, LOSOCV estimates the
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performance of the model for new subjects and, therefore,
should be used for real-world applications as it is not possible
to include each potential user data in the training set.

C. DISCUSSION
The main objective of this work is to evaluate the impact
of model selection and preprocessing on the ability of
the ML model to classify activities for new users. Conse-
quently, LOSOCV was used for the evaluation. Comparison
of the results obtained with LOSOCV (Table 3) and the
10-fold cross-validation (Table 6) for the same model shows
that the two lead to very different estimates. The accuracy
for the CNN-2C-1D model with Scenario-MG+W (w =
50) was 99.85% when evaluated with traditional 10-fold
cross-validation and only 85.1% with LOSOCV evaluation.
As LOSOCV ensures that different subjects are used for
training and testing, LOSOCV estimates are closer to what
can be expected for new users. Such significant differences
also indicate the need to develop a new model capable of
achieving higher accuracy for new users. A possible way of
achieving this is by personalizing the model and exploring
similarities among users [1].

As expected, using the sliding window technique
increased the accuracy of each model, as illustrated in
Figures 10 and 11. However, increasing the window size
does not necessary lead to increase in accuracy. As shown
in Figure 10, a larger window size may result in accuracy
decrease.

When the number of features is reduced, such as in the case
of vector magnitude shown in Figure 9 where the number of
features is reduced, a more complex model is needed in order
to capture the patterns. It can be observed that reducing fea-
tures from 21 (Scenario-OR) to 7 (Scenario-MG), the accu-
racy of the more complex models (FFNN-6H and CNN-2C)
increases while the accuracy of more simple models
(FFNN-4H and CNN-1C) reduces.

Overall, the experiments demonstrated the importance of
using LOSOCV for estimating the performance of an ML
model for new users and the risks of accuracy overestimates
with traditional k-fold cross-validation. CNN with two con-
volutional layers and 1D filters archived the highest accuracy.
Preprocessing with vector magnitude and sliding window can
improve the performance (Table 3), but selecting the window
size remains a challenge as it is dependent on the model
(Figures 10 and 11). AsCNNs are sensitive to hyperparameter
choice, further hyperparameter tuning has the potential to
improve accuracy.

VI. CONCLUSION
Human activity recognition is becoming a big trend in some
industries, but it is a challenging research area. Deep learning
and pre-processing methods have been successfully used in
recognizing patterns.

This paper presented four different scenarios designed
to improve accuracy for human activity recognition.
Results show that LOSOCV is a rigid criterion for evaluation

models in comparison to Cross-Validation or Hold-Out
approaches. Moreover, the sliding window technique can
improve performance criteria; however, finding the best win-
dow size is a crucial issue. Using only the vector magni-
tude method cannot improve the performance, but using a
hybrid of vector magnitude and sliding window approaches
can improve results considerably. In the MHEATH dataset,
Scenario-MG+W (w= 50) via CNN-2C-1D, we could reach
85.1% accuracy with LOSOCV. On the other hand, the accu-
racy for the same scenario andmethodwith the 10 Fold Cross-
Validation was 99.85%, which means that it is necessary to
work on the design of architectures of methods and tune them
based on LOSOCV.

Training CNNs is computationally expensive and applying
LOSOCV makes the training even more time consuming as
it requires repetition of the process with different subjects in
the test set. Nevertheless, LOSOCV provides more realistic
estimates of the HAR accuracy for new users. The vector
magnitude approach also has a disadvantage of eliminating
the sign of the signal.

Future work will evaluate the presented approaches with
different data sets and explore improving accuracy of HAR
for new users through personalization.
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