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ABSTRACT The proliferation of on-demand internet services delivered over a network of a heterogeneous
set of computing devices has created the need for high-performing dynamic systems in real-time. Services
such as audio and video streaming, self-driving cars, the Internet of things (IoT), or instant communication
on social networks have forced system designers to rethink the architectures and tools for implementing
computer systems. Reactive programming has been advocated as a programming paradigm suitable for
implementing dynamic applications with complex and heterogeneous architectural needs. However, there
is no consensus on the core set of features that a reactive framework must-have. Furthermore, the current set
of features proposed in reactive tools seems very restricted to cope with the actual needs for concurrency and
distribution in modern systems. In this paper, several alternative semantics for distributed reactive languages
are investigated, addressing complex open issues such as glitch avoidance, explicit distribution support, and
constructs for explicit time management. First, we propose a reactive event-based programming language
with explicit support for distribution, concurrency, and explicit time manipulation (ReactiveXD). Second,
we present a reactive event-based semantic framework called Distributed Reactive Rewriting Framework
(DRRF). The framework uses rewriting logic to model the components of a distributed base application,
observables, and observers, and predicates supporting explicit time manipulation. Finally, to validate the
proposal, the paper discusses the specification of the semantics of ReactiveXD and a scenario describing a
case of intrusion detection on IoT networks.

INDEX TERMS Distributed computing, the Internet of Things (IoT), logical clocks, Maude, real-time
languages, reactive programming, rewriting logic, cybersecurity applications.

I. INTRODUCTION
The ubiquity of internet access and the proliferation of mobile
devices, mesh networks, and IoT appliances have changed
the architecture of applications and digital services. These
applications are now decentralized, concurrent, and highly-
interactive, responding in real-time to local and remote stim-
ulus in an ever-changing environment. Consider, for example,
the problem of detecting security attacks in an IoT ecosys-
tems composed by hundreds of heterogeneous components
spread over different places. Such a scenario may integrate
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different kinds of sensors, actuators, and computing devices
exchanging messages concurrently and in real-time over a
dynamic distributed network. Protecting this system is a
challenging task because the configuration of the system is
dynamic, the system has to adapt itself in real-time to phys-
ical changes, and current mainstream tools do not provide
the abstractions to cope with these requirements. Existing
approaches have tried to address security on IoT networks
by means of reactive patterns, but they use restricted forms of
reactivity, e.g., detection of sequences of events, or guarded
sequences. Thus, an IoT scenario or any other featured as
decentralized, concurrent, interactive, and based on events,
determines the need to define clever mechanisms able to:
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i) support reactive and dynamic applications, ii) provide time
management functionalities and iii) be integrated into scenar-
ios composed by heterogeneous and distributed elements.

In this context, reactive programming has been advocated
as a programming paradigm suitable for the implementation
of dynamic applications with complex and heterogeneous
architectural needs [1], and proponents defend it as a ‘‘bet-
ter’’ alternative to other programming paradigms like Object
Oriented Programming, actor languages, functional program-
ming, among others.

However, there is no consensus on the core set of features
that a reactive framework must have. The original proposal
of functional reactive programming [9] seems very differ-
ent from its modern counterparts inspired by ReactiveX1:
RxAda [21], RAY [13]), MPML3D [23] or LUSTRE [12].
Furthermore, despite of distribution and concurrency being
first class concerns in modern applications, there is very little
research on semantics and implementation of fully distributed
reactive frameworks and its usefulness for the development of
these decentralized, concurrent, and highly interactive appli-
cations.

In this paper, several alternative semantics for distributed
reactive languages are investigated, addressing complex open
issues such as glitch avoidance, explicit distribution support,
and constructs for explicit time management. Particularly
the investigation considers the applicability of distributed
reactive languages in the context of IoT scenarios showing
how different semantics may influence programming patterns
and programming languages. Concretely, this paper presents
the following contributions:
• An updated state of the art of reactive programming lan-
guages and frameworks that improves previous reviews
(e.g., [1]) through the analysis of the implications and
implementations when explicit support for distribution
and time management is considered.

• A novel reactive oriented programming language, Reac-
tiveXD, with explicit support for distribution and time
management constructors.

• A configurable and executable semantic framework
(DRRF), developed in MAUDE 2 using rewriting logic.
This framework contains a minimal set of building
blocks for the implementation of distributed real-time
reactive languages. DRRF is used to study the semantic
proposed for ReactiveXD.

• Finally, the paper shows the implementation of an
IoT scenario using the distributed reactive framework
(DRRF) configured with ReactiveXD’s semantics.

This document is organized as follows. Section II presents
an overview of functional reactive programming and reactive
programming à la ReactiveX. Then, section III introduces
ReactiveXD, a reactive language with explicit support for dis-
tribution and time management. Section IV presents DRRF,
a semantic framework implemented inMAUDE using rewrit-

1http://reactivex.io/
2http://maude.cs.illinois.edu/

ing logic. SectionV presents an evaluation of the applicability
of DRRF, showing how to model the semantics of Reac-
tiveXD, and showing the implementation of an IoT scenario
and how to prove properties on it. SectionVI discusses related
work. Finally, conclusions and future works are presented in
sections VII and VIII.

II. REACTIVE PROGRAMMING OVERVIEW
In this section, reactive programming is introduced through
a discussion of functional reactive programming as initially
proposed, and reactive programming à la ReactiveX as an
example of current practitioners’ approach to reactive pro-
gramming1.

A. FUNCTIONAL REACTIVE PROGRAMMING
Initially motivated by interactive 3D computer graphics,
functional reactive programming (FRP) [9] proposes as main
abstraction values that vary continuously over time. Those
values, called behaviors, were intended to describe the con-
tinuous change over time of graphical objects in an animation.
Behaviors may also depend on other time-varying entities,
creating in this way dynamic dependent objects. Thus, when-
ever a behavior is updated, all behaviors depending on it
are also updated, e.g., like formulas depending on cells in a
spreadsheet. The following code shows a simple declaration
of two behaviors:

varTime = timeBehavior();
varTimex10 = varTime ∗ 10;

The function timeBehavior() returns a behavior that
is a time-varying entity whose value varies continuously.
The varTimex10 variable also represents a behavior that
is updated when varTime is updated and contains ten
times the value of varTime. Note that to build a dynamic
application, the programmer does not need to update the
values explicitly, the values are updated automatically and
the language runtime should take care of the complexity of
updating values asynchronously. Note that behaviors vary
continuously over time, i.e., they are not considered discrete
entities, on the contrary, their change is modeled as a continu-
ous function over time. In this case, time is also a continuous
changing entity.

Functional reactive languages also provide an abstraction
called events. Events refer to occurrences in the real world,
e.g., mouse clicks, or key presses. From this, behaviors may
be defined in terms of reactions to events, but they will
still have declarative semantics in the function of time. For
example, a valid event can be the first message arriving after
time t0 and may be expressed as:

firstMessageAfter(t0)

and a behavior depending on this event may be:

changingBehavior =
varTime untilB firstMessageAfter(t0) ∗=>

varTimex10
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This behavior will return the same value as behavior
varTime until the event firstMessageAfter(t0)
when it starts returning the same value as behavior
varTimex10. untilB is a native infix construct intro-
duced in the original FRP paper [9] and returns the behavior
to the left until the event to the right appears, afterward it starts
returning the behavior associated with such event. The *=>
event handler returns a behavior depending only on time.

The implementation of functional reactive programming
(FRP) languages has several considerations like evaluation
model, lifting, glitch, and multi-directionality. The first con-
sideration is the evaluation model, which is affected by how
changes propagate in the dependency graph. The evaluation
model may be pull-based (when the propagation is triggered
by value requests) or push based (when the propagation is
driven by behavior updates). Lifting is another consideration
that exists when a functional reactive language is embedded
in another programming language. In such a case, some
mechanism must be put in place to make primitive operators
and custom functions to operate on behaviors. Glitch avoid-
ance is another consideration. For example, in the propaga-
tion of new values during the program execution, a naive
implementation may lead to update inconsistencies when a
computation is executed before all its behaviors get updated,
leading to a glitch. Finally, it is also important to consider
multi-directionality. Multi-directionality refers to the feature
of updating behaviors when the behaviors it depends on
are updated, but also updating the dependencies when the
dependent behavior is updated. The interested reader will find
a more detailed discussion of these issues in [1].

B. REACTIVE PROGRAMMING À LA ReactiveX
Several of the mainstream reactive tools used by practitioners
today adopt similar concepts and abstractions as those found
in ReactiveX, namely an Application Programming Inter-
face (API) for asynchronous programming with observable
streams of events. In this section, the semantics of ReactiveX
is studied, as an alternative to FRP.

Reactive programming as proposed by ReactiveX, pro-
vides constructs that operate on discrete values that are emit-
ted over time. The main abstractions in this kind of languages
are the Observables. An observable emits a stream of events
(or data) over time, not necessarily at pace. As behaviors in
FRP, observables are composable and new observables can
be made from simpler ones. Additionally, ReactiveX pro-
poses several operations to act on observables allowing them
to be filtered, merged, and transformed into new observables.
As an example, consider the following code:

Observable<Integer> varTimeMilliseconds =
Observable.interval(1,

MILLISECONDS);
Observable<Integer> varTimeMillisecondsx10

=
varTimeMilliseconds.map( ms > ms
∗ 10);

The first line declares observable varTimeMilliseconds
using the interval function. Such function creates an observ-
able that emits integers starting in 1 and increasing by one
unit each millisecond. Then, the second line declares an
observable varTimeMillisecondsx10 using the map function
to map an anonymous function to multiply by 10 each value
emitted by varTimeMilliseconds.

In order to define reactions to specific data or event pat-
terns, the ReactiveX languages provide observers and an API
with the subscribe method. The subscribe method accepts
three functions as parameters. Those functions are bound to
three specific stages in the life cycle of observables: onNext,
onError, and onCompleted. The function bound to the onNext
stage is invoked each time that a new value is emitted. The
function bound to the onCompleted stage is invoked after
onNext is invoked for the last time, as long as an error is not
encountered, which would invoke the function onError. More
than one observablemay be attached to a specific stage. As an
example, consider the following code:

varTimeMillisecondsx10.subscribe(
s > print(s + ‘‘has been emitted.’’),
e > print(‘‘error occurred: ’’ + e),
() > print(‘‘Emission completed.’’));

The subscribe function receives three lambda functions,
and they are bounded respectively to the onNext, onError,
and onCompleted stages of the observable life cycle. The
functions bound to these events are called observers.

Regarding the implementation, languages à la ReactiveX
suffer from some of the same problems found in FRP. Specif-
ically, observable behavior may depend on ‘‘when’’ data is
emitted. A ‘‘Hot" observable starts emitting data as soon as it
is created and, instead of, a ‘‘cold" observable starts emitting
data as soon as an observer is subscribed. ReactiveX and
similar languages may also suffer from glitches. Naive imple-
mentations may produce scenarios where different observers
receive different streams of data from the same observable
[22].

III. ReactiveXD: DISTRIBUTED REAL-TIME REACTIVE
PROGRAMMING
This section introduces ReactiveXD as a new reactive real-
time distributed language. This language is used as an exam-
ple to discuss implications and implementation constraints.

As will be shown in the state of the art section (Section VI),
very few approaches have distribution and time management
as first-class citizen concepts. Thus, even though reactive
approaches propose a reactive style for concurrency, observ-
ables, events, reactions, and behaviors, distribution and time
are still treated in a traditional way. Distribution is then con-
trolled using local imperative primitives, and time is only con-
sidered implicitly, e.g., as a determinant of the order of events
in a computation. These are substantial restrictions in the
current context, where users and programmers are thinking
of new ways to use and benefit from the ubiquity of the inter-
net, mobile infrastructure, and real-time interaction. Hence,
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exploring new ways to incorporate explicit distribution and
time management in programming languages seems imper-
ative. Furthermore, several of the abstractions and imple-
mentation difficulties presented in the previous sections have
more complex and exciting counterparts when considering
reactive programming primitives with explicit support for
distribution and time manipulation.

To investigate reactive programming with explicit support
for distribution and time management, we propose Reac-
tiveXD. ReactiveXD is an object-oriented reactive program-
ming language with explicit support for distribution and
explicit management of time. A reactive language with these
features would facilitate the design, implementation, and evo-
lution of modern massively distributed and dynamic applica-
tions. In this section a minimal set of ReactiveXD features are
proposed, while semantics, implementation problems, and
design implication are further explored in the rest of the paper.

ReactiveXD has three main concepts: Atomic Distributed
Events (ADE), localization and time. ADEs are events occur-
ring at specific nodes in a distributed application. In the
paper at hand, an event is atomic to imply that it is the
minimal possible event, thus complex events and event pat-
terns are composed of atomic events. Consider, for example,
a traditional programming language, there, one may consider
method calls and memory access as atomic events. How-
ever, a execution method is not considered an atomic event
because it may contain several method calls and memory
access events. Similarly, a pattern of atomic events, such
as a sequence of five events, is not considered an atomic
event. These atomic events are the fundamental detectable
unit, meaning that ReactiveXD runtime is aware of them and
can detect them. But ReactiveXD does not restrict atomic
events to local context, the runtime is aware of the distributed
topology of the application. Note that several nodes may
compose the distributed application, and each node represents
an individual computer or a virtual machine inside a phys-
ical computer. An event is atomic and distributed to denote
that it happens atomically and that remote nodes may detect
them, as will be reviewed later in Section IV. In the case of
ReactiveXD, the call to a specific method is the only Atomic
Distributed Event. The information of a distributed event,
occurring in a node, is communicated to the other nodes with
an event message sent through the network.
The second important concept is localization (i.e., space),

an application implemented with ReactiveXD can predicate
over the localization of a specific ADE and react accordingly.
Localization may be absolute (e.g., using a fixed naming
scheme like ipv4 addresses) or relative (e.g., using a dynamic
naming scheme representing groups of hosts).

The third concept is time, a logical clock (vector clocks) on
each node tracks time. Thus all clock readings are local to the
node, and no global time is needed. Time in ReactiveXD is
always relative. Thus the information of an ADE may arrive
at different moments on different nodes. However, using
logical clocks, the programmer may predicate over partial
orders of events, e.g., she may predicate over a causal relation

between two events. As will be seen later, causal relations are
only one of the several ways that programmers may address
time explicitly in ReactiveXD. For example, they may also
use linear temporal logic to address more sophisticated time
based predicates.

Let us now present some examples to clarify these main
concepts. Consider the following code showing a distributed
observable:

Observable<Event> kp = new
Observable (call(∗ UIController.

keyPressed(∗)) && !localhost);

The previous code defines a variable kp of typeObservable of
events of generic type Event. TheObservable constructor has
as a parameter an event predicate expression. The event predi-
cate expression uses a syntax similar to that of aspect-oriented
languages. Thus, the constructor will create an observable
that emits events matching the expression. Note that this piece
of code has distributed semantics already. The expression will
match all the method calls to method keyPressed on objects
of type UIController on any host. Additionally, the local-
ization of events is restricted, and the observable kp will
not emit events happening in the host where the observable
is deployed. Thus, the code provides enough flexibility to
predicate over atomic events, e.g., method calls and event
localization.

Let us now consider a more complex piece of code involv-
ing explicit time manipulation:

Observable<Event> cmkp = new
Observable (call(∗ UIController.

mouseButtonPressed(∗))
&& !localhost && !causal);

The previous piece of code declares an observable cmkp
emitting mouse click events happening on remote hosts and
that are not causally related. Thus, the events are not only
remote, but the expression considers a temporal relation,
in this case causality. The causality relation is defined as
proposed by Mattern in [17] where two events,A and B, are
causally related if A happens before B in the same host, if B
happens after a message notifying event A has arrived, or if
B is causally related to an event C that is causally related toA
(transitivity).

Events that are not causally related are called concurrent,
so the predicate !causal is truewhenever the event being
evaluated is concurrent with the previous evaluated event (i.e.,
concurrent means no causal relationships among them). Note
that this code already considers time in its semantics.

It is now worth introducing a more complex time related
predicate using temporal logic:

Observable<Event> cpxObs = new
Observable (always(kp next(cmpk)));

In the previous code, the observablewill emit an event each
time the formula is violated. The formula states that it should
be always true that: immediately after the observable kp
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emits an event, the observable cmkp will emit an event. This
semantics is quite complex but is encoded easily in a pred-
icate using linear temporal logic. ReactiveXD also supports
operators such as eventually, weak until and strong until.
ReactiveXD minimal language is big enough to explore

the semantics of distributed reactive languages. It already
provides advanced features and presents implementation
and semantic challenges. For example, ReactiveXD may
be affected by distributed glitch problems. Ideally, every
change in a reactive environment is instantly propagated;
nevertheless, due to physical constraints, this behavior hardly
ever happens. Reactive non-distributed environments have
reached efficient glitch management through dependency
graphs. However, in a distributed environment a glitch is
not only affected by naive implementations of updates in
the dependency graph, but also by message ordering prob-
lems during the propagation of event information in the dis-
tributed application. Glitch control in the entire system is
more complex due to network faults and global clock delays.
Glitches also cause inefficiencies in applications because
a glitch implies a recomputation. Similarly, the evaluation
model (push vs. pull) and the multi-directionality have more
complicated semantics when considering distributed reactive
programming.

Thus, the current set of features already provides a reactive
framework capable of detecting complex event behaviors in
real-time and reacting accordingly. It is powerful enough
to predicate over distributed events and complex relations
between them. Explicit timemanagement does not only imply
real-time support, but it also implies explicit manipulation
of advanced time-based predicates, including detection of
causal relations, concurrent events, and detection of relations
determined by LTL formulas. Implementing a compiler for
such a language is not a trivial task. The semantics must be
carefully defined and fine-tuned. The next section introduces
a semantic and formal verification tool to facilitate the study
and design of reactive real-time language’s semantics.

IV. DRRF: A DISTRIBUTED REACTIVE REWRITING
FRAMEWORK
This section introduces Distributed Reactive Rewriting
Framework (DRRF) as a reactive event-based semantic
framework with explicit support for distribution, concurrency
and time management. The proposed framework can be used
for the specification of executable semantics of reactive dis-
tributed languages, and as a formal verification system of
programs written using reactive distributed languages.

A. DRRF OVERVIEW
Before presenting the details of DRRF, the general usage
and purpose of executable semantics frameworks and formal
verification systems will be discussed.

Imagine a programmer willing to create a reactive pro-
gramming language to address real-time functionality in a
distributed application. The programmer may select a set of
features to include in the language and proceed to imple-

ment a compiler. This is a common methodology to design
programming languages, where the semantics and the func-
tionality are directly tested and re-engineered during the
compiler’s implementation. This methodology uses the orig-
inal programming language (the one used to implement the
compiler) as the primary design artifact. The methodology
is also perfectly valid, in the sense that the programming
languages, and the abstractions they provide, are power-
ful thinking and design tools. However, if the programmer
detects a problem in the original selection of features or in
the semantics enforced by the compiler design, changing
such decisions may be too costly and time-consuming. Even
worst, if the compiler is already being used for production,
the programmer may prefer to keep these wrong decisions
to grant backward compatibility with those programs already
using the language (this is a common situation in mainstream
languages).

Another alternative that the programmer has is to undertake
a preliminary design phase using a tool to help her simu-
late the language’s semantics. She may also use the tool to
verify properties that she wants to enforce on the programs
developed with the programming language. DRRF is one of
those tools, providing an environment for formal executable,
semantic specification and formal verification of properties.
Using DRRF provides at least two advantages, design deci-
sions may be altered and tried with less effort and cost, and of
course, the designer will have a formal model of the intended
semantics.

Suppose, for example, that the programmer decides to
have the following desired features for the programming
language: i) observables and observers, ii) explicit distribu-
tion, and ii) explicit time constrains detection and manipu-
lation. These previous features are fulfilled by ReactiveXD.
She may specify the formal semantics using rewriting logic.
She then may use the tool to simulate the programming
language (executable semantics), create programs using the
language, and verify those programs. She may do all this
from scratch or start from a framework such as DRRF that
already provides several of the building blocks needed to
design distributed reactive real-time programming languages.

1) ABSTRACTIONS PROVIDED BY DRRF
DRRF design metaphor assumes that there is a base dis-
tributed application that is monitored by an observing frame-
work and that the observing frameworkmay influence or alter
the base application’s behavior. Thus, the first thing that
must be modeled by DRRF is the base application. A set
of processes emitting messages models the base application.
Those processes are assumed to be running in independent
nodes (computers). The action of emitting a message is con-
sidered an event, and these events are tagged with readings of
logical clocks (i.e., there is no global clock in the distributed
application). Therefore, the framework provides mechanisms
to model the processes, the messages, logical time, and the
communication mechanism (e.g., unicast vs. multicast).
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The second abstraction is the observing framework. In this
context, DRRF provides mechanisms to predicate over events
occurring in the distributed base application, andmechanisms
to specify reactions to those events. DRRF may detect simple
atomic events, such as message sending events, or more
complex events such as a sequence of events, or a pattern
of events related by a time-dependent formula (e.g., an LTL
formula). Once an atomic event or a complex event occurs,
the observing framework may react and alter the base appli-
cation’s behavior through new emitted events, e.g., calling a
method of the application API. DRRF provides abstractions
to monitor distributed atomic and complex events and to
evaluate complex time-dependent formulas. Note that DRRF
does not assume what kind of abstractions the programmer
will implement, instead it provides basic building blocks to
model reactivity, complex patterns of events, and complex
time predicates.

To create such a framework, DRRF was developed in
Maude [6], a declarative and reflexive language and system
that is based on rewriting logic [18]. In Maude, each com-
putation corresponds to an efficient deduction by rewriting
rules [6], [8]. Maude has two kinds of modules: functional
modules and system modules. Functional modules corre-
spond to equational theories defining data types and oper-
ations over those types. On the other hand, system modules
specify rewriting theories. These theories define data types,
equivalence classes, operators, equations and rewriting
rules.3 The following sections detail the implementation of
the framework in Maude.

B. DESIGN CONSIDERATIONS
The distributed interaction of processes (i.e., not the local
sequential semantics of the processes running on each node
of the distributed application) is one of the main concerns
in the design of DRRF. For example, the interaction through
reactive abstractions like observables and observers is one of
the aspects to tackle with DRRF. Thus, instead of modeling
local sequential semantics, for example, using a shared mem-
ory model and a model for sequential processes, we model a
working distributed application that may be observed by the
reactive abstractions proposed by a given reactive language.
Such a language, e.g., ReactiveXD, will monitor distribution,
concurrency, and time management explicitly, then, it will
create complex and interesting interactions with the base
application. Modeling those interactions is the primary pur-
pose of DRRF.

To model the semantics of reactive distributed languages,
DRRF includes the following building blocks: base appli-
cation, communication model, and reactive framework. The
base application models the distributed application that will
be observed. The distributed base application is modeled
as a set of several nodes processing information and com-
municating with each other via messages. Distribution on
the base application may be implemented with an alter-

3More details about Made may be found at [6]

native paradigm, i.e., not a reactive language, e.g., it can
be implemented through an imperative distributed language.
Next, the communication model defines how messages are
distributed (e.g., broadcast, multicast, unicast); again, this
distribution paradigm is a property of the base application and
not of the reactive framework. Finally, the reactive framework
provides the core elements and abstractions for observers,
reactions, concurrency, distribution, and time management.
DRRF provides the elements described above as building
blocks, so the language designer may combine and alter them
as desired. Similarly, the software engineer may combine and
bend these core elements to model and verify properties on
distributed applications developed using reactive languages.

The implementation of each building block of the semantic
framework is described next.

C. THE BASE APPLICATION
The base application is modeled as a set of concurrent dis-
tributed processes. These processes may be of two different
types: consumers and producers. Producers emit messages
and consumers consume those messages, the emission and
consumption of messages are the core events of the dis-
tributed application. These events, inside consumers and pro-
ducers, may be observed by instances of reactive abstractions
(e.g., observers).

1) THE SEMANTICS OF CONSUMERS
Each consumer instance is identified with a natural number.
Internally, all the consumer instances have the following
attributes :

• current-msg: It indicates the message that is being con-
sumed.

• freq-C: It indicates the frequency at which the consumer
reads a message. This attribute is invariant throughout
the execution.

• actual-size: It represents the number of data blocks that
have been consumed from the current message. If the
consumer is not consuming any message, the value is 0.

• logs: It saves information about messages that have been
consumed.

• clock-c: It stores the value of the vector clock associated
with the consumer. A vector clock is modeled with a
vector data structure where the individual clock, corre-
sponding to each consumer or producer, is modeled with
an integer at a fixed position in the vector. For example,
the clock of Consumer 2, is in the second position of
the vector. Thus, each time that a consumer receives a
message, it compares the vector clock attached to the
message with its vector clock and updates the registers
accordingly. For a detailed discussion of vector clocks
and causality, see [17]).

• limit: It is a numerical value indicating the maximum
time for which the consumer is available to consume.

Thus, consumers are modeled as entities consuming mes-
sages at a specific pace (frequency) and with a maximum
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capacity of message processing (limit). The consumer clock
is modeled using a vector clock, which may allow causal-
ity detection. Vector clocks are chosen instead of simple
logical clocks to allow a broader range of possibilities for
language designers. Moreover, each consumer records infor-
mation about the messages it has consumed. That information
may be used later to predicate over the order of message
consumption.or more sophisticated time predicates.

2) THE SEMANTICS OF PRODUCERS
Each producer instance also is identified with a natural num-
ber, and the producer instances have the following attributes:

• cnt-prod: The number of messages issued by the pro-
ducer.

• frequency: This attribute is invariant throughout the exe-
cution and indicates how often the producer sends a
message.

• sizes: This attribute is invariant throughout the execution
and notifies the number of data blocks associated with
the messages issued by the producer.

• Notice-logs: Log of messages produced and consumed.
• clock-p : It stores the value of the vector clock associated
with the consumer. A vector clock is modeled with a
vector data structure where the individual clock corre-
sponding to each producer or consumer is modeled with
an integer at a fixed position in the vector. For example,
the clock of producer 1, is in the first position of the
vector. Thus, each time that a producer emits a message,
it updates its vector clock and attaches the vector clock
reading to the message. For a detailed discussion of
vector clocks and causality, see [17]).

• end: The maximum number of messages that can be
issued by the producer.

D. TIME MANAGEMENT
Vector clocks [17] are used as the main abstraction for time
management (see [28] for a detailed discussion of time man-
agement on distributed applications). Hence, every message
issued is labeled with a vector clock reading. That reading
identifies the moment where the message was issued. Each
node in the distributed system has a vector clock.

One of the most relevant feature to use from vector clocks
is the detection of the causal relation. This feature allows pro-
grammers to take into account relationships of order among
distributed messages. Figure 1 shows a possible behavior of
a distributed system with three processes, {P1,P2,P3}. The
vector clock of the process P3 when the event e3,3 occurs
(notice that the event ei,j refers to the event number j of the
process i) allows to infer that the processP3 is causally related
to processes P2 and P3, however, in the event e3,2 the same
inference may not be done.

Now, using MAUDE specification, the Module VECTOR
was defined to implements vector clocks. The clocks are lists
of natural numbers, where the length of the list represents the
number of processes present in the distributed application.

FIGURE 1. Time model of a distributed system composed by 3 processes.

A piece of the module which defines vector clocks is shown
below.

1 mod VECTOR is
2 pr NAT . pr LIST{Nat} .
3 sort Vector .
4 subsorts Nat < List{Nat} < Vector .
5 op tick : Vector Nat > Vector .
6 op _<v_ : Vector Vector > Bool .
7 op maxv : Vector Vector > Vector .
8 op ic : Vector Nat > Nat .
9 ...
10 endm

The first line of VECTOR initializes the module. The second
line indicates the use of the module of natural numbers (NAT)
and a list of natural numbers . Line 4 specifies the relation
between natural numbers, the natural numbers list and the
vector. The following lines (5 - 8) define the operations for
managing vector clocks. The operation _ < v _ defines the
order of the vectors, the operation maxv(V,V’) compares two
vectors and the operation ic(V,N) returns the state of the
specific vector clock V at the position N .

E. COMMUNICATION MODELS
The semantics of communication models is now defined
following ideas presented in [24]. The base application may
implement one of these four models: broadcast, multicast,
unicast, unordered unicast. This section describes the imple-
mentation of unordered unicast and broadcast semantics.

1) UNORDERED UNICAST MESSAGES
With unordered unicast semantics, the producers emit mes-
sages without specifying the emitter or the recipient. Thus,
any producer may emit a message, and any consumer may
consume any message. The base application is modeled by
producers producing massages and consumers consuming
those messages. Each message is produced once and con-
sumed only once. Below, the formal message definition in
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FIGURE 2. Definition of the Broadcast module.

Maude for the communication model is presented. In the
code, the operation Unordered-msg defines a constructor
for messages of this type. The constructor receives as param-
eters three natural parameters and a vector. It then creates
a unique object of type Msg. The natural numbers in the
data structure represent the id of the message; the size of
the message; the frequency of the producer that emitted the
message; and the vector clock reading of the producer when
the message was sent.

1 op Unordered msg : Nat Nat Nat Vector
> Msg.

2) BROADCAST MESSAGE
The Broadcast communicationmodel is implemented in three
stages as follows. First, the producer creates a message of
typebroadcast_ from _, which contains a tuple with the
identifier of the producer, the size of the message, and the
vector clock representing the vector clock of the producer
when the message was emitted (a piece of code of the Broad-
cast module is shown in figure 2). Then, once the message
is emitted, the dynamic rewriting rules will create a second
message of type multicast_from_to, which is similar to
the original one but has an additional field with the set of
identifiers of all consumers in the system. Finally, utilizing
the rewriting rules, the system creates a unicast message for
each consumer in the application, specifying the origin and
corresponding destination, using the type message msg _
from _ to _.

The following code shows a rewriting rule transforming
messages of type broadcast_from_ into messages of type
multicast_from_to:

1 rl [broadcasting]:
2 { (broadcast ((N,T,TS)) from PR)
3 (Names| NA |) Con }
4 =>
5 { (multicast ((N,T,TS)) from PR to NA )
6 (Names| NA |) Con }.

The rule specifies that if the configuration contains: a mes-
sage of type broadcast _from_, a registry with the identifiers
of all consumers (Names NA ) and other objects (Con), it will
create a new configuration deleting the broadcast_from_mes-
sage, adding a new message of type multicast _from_to, and
leaving the registry and the other objects unaltered.

F. THE DYNAMIC BEHAVIOR OF THE BASE APPLICATION
As the static elements of the model (Producers, Consumers,
Messages) were previously described, this section presents
the dynamicmodel. InMaude, the dynamics of themodel will
be specified using rewriting rules. Those rules are declarative,
and they specify how to rewrite the configuration if a specific
pattern is present. The model can not predict the order of
applicability of the rewriting rules, and instead, when the
system is model checked, it will apply the rewriting rules in
all possible orders, generating and evaluating several paths.

Tomodel the dynamic behavior of the base application, it is
essential to specify how messages are produced and emitted
and how clocks are altered. In DRRF, there is not a centralized
global clock. Instead, each consumer and producer has a
clock. Producers emit messages in one tick of the clock, and
consumersmay use several ticks to consume amessage, being
the number of required ticks dependent on the size of the
message that is being consumed.

Each vector clock advances in an independent way sim-
ulating a decentralized model. In the decentralized model,
the vector clock of each node advances while the rest of the
clocks in the system remain fixed. This behavior is mod-
eled using the rewriting rules [update-time-Producer] and
[update-time-Consumer] for Producers and Consumers,
respectively.

One Producer can send a message if it is in the correct
frequency, and it does not exceed the maximum messages
allowed. In this way, the rule [send-msg] may change the
data flow adding a new message to the configuration. This
message becomes available for any Consumer. A Consumer
can consume messages at the specified pace (frequency)
without exceeding the maximum indicated limit. The rule
[Consumer-msg] reads a message and stores it in the
current-msg attribute. The rule [Consuming-msg] models
the consumption of information of a message that is inside
a Consumer. The message will be consumed during a fixed
number of ticks, taking into account the internal clock of
the consumer. When a message is completely consumed,
the rule [end-msg] is responsible for releasing the current-
msg attribute so that the consumer continues reading avail-
able messages.

Figure 3 shows the code for the initial state of a reactive
distributed application modeled in Maude with 2 Producers
and 3 Consumers. The Producers have different production
frequencies, and their message limits are the same. In this
way, Producer1 will produce more messages than Producer0,
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FIGURE 3. Initial state of a reactive distributed application in Maude.

and at the end of the execution,Consumer3 will be the one that
has consumed the most messages. On the other hand, each
consumer has different time limits.

The most relevant rewriting rules for an unordered unicast
model are described next.

1) Rule [update-time-producer]

1 crl [update time Producer] :
2 { < PR : Producer | ATS, clock p:

CL, end: END, cnt prod: CT’ >
Con }

3 =>
4 { < PR : Producer | ATS, clock p:

tick(CL,PR), end: END, cnt
prod: CT’ > Con }

5 if CT’ < END.

the rule states that each producer will increase its clock
independently by one. In this case the details of increas-
ing the vector clock by one are hidden by the operation
tick. Message emission does not depend on the tick of
the clock, instead it depends on the clock value and the
specified frequency.
The code display the implementation of the rule.The
keyword crl indicates the initiation of a conditional
rule with the condition shown in line 5. This rule is
only applied if the condition is true. In this case, only
if the number of emitted messages (CT’) is below the
specified maximum (END). The lines between 4 and 5
define the rule, specifying the configuration before and
after applying the rule.

2) Rule [send - msg]

1 crl [send msg]:
2 { < PR : Producer | ATS, cnt

prod: N, weights: T,
frequency: FR, clock p:
TS, end: END > Con }

3 =>
4 { < PR : Producer | ATS, cnt

prod: s(N), weights: T,
frequency: FR, clock p:
tick(TS,PR), end: END >
Unordered msg(PR,N,T,TS)
Con }

5 if FR divides ic(TS,PR) /\
6 (END > N) /\
7 (ic(TS,PR) =/= 0).

The rule models the emission of a message. The imple-
mentation uses a conditional rule stating that the rule
will only be applied if the value of the individual vector
clock corresponds to an integer (greater than 0) mul-
tiple of the frequency, the maximum number of mes-
sages has not been emitted yet and the producer clock
is already ticking (i.e., has started its computations).
Once the conditional is validated, the Producer sends
a message and increments its internal clock by one
(one tick). Just after the rule [send-msg] is applied,
an Unordered-msg(PR,N,T,TS) is added to the con-
figuration where PR represents the identifier of the
Producer, N designates the number of messages, T rep-
resents the number of ticks required to get the message
consumed, and TS is the value of the vector clock when
the message was emitted. Note that the clock value
attached to the message is the one before the tick.
Lines 2 and 7 specify that the rule [send-msg] will be
applied if a Producer satisfies the proposed restrictions.
Line 6 − 7 indicates the condition to be evaluated.
The Producer must have a permitted frequency to emit
FR divides ic(TS,PR) and must not have exceeded the
message limit END > N initializing the vector clock
ic(TS,PR) =/= 0. Finally, line 4 specifies the configu-
ration after applying the rule where the argument cnt-
prod and the producer vector clock are increased by
one unit, and the message is finally attached.

3) Rule [consumer-msg]

1 crl [Consumer msg]:
2 {Unordered msg(PR,N,T,TS)
3 < CS : Consumer | ATS,current

msg:none,freq C: FR,
clock c: CL,limit: LT >
Con }

4 =>
5 {< CS : Consumer | ATS,

current msg:Unordered
msg(PR,N,T,TS), freq C: FR,
limit: LT

6 clock c: tick(maxv(CL,TS),CS)
> Notice msg(CS,PR,tick
(maxv(CL,TS),CS)) Con }

7 if (FR divides ic(CL,CS))
8 /\
9 ic(CL,CS) <= LT.
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A consumer may consume a message when the value
of the individual vector clock corresponds to an integer
that is a multiple of the frequency, and additionally
the maximum number of consumed messages have not
been reached yet. Additionally, when a consumer reads
a message, a notification is issued to the DRRF aiming
to inform the producer about the consumption of the
event, and then the consumer vector clock is updated.
The rule [Consumer-msg] implementation, shown in
the code above, specifies a message reception event.
Lines 1 to 3 define the name of the rule and the trig-
gering event. There, the triggering event is the mes-
sage defined in the previous rule ([send-msg]). The
message Unordered-msg(PR,N,T,TS) is taken from
the configuration with PR representing the identifier of
the Producer, N designating the number of messages,
T representing the number of ticks required to get the
message consumed, and TS containing the value of
the vector clock on the producer when the message
was emitted. Lines 5 to 7 contain the actions after the
rule is applied. At line 5 the attribute current-msg
gets the message and at the same line the operation
maxv updates the consumer vector clock. After the
application of the rule, the vector clock is consistently
updated. The conditions at lines 9 − 11 are similar
to the conditions presented before for the rule [send-
msg], nevertheless consumers are particularly limited
in terms of consumption by its vector clock.

G. REACTIVE FRAMEWORK
Section II introduced ReactiveXD, a reactive programming
language with explicit support for distribution and time man-
agement. The language provides observables, atomic dis-
tributed events, localization, and time-aware predicates. With
such building blocks explained above, we can now spec-
ify the executable semantics of the language. To introduce
the semantics, a series of experiments addressing several
abstractions and mechanisms found in ReactiveXD will be
described.

1) OBSERVABLES AS LTL FORMULAE
Observables may be defined using linear-time temporal logic
(LTL) predicates, which generate events each time the LTL
formula is violated. In the DRRF implementation, the module
LTL defines the temporal logic operators asMaude operations.
With the aim of giving the truth value for an LTL formula
in a particular configuration, the operation verification is
defined as having the following attributes: an LTL formula
and a specific configuration where that formula needs to be
evaluated. The operation verification is defined as follows:

1 op verification: Ltl Configuration >
Ltl.

The operation verification recursively defines the seman-
tics of temporal logic using the LTL semantics, the author
in [10] provides detailed discussion of LTL semantics.

An example of LTL semantics is the formula []φ ([] means
‘‘Always’’), which is false if there is a moment during the
computational trace where φ is false, otherwise, it is true.
In contrast, the formulaEφ (E means eventually in the future)
is true when at any moment φ is true, and it is false if during
the entire execution φ is never true. These two LTL formulas
are modeled in Maude within the operation verification,
replacing φ by an LTL predicate, as shown next:

1 eq verification([](LT),Con) =
2 if (verification(LT,Con) == false)
3 then false
4 else [](LT) fi .
5 eq verification(E(LT),Con) =
6 if verification((LT),Con)
7 then true
8 else E(LT) fi .

2) OBSERVERS
Observers (also called checkers) are defined by the mod-
ule SYSTEM-CHECK and use a LTL formula to monitor
specific behaviors. The identifier of the observable deter-
mines the association of an observer with an observable
(Consumer or Producer). A checker and the observable it
is associated with must have the same identifier (remember
that in Maude, the identity of and object depends on its type
and its identifier.) When the LTL formula that the checker
verifies is not fulfilled, a reaction can be generated, if such
a reaction has been defined. Figure 4 shows an example
of the association between an Observer (checker0) and an
Observable (Producer0).

3) USING THE verification OPERATION

1 crl [checker Predicate] :
2 { < RC : checker | Formula: TL, finish:

false, count: N, end c: END > Con }
3 =>
4 { < RC : checker | Formula:

verification(TL,Con), finish:
false, count: s(N), end c: END > Con }

5 if N <= END.

The code presented above illustrates how the dynamic
behavior of the operation verification is defined. The behav-
ior of observers is modeled through the rewriting rule
[checker-Predicate] allowing to verify the behavior of the
associated observer. In DRRF, this rule is modeled as shown
in line 4 with the operation verification that has as a param-
eter an LTL formula. Additionally, the maximum number of
steps that are allowed in the computational trace is defined by
the attribute end-c, as this is a required limit to have an accu-
rate evaluation of Always and Eventually LTL predicates.
4) DEFINITION OF PREDICATES TO GUARD BEHAVIOR
The module PREDICATES defines all the predicates required
to specify behaviors. The code shown below defines the basic
operation |-, defined within the module.
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FIGURE 4. Association between a Producer and a Checker.

1 op _| _ : Sys Ltl > Ltl .
2 op _Causality_ : Nat Nat > Pred .
3 Causaly detection over

Consumers
4 ceq{< RC:Consumer|ATS,clock c: VC~>

Con}| (RC Causality SE)=true if ic(
VC,SE) > 0 .

5 eq {Con}| (RC Causality SE)=false[
owise].

Such operation is used to define when a predicate is
false or true. At line 4 ceq marks the start of a conditional
equation claiming that the clock of the individual VC (Vector
Clock) at position SE must be greater than 0. Line 5 spec-
ifies that if the previously defined condition is not fulfilled,
the value of the predicate will be false. To illustrate, the oper-
ation can be used to define the predicateCausality that checks
if there is a causal relationship between consumers SE and
RC.

Now the formal model for ReactiveXD is complete. It has
been modeled in DRRF using observables (modeled in the
CONSUMER and PRODUCER modules), and observers that
have been modeled in the SYSTEM-CHECK module. Addi-
tionally, the dynamic behavior of the reactive application,
as well as the data flow represented by the communication
models (Broadcast or Unordered Unicast), have been speci-
fied by the module RULES. Note that the specification even
allows glitch detection using predicates over causal relations.

V. EVALUATION
DRRF provides a configurable formal framework capable
of specifying different executable semantics of reactive dis-
tributed languages and implementing verification tools for the
specified languages. DRRF is also capable of analyzing the
dynamic behavior of distributed reactive applications and par-
ticularly the verification of specific execution properties. One
advantage of analyzing distributed reactive systems using a
formalism-based framework, such as DRRF, is the possibility
of simulating the system execution before implementing it.
The simulation of the execution ensures the verification of
properties mitigating unexpected behaviors that would come
up during a real execution.

The following three scenarios show how DRRF may
be used when designing reactive languages and distributed
applications. The first scenario presents the specification of
an executable semantics for ReactiveXD configured with
causality detection (vector clocks), and temporal logic predi-
cates. This scenario shows how LTL predicates may be used
to detect complex patterns in a simple distributed application

using broadcast communication as the primary mechanism
for message distribution. The second scenario uses the same
specification of ReactiveXD to show how to predicate over
and verify causality properties in an application where the
message order gets disrupted. The last scenario models how
ReactiveXDmay be used to detect multi-step security attacks
in an IoT distributed system with multiple nodes.

A. SIMULATING A ReactiveXD APPLICATION WITH A
BROADCAST COMMUNICATION MODEL
The first scenario, shown in figure 5, simulates a ReactiveXD
application with a broadcast communication model. The sce-
nario presents a producer and three consumers. The producer
broadcasts amessage to each consumer.Messages are emitted
in a specific order (first the black message and then the white
message), and they may be received in a different order by
each consumer. An observer with an LTL formula is observ-
ing a stream of events from the producer. Note that the stream
of events may include message sending events and message
reception events, but they may also involve other events, e.g.,
memory updates. Consumers will acknowledge via amessage
when they have received a message from the producer.

To specify such scenario in DRRF, it must be first config-
ured with suitable components. In this case, DRRF has been
configured with the semantics of ReactiveXD, namely vector
clocks, casual order, temporal logic predicates, distributed
semantics and a broadcast communication model for the
base application (i.e., the application that may be observed).
After the static configuration with the initial conditions was
defined, the scenario to simulate and verify properties speci-
fied in the LTL formula was executed.

Figure 6 presents an example of an initial state for a Reac-
tiveXD application with a broadcast communication model.
This application is composed of four observables (one Pro-
ducer and three Consumers) and one observer. The latter is
subscribed to one of the Producers (Producer0). Note that
Observer0 contains the formula E(Order 0) in line 8, and
Order 0 is a predicate defined in the PREDICATES module
those values true where the Observer0 finds at least two
messages that have been consumed in the wrong order, and
false otherwise. Moreover, the Observer0 will monitor if
there is an error in the order of data consumption at the
Observable (Producer0).
Then, the model is executed and properties violations are

checked. When the command SEARCH is executed, more
than 650 states were found, where the data generated by
Observable0 was being consumed in an incorrect order. For
example, one error is presented in figure 7. Note that the
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FIGURE 5. Representation of a ReactiveXD application with broadcast communication model.

FIGURE 6. The initial state for a ReactiveXD application with a broadcast communication model.

attribute Notice-logs of Observable0 in line 5 contains inter-
esting information about the reception of messages by all the
Consumers. Particularly, Notice-logs shows the evolution of
the system:

• Message 0 was received by Consumer 1, in the time 5 of
the Producer clock and in the time 3 of the Consumer
clock.(|0; 5; 1; 3|)

• Message 0 was received by Consumer 2, in the time 7 of
the Producer clock and in the time 4 of the Consumer
clock.(|0; 7; 2; 4|)

• Message 1 was received by Consumer 2, in the time 8 of
the Producer clock and in the time 1 of the Consumer
clock.(|1; 8; 2; 1|)

From these logs, one error in the order of consumption of
messages byConsumer2 was detected, for instance,message1
was read by Consumer2 in time 1 (on the consumer’s internal
clock) while message0, generated before than message1, was
consumed much later, 4 ticks later. This case reveals an issue
in the communication (delay, interruption, re-transmission,

etc.) that caused message1 to be consumed before message0.
Line 7 in figure 7 shows this error, there attribute current-
mesg indicates that the current message is number 0, while
the attribute logs indicated that the previous message was
message number 1.

B. SIMULATING A ReactiveXD APPLICATION WITH AN
UNICAST COMMUNICATION MODEL
Reactive languages can be used to find states that break
FIFO (first-in, first-out) consistency, as researchers in [15]
have shown it. For example, imagine a distributed application
with one component sending messages and other components
receiving messages, as shown in figure 8, imagine then that
two observers are deployed in different nodes to check that
messages arrive in the order they were emitted. Now assume
the following scenario, one observer detects errors in the
order of message reception, but the other one detects the mes-
sage order correctly. Thus one of them has seen the incorrect
sequence (a FIFO consistency violation). ReactiveXD can be
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FIGURE 7. Error found for the ReactiveXD application with the broadcast communication mode.

FIGURE 8. Representation of a ReactiveXD application with a unicast
communication model.

used to implement observers for such applications and detect
the FIFO consistency violation. Next, DRRF will be used to
model this full scenario.

Figure 9 shows the specification of the initial state and
operational rules for a ReactiveXD application, with a unicast
communication model, implementing the scenario described
above. In order to implement this model, engineers just need
to use the model for unicast communication, and this changes
how communication is done. Nonetheless, the semantics and
syntax of the base application and the Observables are still the
same. This can be seen by comparing figures 6 and 9 where
the communication model is significantly different, but the
base application does not require any change. The specifica-
tion in DRRF shows Producer0 sending individual messages
to each Consumer , and observers looking for a consistency
violation. The predicates Order 0 of 1 and Order 1 of 0, in
lines 7 and 8, supports the FIFO consistency validation. Pred-
icateOrder 0 of 1 enablesObserver0 to verify ifObservable0
is consuming messages in a different order from the order
of emission at Observable1. Similarly, predicate Order 1 of
0 enables Observer1 to verify if Observable1 is consuming

messages in the same order as when they were emitted by
Observable0.

Once the specification is ready, it is executed in DRRF.
The Maude SEARCH command simulates all possible com-
putation states looking for reachable states where Observer0
detects an error in the consumption of messages coming
from Observable1 (i.e. predicate E(Order 0 of 1) evaluates
true ) but Observable1 detects a proper consumption. After
the execution, a FIFO consistency violation was found to
be breached in several states, having one of them shown
in figure 10. Line 5 contains the attribute Notice-logs of
Observable0, which has useful information about the recep-
tion of messages by all the Consumers. In this case Notice-
logs states the following:

• Message 0 was received by Consumer 1, in the time 4 of
the Producer clock and in the time 5 of the Consumer
clock.(|1; 3; 1; 1|)

• Message 1 was received by Consumer 1, in the time 3 of
the Producer clock and in the time 1 of the Consumer
clock.(|0; 4; 1; 5|)

The information contained inNotice-logs allows DRRF to
conclude that the predicate Order 0 of 1 is fulfilled and an
error in the order of consumption of messages by observable1
has taken place. On the other hand, the predicate Order 1 of
0 in line 6 has not been fulfilled, indicating that the order
of message consumption of Observable1 from Observable0
was correct. So, the order in which Observable1consumed
the messages from Observable0 was correct but Observable0
detected the contrary. Therefore, in this case, the FIFO con-
sistency condition was breached.

As shown in examples presented in sections V-A and
V-B, DRRF can be used to verify the behavior of Reac-
tiveXD applications, to simulate communication models,
and to simulate violation of properties in the application.
Note that not only consistency violations are being detected
through the formal specification, but actual constructs of
ReactiveXD are being modeled to make predicates over time
constraints. Even, new predicates may be defined to grant
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FIGURE 9. The initial state for a ReactiveXD application with a unicast communication model.

that a distributed reactive application makes adequate and
efficient prevention of glitches.

C. SIMULATING AN IoT ECOSYSTEM THROUGH
ReactiveXD
IoT ecosystems generally have different components on the
user side, e.g., IoT devices, IoT sentinels, among others.
These systems also have server-side components, generally
deployed on the cloud, e.g., IoT Hub, analytic servers, among
others. All these components interact and exchange informa-
tion among them. Thus, an IoT ecosystem can be considered
a distributed reactive systemwith a heterogeneous set of com-
ponents, where each component performs specific activities
that are essential to creating a complex IoT ecosystem. As IoT
is gaining more presence in different and new contexts, it has
become mandatory to design ways to protect all the data that
is managed by the different components of an IoT ecosystem.
Therefore, the proposal presented in the paper at hand can be
applied in defense of the IoT ecosystems helping to:

• Detect and prevent attacks over existing IoT services
deployed in production environments, revealing situa-
tions or traces that would not be considered by conven-
tional attack detection methods.

• Improve the design of a forthcoming IoT service through
the detection of failures in the data consumption by IoT
components.

To model an IoT ecosystem in ReactiveXD, it is neces-
sary to develop a set of modules that represent the dynamic
behavior of the ecosystem itself (the base application). Addi-
tionally, in this scenario, DRRF is used to simulate howReac-
tiveXD may be used to detect multi-step attacks in the IoT
ecosystem. A multi-step attack follows a predefined pattern
based on different consecutive phases, for example:

1) An IoT device accesses an Android market.
2) A malicious IoT mobile application is downloaded to

the IoT device.
3) The malicious IoT mobile application drops a payload

over the IoT device.

4) The payload executes a vulnerability scanning of the
entire IoT infrastructure to detect vulnerable servers
that are accessible only by authorized devices.

5) The payload performs a command injection over one of
the vulnerable IoT servers.

Tomodel an IoTmulti-step attack in ReactiveXD, themod-
ule Multi-step-attack 4 was implemented specifying the
dynamic behavior of an IoT ecosystem. It should be clari-
fied that in this specification, the Consumers and Producers,
i.e., the base application, are components of the IoT ecosys-
tem. An IoT device, such as an intelligent light bulb receiving
control messages from an IoT server, is modeled in Reac-
tiveXD as a Consumer. In the same way, an IoT device that
sends messages toward an IoT server, such as a temperature
sensor reporting values, is modeled as a Producer. At last,
an IoT device that sends and receives messages can be mod-
eled as Consumers and Producers with the same identifier.
Using ReactiveXD, a programmer specifies a security attack
pattern using LTL formulas or causal predicates. Observables
deployed in IoT ecosystem verify these formulas. An illustra-
tion of this scenario is shown in Figure 11.

This scenario was then simulated on DRRF. Consider
an IoT ecosystem composed of five Observables and one
Observer. This scenario has an initial state defined as shown
in figure 12. In order to model the multi-step attack, new
objects are included in this configuration. The Server objects
at lines 8-9 model an intrusion detection system and a host-
based intrusion detection system server found in the IoT
provider’s cloud. Likewise, Marker objects represent the
market place where the IoT devices access to download the
application (for a more detailed information of multi-step
security attacks see in [4]). Note, how simple is to define the
new semantics and elements for a particular scenario on top
of the base modules of DRRF. In particular, the semantics of
the attack was defined in the module MULTI-STEP-ATACK,
which uses the base application and observer modules.

The tree of the formula presented in the Observer at
line 11 is shown in Figure 13. This formula detects a

4https://masanar.github.io/DRRF/index.html
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FIGURE 10. Error identified for a ReactiveXD application with a unicast communication model.

FIGURE 11. Representation of an IoT ecosystem.

multi-step attack. For this reason, the predicates defined
within the MULTI-STEP-ATACK module, have the following
semantics:
• Acces-market-D(0): Whenever the Observable0 access
to the market, this predicate evaluates True.

• App-download-D(0): Is True if the Observable0 down-
load an app from the market, notice that in a multi-step
attack, this happens after access to the market.

• Payload-D(1): Whenever the Observable1 gets a pay-
load due to an app download, the predicate is True.

• Scanning-D(1): Is True whenever the Observable1 is
already infected with a payload, and this starts scanning
the IoT ecosystem.

In this sense, the LTL formula specifies the follow-
ing behavior: always that the Observable0 access to the
market, and eventually the Observable0 download an app,
the Observable1 gets a payload then eventually this payload

start scanning the IoT ecosystem. In other words, this formula
is True whenever an attack is taking place. At that moment,
theOberver0 may react by sending a shutdownmessage to the
IoT device. Note that the specification already has distributed
semantics and predicates over distributed messages. Starting
from the previous initial configuration, DRRF can check dif-
ferent executions for the IoT system until it detects traces that
evidence that a multi-step attack may happen. An application
designer may then act accordingly and correct the system to
protect it from multi-step attacks.

VI. STATE OF THE ART
This section summarizes related work from two differ-
ent perspectives, namely programming languages and for-
mal modeling. First, functional reactive languages, reactive
languages à la ReactiveX, and distributed reactive pro-
gramming are introduced, highlighting its differences with
ReactiveXD. Next, formal frameworks that have been used
to investigate the semantics of reactive distributed program-
ming languages are presented, comparing those approaches
with DRRF.

A. FUNCTIONAL REACTIVE LANGUAGES
Functional Reactive Programming (FRP) emerged as a
framework to program 3D computer graphics, providing
abstractions to model entities with continuous time-changing
attributes. The ability to model the dynamic behavior of
distributed global systems with heterogeneous architectures
promoted the research of FRP tools in other domains, and
several implementations were proposed. Fran [9] (Functional
Reactive Animation), the first functional reactive approach,
provides an extensive collection of elements to model inter-
active multimedia objects using behaviors and events. Behav-
iors are time-varying and reactive values, while events model
concrete conditions happening at discrete times. Fran Pro-
vides rich semantics based on Haskell, allowing the compo-
sition of complex behaviors from primitive ones. However,
to the best of our knowledge, no LTL libraries or causal-
ity libraries have been incorporated into Fran. Similarly,
in Frappé [7], authors implement FRP in Java, integrating
the behaviors/event model with Java Beans’ event/property
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FIGURE 12. The initial state for an IoT ecosystem modelled with ReactiveXD.

model, making any java component available to the FRP
framework. However, Frappé has several constraints, e.g.,
the events (represented with Java Beans) are synchronously
processed by a single-thread, generating dependency on a
single process.Moreover, Frappé lacks functionality tomodel
sophisticated time predicates such as LTL predicates or causal
relations. Flapjax [20] provides behaviors (continuous time-
varying abstractions) and event-driven reactive evaluation.
It was written as a Javascript library and can be used on top
of any javascript framework. As the previous approaches, its
main features are related to event reactivity and not to the
explicit and complex manipulation of time predicates.

Functional reactive programming has also been used in
specialized domains. For example, Procera [30] provides a
declarative language to express network policies at a high-
level reactive. It was designed to respond to the dynamic
changes happening in a traditional network. Procera sup-
ports events at the level of switches, access permissions,
bandwidth, and resource consumption during network traffic.
Another example of the applicability of FRP is Frob [25]
(Functional Robotics), this Haskell-based domain-specific
language for robot control provides abstractions such as
behaviors and reactivity components. Even though these
implementations exploit functional reactive programming,
they do not provide complex time predicates or explicit dis-
tribution.

The languages and frameworks discussed above provide
abstractions similar to the original Fran’s behaviors and
implement reactivity with events. However, their applicabil-
ity is limited to scenarios with simple time requirements, for
example, reacting in real-time to discrete events. In contrast,
ReactiveXD includes mechanisms to model complex time
predicates, supporting, for example, Linear Temporal Logic
(LTL) predicates, and causal predicates, involving ordered
patterns of several discrete events. Thus, traditional func-
tional reactive approaches react to atomic events or simple
sequences of events, such as Event-1 after Event-1, but
reactions to complex time relations such as causality, or real
parallelism, or temporal logic predicates, is outside its reper-

toire. Furthermore, ReactiveXD is aware of the distributed
environment and may predicate over event localization. Cur-
rent functional reactive approaches react to local events
(events in its own machine) but ignore events occurring in
other nodes. When programmers want to react to remote
events, they must implement manually the functionality to
make such remote events available as local events.

FIGURE 13. LTL aimig to detect a multi-step attack.

B. LANGUAGES AND FRAMEWORKS Á LA ReactiveX
Reactive Extensions (ReactiveX) was born around 2010,
designed by the computer scientist Erik Meijer at Microsoft.5

It proposes a model that consists of Observables that emit
data, a set of operators to modify the data, and Observers
that consume or ‘‘watch" the data. ReactiveX and similar
approaches [21], [27] propose then a flexible framework
extending the observer pattern. The extensibility comes from
the composition operators allowing compositions and explicit
manipulation of the streams of events emitted by observables.
However flexible, the operator framework provides only
limited capabilities regarding event compositions and time
manipulation. Consider for example the operators And and
join. The And operator receives two or more observables
and creates a new one that emits events each time that the orig-
inal observables provide an event, thus creating an opportu-
nity to react to a specific relation among the individual events.

5http://reactivex.io/
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This mechanism is flexible, but quite limited and primitive,
complex relations must be coded explicitly in an impera-
tive way in the source code. Instead, using ReactiveXD,
the programmer may create explicit declarative predicates to
express intended relation among events. Similarly, the Join
operator provides means to combine events from observables
whenever an event from one observable is emitted during a
time window of an event emitted by other observable. This
construct allows programmers to react to time constrains,
however, these mechanisms are not as expressive as causal
predicates or LTL predicates.

The ideas presented in this paper regarding ReactiveXD
may be ported to other languages. The semantics are not
attached or derived from a specific programming language.
Any programming language supporting object orientation
may be extended with the ideas presented here. However,
the implementation of a concrete compiler and a runtime is
still a subject of future work (some preliminary work may be
found in [4]). The algorithms written in ReactiveXD have a
more declarative form and may be used for reactive program-
ming on heterogeneous architectures, as the IoT examples
presented here. It may also be be used, for example, for the
instrumentation of big-data middleware.

C. DISTRIBUTED REACTIVE PROGRAMMING
Applying reactive abstractions to distribute programs is
called Distributed Reactive Programming. As in the sequen-
tial case, there is no consensus on the semantics of a dis-
tributed reactive framework. For the present discussion we
will classify the approaches in two groups: weak distribution
support and strong distribution support. We will first present
some of their characteristics, and then we will compare them
with ReactiveXD.

Approaches with weak distribution support provide a reac-
tive framework where distribution is treated as a second-class
citizen. Thus, the approaches may react to events generated in
remote environments, but the framework itself does not pro-
vide the means to make those events available to the reactive
components. Instead, some external component provides dis-
tribution support, i.e., distribution is handled with imperative
primitives. Most of the reactive languages presented above
are of this type. Most of them may react to distributed events,
but those events are generated with non-reactive constructs
(see for example [7], [21], [27]).

On the other hand, approaches with strong distribution
support do consider distribution as a first-class citizen in the
language. For example, in [22], authors propose to maintain
a decentralized dependency graph. In this case, the main
concern, and the main difficulty, is maintaining the infor-
mation of a distributed dependency graph consistently. It is
particularly difficult to cope with the dynamic behavior of
the system, handling for example new nodes in the topology.

ReactiveXD presents strong distribution support. However,
we do not compute the dependency graph at runtime, but
instead, we compute what atomic events aremade available to
interested observers at compile time. Note that wemake avail-

able only events of interest to the observers, thus, achieving
efficient distribution of remote events. This feature makes the
approach more scalable and fault-tolerant without sacrificing
reactivity or efficiency.

Furthermore, none of the approaches discussed above pro-
vides the means to model complex events or time-dependent
predicates as proposed in our reactive distributed language.
However, language designers of those reactive frameworks
may use DRRF to model their frameworks including reac-
tions to complex event patterns augmented with time-
dependent predicates.

D. SEMANTIC FRAMEWORKS FOR REACTIVE LANGUAGES
Rewriting logic [19], [26] has been proposed as a logic able
to represent concurrent systems, distributed systems, and pro-
gramming languages. It has been used to model executable
semantics for concurrent programming languages and derive
their corresponding formal analysis tools. It has also been
used to specify concurrency models and distributed algo-
rithms. All these features make rewriting logic a suitable
formalism to investigate the semantics of reactive languages,
including functional reactive languages and languages like
ReactiveXD. Furthermore, as modeling concurrency and dis-
tribution explicitly in a language was one of the concerns of
the paper at hand, it was clear that a formalism was required
to support such characteristics naturally. Such flexibility has
been widely studied, see for example [24], where authors
show how rewriting logic can be used to model distributed
dynamic systems (systems which architecture may change
during time) and reason about the concurrent changes that
occur in the system.

Other authors have addressed the study of semantics
for reactive distributed frameworks explicitly. For example,
using the DREAM middleware, researchers explore in [16]
different semantics for distributed reactive systems qualita-
tively. Furthermore, in [15] the authors present a study of the
change propagation cost on DREAM’s API and its consis-
tency implementation on the Java language. However, to the
best of our knowledge, DRRF is the first configurable and
executable semantic framework able to model several of the
main aspects of reactive languages, including the functional
reactive variants and à la ReactiveX variants. DRRF provides
a richer set of features, including support for LTL predicates,
explicit distribution, and explicit causal predicates.

Other formalisms have been investigated as adequate
means to model concurrent real-time systems [3], [5], [11],
[14], including models for distributed and concurrent compu-
tations. Those models have been accompanied by verification
tools that simulate and verify the behavior of the specified
model. In [3], the authors use algebraic processes to define the
semantics of an aspect-oriented language with explicit distri-
bution [2]. Nevertheless, this approach generates a big gap
with the implementation and does not provide mechanisms
to model causality or LTL predicates. Similarly, Tabareau
proposes a semantic framework for distributed aspects using
join calculus [29]. This proposal serves as a specification
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framework to test the properties of the woven application;
however, to the best of our knowledge, there is no verification
tool available. Future work may investigate the suitability of
those approaches to investigate the semantics of ReactiveXD,
including the explicit manipulation of time and distribution
awareness.

VII. CONCLUSION
This paper explores the semantics of distributed reactive real-
time languages proposing DRRF, a semantic framework for
the design of distributed reactive real-time languages and
applications. The paper studies first the state of the art of
reactive languages identifying two trends: functional reactive
languages and reactive languages à la ReactiveX. Functional
reactive languages can manipulate objects with continuous
time-changing attributes (e.g., 3D animation objects). Reac-
tive language à la ReactiveX extends the observer patternwith
composable reactions, addressing the real-time evaluation of
streams of discrete events (languages à la ReactiveX). The
latter (languages à la ReactiveX) are currently mainstream
tools used widely for the implementation of web front ends
and microservices. From this study, it is concluded that sev-
eral features of reactive programming are worth studying to
address standard requirements presented in the current global
dynamic and heterogeneous computer systems. In particular,
it is argued that for the manipulation of real-time constraints,
reactive tools must have the flexibility of languages like
ReactiveX and powerful time-related abstractions as those
presented in functional reactive tools. Thus, the paper at
hand proposes ReactiveXD, an event-based language with
explicit support for distribution, concurrency, and time man-
agement. This language provides a syntax similar to that of
ReactiveX but is augmentedwith time-aware predicates using
Linear Temporal Logic and causal abstractions. The paper
also proposes DRRF, a framework based on rewriting logic
and implemented on top of Maude, that serves as a formal
specification framework for the semantics of distributed time-
aware reactive languages and also serves as a verification tool
for applications implemented on those languages. Finally,
an evaluation of the applicability of DRRF is performed by
implementing several scenarios, including a scenario for the
detection of a multi-step attack on an IoT ecosystem.

This work shows the flexibility of DRRF, rewriting logic,
and Maude to specify executable semantics of distributed
frameworks and programming languages. It also shows how
easily a language designer may propose sophisticated seman-
tics and test them before creating a full implementation
of the compiler. ReactiveXD was proposed and enriched
with a robust set of features to manipulate localization
and time explicitly. Such features are not trivial and were
tried and tested on an IoT scenario to demonstrate its
usefulness.

VIII. FUTURE WORK
As future work, we propose to improve the specification so
that its execution can be more efficient, avoiding the explo-

sion of states. We plan to research on the detection of new
types of attacks in IoT networks using as a base the implemen-
tation of the IoT scenario developed in this paper. Particularly,
we plan to investigate the way to integrate ReactiveXD into
security implementations for IoT that: i) are currently focused
on the application of IoT sentinels to protect local scenar-
ios, and could be improved with the support for distribution
management for the detection of traffic anomalies or security
incidents that exist in distributed and spread scenarios, and
ii) are focused on the protection of security events generated
in IoT scenarios using a blockchain-based architecture, and
could be improved with the support of predicates for time
management for the detection of Advanced Persistent Threats
(APT).
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