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ABSTRACT Load forecasting is a pivotal part of the power utility companies. To provide load-shedding
free and uninterrupted power to the consumer, decision-makers in the utility sector must forecast the future
demand for electricity with a minimum error percentage. Load prediction with less percentage of error can
save millions of dollars to the utility companies. There are numerous Machine Learning (ML) techniques
to amicably forecast electricity demand, among which the hybrid models show the best result. Two or more
than two predictive models are amalgamated to design a hybrid model, each of which provides improved
performances by the merit of individual algorithms. This paper reviews the current state-of-the-art of electric
load forecasting technologies and presents recent works pertaining to the combination of different ML
algorithms into two or more methods for the construction of hybrid models. A comprehensive study of
each single and multiple load forecasting model is performed with an in-depth analysis of their advantages,
disadvantages, and functions. A comparison between their performance in terms of Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE) values are
developed with pertinent literature of several models to aid the researchers with the selection of suitable
models for load prediction.

INDEX TERMS Load forecasting, predictive models, machine learning, support vector machines, artificial
neural networks, computational intelligence, power industry, smart grid.

NOMENCLATURE
ABBREVIATIONS
ABC Artificial Bee Colony
AIN Artificial Immune Network
AIS Artificial Immune System
ANFIS Adaptive Neuro Fuzzy Inference System
ANN Artificial Neural Network
AR Auto Regressive
ARIMA AutoRegressive IntegratedMovingAverage
ARMAX Auto Regressive Moving Average with

Exogenous Input
BA Bat Algorithm
BFGS-FA Broyden-Fletcher-Goldfarb-Shanno-Firefly

Algorithm
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BP Back Propagation
CI Computational Intelligence
CNN Convolutional Neural Network
CT Clustering Technique
DAE Deep Auto Encoder
DAF Dynamic Activation Function
DBN Deep Belief Network
DL Deep Learning
DNN Deep Neural Network
D-RNN Deep Recurrent Neural Network
EEMD Ensemble Empirical Mode Decomposition
ELM Extreme Learning Machine
EMD Empirical Mode Decomposition
FA Firefly Algorithm
FCM Fuzzy C-Mean

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 134911

https://orcid.org/0000-0002-6058-0292
https://orcid.org/0000-0002-6698-8168
https://orcid.org/0000-0002-4127-0360
https://orcid.org/0000-0002-6584-1877
https://orcid.org/0000-0002-9898-791X
https://orcid.org/0000-0003-2332-8095
https://orcid.org/0000-0002-0440-5772


A. A. Mamun et al.: Comprehensive Review of the Load Forecasting Techniques Using Single

FCW Fuzzy Combination Weight
FL Fuzzy Logic
FOA Fruitfly Optimization Algorithm
FTS Fuzzy Time Series
FRBS Fuzzy Rule-base System
GA Genetic Algorithm
GAF Genetic Algorithm with Fuzzy Logic
GHSA Global Harmony Search Algorithm
GNN Generalized Neural Network
GOA Grasshopper Optimization Algorithm
GP Genetic Programming
GRNN Generalized Recurrent Neural Network
GRU Gated Recurrent Unit
GSA Gravitational Search Algorithm
HGASVR Hybrid Genetic Based Support Vector

Machine
HS Harmony Search
IA Immune Algorithm
IAGA Improved Adaptive Genetic Algorithm
IEMD Improved Empirical Mode Decomposition
IGSA Improved Gravitational Search Algorithm
IMF Intrinsic Mode Function
IS Immune System
IT2FLS Interval Type-2 Fuzzy Logic System
KF Kalman Filter
LM Levenberg-Marqardt
LTLF Long-term Load Forecasting
LS Least Squares
LSTM Long Short-term Memory
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MFA Modified Firefly Algorithm
MGGP Multi-Gene Genetic Programming
ML Machine Learning
MLP Multilayer Perceptron
MSCNN Multi Scale Convolutional Neural Network
MTLF Medium-term Load Forecasting
NARX Nonlinear Autoregressive Models with

Exogenous Input
NFIS Neural Fuzzy Inference System
NN Neural Network
PDRNN Pooling-based Deep Recurrent Neural Net-

work
PSO Particle Swarm Optimization
RBF Radial Basis Function
RELM Recurrent Extreme Learning Machine
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
RT Regression Tree
SA Stimulated Annealing
SAF Static Activation Function
SARIMA Seasonal Autoregressive Integrated Moving

Average
SLFN Single-hidden Layer Feed-forward Neural

Network
SOM Self-Organizing Map

STLF Small Term Load Forecasting
SVM Support Vector Machine
SVR Support Vector Regression
THI Temperature Humidity Index
TSK-FIS Takagi-Sugeno-Kang Fuzzy Inference Sys-

tem
VaR Value at Risk
VMD Variational Mode Decomposition
VSTLF Very Short-term Load Forecasting
WCI Wind Chill Index
WNN Wavelet Neural Network
WT Wavelet Transform

SYMBOLS
yi Actual desired value of the model
y′i Predicted value of the model
m Number of input neurons for ELM; any real

number greater than 1, cluster for FCMalgo-
rithm

n Number of output neurons for ELM
Im Objective function for FCM algorithm
xm Input values for ELM
ωm Values of weight from input layer to hidden

layer for ELM
βm Values of weight from hidden layer to output

for ELM
Oj Output value from ELM algorithm
uij Degree of membership of xi in the cluster j
A Premise for FRBS
B Consequence for premise A for FRBS
w Vector of weight for MLP
x Vector of inputs for MLP
y Single output for MLP
b Bias for MLP
ϕ Non-linear activation function for MLP
ξ Euclidean vector
t Index of data in a given sequence
x (t) New data item for SOM algorithm
α(t) Scalar factor for size correction of SOM
c Index for SOM having smallest distance

from x(t) in Euclidean signal space
Xi,Yi Training data for SVM
R Regularized risk function for SVM
C Regularization constant for SVM,

K-clusters for training Neural Network
L Loss function for SVM
W Regularizer for SVM
Xk Randomly selected firefly for MFA
wi Adjusting coefficient for ANN-MFA
Mw Weighting factor for ANN-MFA
Mb Biasing factor for ANN-MFA
Fc Set for K-prediction model
k Number of clusters for K-prediction model
vij Synaptic connection weight from the i-th

input node xi to the j-th neuron
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nh Nodes in hidden layer for ANN-GA
net js(·) j-th Static Activation Function
net jd (·) j-th Dynamic Activation Function
net lo(·) Activation function for l output neurons
mjd Dynamic mean for j-th Dynamic Activation

Function
σ
j
d Dynamic standard deviation for j-th

Dynamic Activation Function
ζ Regularization parameter for GHSA-FTS-

LSSVM
µ Euclidean vector, RBF kernel function

parameter
a3 Approximate wavelet component for GNN-

WT-GAF
d1, d2, d3 Detailed wavelet components for GNN-WT-

GAF

I. INTRODUCTION
Modern power system demands an uninterrupted supply of
electricity to the load side. This requires a proper idea of pre-
dicting present and future load demand with the least amount
of error. For achieving this goal, scientists and scholars have
been trying to develop the most efficient and optimal state-
of-the-art method for predicting the future demand for elec-
tricity consumption by a method known as load forecasting.
Load forecasting is used to control several operations and
decisions such as dispatch, unit commitment, fuel allocation,
and off-line network analysis [1]. This gives the power utility
company an idea about the future demand of the consumers
and an ample amount of time to mitigate the difference
between the generation capacity and load demand. Demand
prediction minimizes the power generation cost and helps
to establish an organized power system utility, especially
because of the large expense pertaining to power genera-
tion. Different Machine Learning (ML) based techniques are
widely used by many power and energy utility companies to
predict the power or energy needed to equilibrate between
generation and demand. In general, load forecasting can be
termed as a technique for demand and supply management.
However, it is a complex task requiring the analysis of various
direct and indirect factors affecting the process. Even though
there are several benefits of using load forecasting techniques,
some challenges inhibit the accuracy of the methods. The
process used for forecasting is convoluted and sometimes
stochastic in nature. Weather-related variables further influ-
ence the data, complicating the forecasting. Therefore, the
load at a given hour is not only dependent on the previous
hour; rather it is affected by the data of the load consumption
of the previous day, weather, demographic data, appliances
number in the forecasting area, customer type, customer num-
ber, and econometric data, etc., [2]. Even in such varying cir-
cumstances, it is necessary to keep the load forecasting error
as minimum as possible. Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), and Mean Absolute Percent-
age Error (MAPE) are the measures of prediction accuracy,

usually measured in percentage. The values for the evaluation
of a certain algorithm are to be kept within a few percentage
points for its viability in load forecasting.

Historical load data is the key component of a load fore-
casting model. Because to train the model, it has to learn the
pattern of the electrical load data consumption. After that,
the load data must be prepared for training purposes. The
missing values and erratic data are corrected. Afterward, this
electrical data is used to collaborate with data pertaining to
other factors such as historical weather data, historical event
data, etc. The accuracy of the forecasting is highly contingent
upon such factors. All the aggregated data is then analyzed,
and several models are selected for load forecasting. Among
these models, the best with the most accuracy is chosen for
implementation. There are several other factors that deter-
mine the accuracy of the load forecasting model. Most of
them vary largely based on locations and equipment. These
are also necessary to be brought under consideration while
designing a precise load forecasting model. Such factors are
usually considered as the input variable for the development
of a model. Due to the unavailability of the desired data, it is
sometimes difficult to consider all the factors. To develop
a forecasting model in a certain region, the data of the
factors are collected from respective sources, such as the
weather data, which is collected from the local weather office,
or the time factor data, which is collected from the calendar.
The collection of data also faces several impediments due to
the unavailability of proper data, anomalies in cases, missing
values (more than 5%) in data, loss of data points are a few
of the reasons to create problems in the data accumulation
process. These problems have solutions that entirely depends
on the case where themodel is applied. The presence of one of
these factors can cost the precision of the value. Hence, the
possible solutions for addressing such challenges are being
brought forth by researchers. Load forecasting with greater
accuracy can be a great money-saving potential for electric
utility corporations, whereas unwanted errors can lead to a
great amount of financial and infrastructural loss. According
to Haida and Muto et al. [3], both positive and negative
forecasting errors can result in an increased generation cost of
electricity. Only by 1% decrease in mean absolute percentage
error (MAPE) and precise load forecasting have a consequen-
tial impact of 3-5% on the generation side by reducing the
cost of generation about 0.1% to 0.3% [4]. In recent years,
government and electric utility companies are showing great
interest in renewable energy-based power generation. The
progressing increase in renewable energy influences some
great challenges. The stochastic nature of solar and wind
power makes it challenging for the utility companies to match
the load with the variable production of infrequent genera-
tion side. Researchers are trying to develop a new dispatch
technique to replace traditional dispatch techniques that can
operate with the addition of high-level intermittent energy
sources like solar, wind energy, etc., [5]–[8].

This paper focuses on different single and hybrid meth-
ods based on ML. Two supervised learning methods,
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FIGURE 1. Information flow presented in the paper, with the explanation of single and hybrid models
for load forecasting.

Support Vector Machine (SVM) and Artificial Neural Net-
work (ANN) are widely used to design hybrid predictive
models. In order to explore these two methods, different
popular methods are delineated in the paper before discussing
SVM and ANN-based hybrid algorithms. Some of these sin-
gle methods are also optimized with either of these two algo-
rithms. On the success of two method-based models, three or
more single predictive models are being experimented upon
to contribute to the improvement of forecasting accuracy.
This paper reviews the current and previous work done on
both the single methods and hybrid models for short-term
load forecasting (STLF) utilizing the most used methods and
prepares a comparative result of different algorithms used in
distinct literature in order to present a comprehensive study
of the load forecasting technology. Beginning with different
aspects of load forecasting, the technique is classified based
on the time horizon to scrutinize the algorithms’ effectiveness
in accordancewith the prediction time. The efficacy of the uti-
lized models is evaluated based on statistical criteria, to real-
ize the significance of themodels based on contingent factors.
The hybrid models comprising of two or more methods are
discussed to stipulate how the integration of algorithms can
affect the forecasting technique. The flow of the information,
as such, is shown in Fig. 1.

The rest of the paper is categorized as follows: Section II
describes the factors, benefits, and challenges of load
forecasting methodologies, section III categorizes the load
forecasting methods based on the time horizon, section IV
delineates the criteria for the evaluation of the accuracy of
the models, section V reviews the basic principle and work
done on single load forecasting model with the comparison of
advantages and disadvantages; Section VI reviews the latest
work done on hybrid models composed of two methods,
where Part A discusses on the hybrid models optimized with
SVM and Part B discusses on the hybrid models optimized
with ANN. Section VII performs a comparative study on
some hybrid models combining more than two methods.
Section VIII enlists the significant findings of the paper.
Finally, the conclusion is drawn in section IX with the indi-
cations of future research work.

II. ASPECTS OF LOAD FORECASTING
A. FACTORS AFFECTING LOAD FORECASTING
The empirical process of forecasting relies on several agents,
which affects the precision of the process. Researchers need
to choose the dependent factors carefully to acquire a correct
prediction from the system. Time, weather and economic
factors can be considered as the major effects to consider,
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FIGURE 2. Flowchart of developing a load forecasting model; the load,
weather and event data are collected to analyze and prepare the model
to choose the best one for implementation.

although other major and minor factors affect every step of
forecasting. Fig. 2 depicts the flowchart of the development of
a load forecasting model, where the historical load, weather
and event data are collected first from smart meters, sensors,
data servers or other sources though various technologies and
algorithms so that they can be prepared for analysis [9]. The
selection of the model also requires significant attention as
different algorithms use varying parameters as per these fac-
tors. Notable factors affecting data accumulation and model
selection are briefed as follows:

• Time Factor: Time is the most important factor in
load forecasting. From observing load curve of several
different grid stations, Ruzic et al. [10] found that load
curve has ‘‘time of the day’’ property along with ‘‘day
of week’’, ‘‘week of month’’ and ‘‘month of season’’
property. This also indicates that not only the current
data, but also the data of the previous days for a certain
location also contribute to the accuracy of the prediction,
which cannot be acquired by the reliability on the former
data. Moreover, the timeframe to detect the load is also
crucial as it defines the amount of data required for the
process to run.

• Weather Factor:Weather is most independent variable
in load forecasting domain, having its greater impact on
domestic and agricultural consumers. The weather has a
dominant effect on the behavior of the consumers. For
example, in hot summer and cold winter, the electricity
consumption goes up as the heating and cooling devices
are turned on. This causes an increased demand of elec-
tricity at the warmest or coolest weather compared to
the load demand during the days with average temper-
ature. Also, sudden drop of temperature can cause less
electricity consumption and thus causing overestimated
load forecast. For the purpose, different models utilize
the results from the weather forecast to predict the future
load demand. The weather factors include temperature,

humidity, dew point temperature etc. Also, temperature
humidity index (THI) and wind chill index (WCI) are
broadly used by the utility companies. THI andWCI are
the measurement of summer heat discomfort and cold
stress in winter respectively.

• Economic Factor: Economic factors such as electricity
price, management of load and degree of industrializa-
tion have important impact on system average load and
maximum demand [11]. Moreover, customer behavior,
change in tariff, description of appliances, population
of the forecasting area, the age of the equipment, and
employment levels play influential roles in determining
the perfection of forecasting. For proper prediction in
a particular area, usually for long term load forecast-
ing, these factors must be brought under calculation
as economic prediction considers public behavior to
extrapolate load generation and demand, affecting data
acquisition and model selection procedure [12].

B. BENEFITS
Load forecasting has its own benefits which attracted
the researchers into this domain. Since the early age of the
electricity generation, it was a burning question among the
utility companies to determine the demand for the next hour,
next day and even years, to make a balance between the
limited resources and ever-increasing demand of electric-
ity. Even though renewable energy sources have mitigated
the resource management issue, the energy harvesting pro-
cesses are still expensive and cumbersome. The electricity
dispatching can also be optimized if the load demand can
be estimated beforehand. That is when the term load fore-
casting came in. Apart from the economic and environmen-
tal perspective, there are other benefits of load forecasting.
They are:

1. Understanding the future load demand helps the utility
companies to plan, make economical viable decisions
and minimize the risk for the companies. Also, deci-
sions for future generation and transmission invest-
ments are made from load forecasting.

2. Load forecasting helps in planning the required
resources for the future such as fuels required to operate
the generation side as well as other resources that are
important to ensure uninterrupted power to the con-
sumers. This confirm economical generation and unin-
terrupted distribution of electricity.

3. To build a future generation plant, load forecasting
helps in planning the plant size, location, capacity and
type of the future generation plant. This gives a clear
idea of the cost of transmission and distribution infras-
tructure as well as other associated loss.

4. By understanding the demand, load forecasting helps in
deciding and planning for the maintenance of the power
systems.

5. Finally, the load forecasting ensures maximum utiliza-
tion of power plants by eradicating under generation

VOLUME 8, 2020 134915



A. A. Mamun et al.: Comprehensive Review of the Load Forecasting Techniques Using Single

and over generation which in turns helps to reduce the
usage of fossil fuel and reduce the carbon emission.

C. CHALLENGES
For many years, researchers are trying to develop accu-
rate load forecasting model to improve the efficiency
and revenues for the electrical generating and distribution
companies. This has, so far, lead to the invention of many
state-of-the-art methods. In recent years, researchers to inves-
tigate to improve the accuracy of these models, but several
challenges are impeding the objective of the investigations.
These challenges are the main hindrance in getting the best
accurate model. Some of these difficulties to achieve the best
forecasting model are mentioned below:

1. Electrical load forecasting is very much depended
on weather. Unfortunately, sometimes the weather is
not predictable and the forecasting may have a great
error for sudden change in weather condition. Also,
different regions in a big electrical system may have
different weather conditions which affects the elec-
tricity demand. This creates a negative impact on the
revenues.

2. Consumers in different region use different types of
meters e.g. smart and traditional meters with different
tariffs. Also, the usage behavior varies between these
customers. The utility should have a clear understand-
ing of the system utilization and develop separate fore-
casting model for each of the metering systems. Then
add them up for the final forecast value. Otherwise there
will be a huge forecasting error.

3. It is also difficult to get accurate data on consumption
behavior due to sudden change in factors such as pricing
and the corresponding demand based on such a price
change.

4. Accurate load forecasting is difficult due to the com-
plexity in fitting numerous complex factors which affect
the demand for electricity into the forecasting models.

5. Sudden disturbances in the power system affects the
regular load models. Unexpected faults and transients
create exceptional data logs, which are to be consid-
ered separately for the design of the models, lest they
should be distributed with the data equally, resulting
in the design of a poor and unreliable forecasting
system.

6. In addition, it is not easy to obtain an accurate demand
forecast based on parameters such as change in temper-
ature, humidity and other factors which influence the
consumption of electricity.

7. Finally, the distribution company may suffer losses if
they do not understand and decide on an acceptable
margin of error in short term load forecasting.

The variation in the challenges motivated the design-
ers to focus on different aspects of the model, collecting
incidental data, parameterizing the algorithms and choos-
ing the best model to make load forecasting as reliable as
possible.

III. CATEGORIES OF LOAD FORECASTING
In terms of the time horizon, load forecasting can be cat-
egorized into four classes, on the basis of which different
ML algorithms can be implemented: very short-term load
forecasting (VSTLF), short-term load forecasting (STLF),
medium-term load forecasting (MTLF) and long-term load
forecasting (LTLF). VSTLF is popular for load forecasting
from few seconds to few minutes. In VSTLF the load in the
near future can be forecasted by the load in the past [13].
That is why temperature, economics and land use information
can be optional. Extrapolating the recently observed load
pattern to the nearest future is being used instead of mod-
eling relationships between weather conditions, load, time
and other affecting factors to the load. Methods for VSTLF
are few, mostly including Autoregressive Moving Average
Models, Artificial Neural Network, and Genetic Algorithm
etc. STLF is used for a lead time from few minutes to few
hours. It plays a vital role in system operations and it is the
main source of information for all daily and weekly oper-
ations concerning generation commitment and scheduling
[14]. As the load for long time horizons can be approximated
from STLF, researchers are mostly interested in designing
predictive models for the domain. For better short-term pre-
diction modeling, it is required to have a proper knowledge
on the factors affecting the load. Some of these factors are
the weather conditions, the season, the type and time of the
day of a specific area and many others. Integration between
the factors and the load demand is the primary object to
look for as the demand at any time of the day is different.
MTLF is generally used for forecasting load from a few
days to few months [15]. It is popular for forecasting load in
seasonal changes such as winter or peak-summer etc. LTLF
is used for lead time from few weeks to several years [16].
It takes into account the historical load and weather data,
customer’s number in categories, the characteristics of the
appliances of the area etc. The economic factors are specially
considered for long term forecasting methods. Table 1 shows
the comparison between load forecasting methods based on
time period, factors and application.

Among all the different methods, STLF is the most popular
one. It plays a key role in the formulation of economic and
secure operating strategies for the power system because of
its inherent connectivity to other type of forecasts. STLF
can be transformed into MTLF and LTLF by adding econo-
metric variables to the STLF and extrapolating the model
to the longer horizon. On the other hand, VSTLF model
can be achieved from STLF by adding the loads of some
preceding hours as a part of the inputs to the STLF model.
Autocorrelation of the current hour load and the previous
hour loads can be captured by short-term load forecasting.
Also, the residuals of historical load can be collected and form
a new series having the STLF as a base. Avery short term
forecast can be obtained by forecasting the future residuals
and adding them back to the short-term forecast. Process flow
of conversion between STLF and LTLF, MTLF and VSTLF
is shown in Fig. 3.
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TABLE 1. Classification of load forecasting methods according to time period, factors and their application.

FIGURE 3. Process flow of conversion between STLF and LTLF, MTLF, VSTLF
with the transaction of economic variables, statistical process and time.

FIGURE 4. Flowchart of simple short-term load forecasting method,
showing the modeling and extrapolating process driven by weather, load
data and weather forecast values for load prediction.

As depicted in Fig. 4, the simple process flowchart of
STLF takes weather and load history as the input of the
modeling process to model the extrapolating process with the

FIGURE 5. Most used single methods for short-term load forecasting
method, some of which are used for other medium and long term
predictions as well.

accumulation of the weather forecasting data. The forecasting
data is then considered for the minute or hourly prediction of
the load. There are many STLF techniques that are designed
for the model. Some of them are time series analysis, regres-
sion analysis, artificial neural networks (ANN), support vec-
tor machine (SVM), fuzzy logic (FL), genetic algorithms
(GAs) and hybrid methods etc., as listed in Fig. 5. Due to
their self-adaptive mechanism and the features of mimicking
the intelligent behaviors in complex and continually changing
behavior.

Computation Intelligence (CI) methods are widely used
in the current research works. CI method is denoted as
the potentiality of computer algorithms to intuitively learn
a particular task from the trial and error perceptions form
the available data from the past and predict accurately in
the future based on the learning. The unique feature of CI
methods is related to their ability for autonomous operation
without requiring any complex mathematical formulations or
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TABLE 2. Evaluation criteria formula.

quantitative correlations between the inputs and the output.
The hybridized version of CI models has achieved signifi-
cantly better performance than their single model counter-
parts [17].

IV. EVALUATION CRITERIA
Several criteria are used as the evaluation indices of load
forecasting techniques to justify how correct the methods
are to predict the actual load values. Different researchers
have depended on different statistical metrics to quantify the
accuracy of their model and with the passage of time new
statistical metrics are coming into play such as metrics for
probabilistic load forecasting. The probabilistic load fore-
casting literature is still developing as it shows promising
academic value and wide adaptation in the industry. Table 2
shows the most popular static metrics among the researchers
around the world.

Here, n is the number of samples, y
′
i is the predicted value

of the model and yi is the actual desired value. Each of these
metrics has its own advantages and disadvantages. RMSE
provides a loss function of second degree but emphasizes
greater errors than the small ones. MAE is unambiguous
and it can measure average error naturally. MAPE does not
depend on scale and it can be applied easily to both high and
low volume products. But due to differential penalty often
it can lead to biased forecasting. The weaknesses of MAPE,
such as difficulties in handling small and zero denominators,
are not very relevant for traditional load forecasting problems,
because the load at the aggregated level is rarely zero or
approaching a very small number [18].

Also the value of these metrics are different for different
datasets and parameters. Therefore it is quite difficult to
compare the results of different techniques. Also, there is no
such task where all the methods are experimented in a single
dataset, to find the comparison between them. In this research
work, the best accuracy of each discussed method are tab-
ulated in the subsequent sections from different forecasting
methods.

V. SINGLE METHOD FOR LOAD FORECASTING
Using parametric, nonparametric and artificial intelligence
based single methods, load forecasting is performed for very
short time. ANN, Local Fuzzy Reconstruction Method, and
specific regression and statistical models are being used to

forecast for a few seconds to a dozen of minutes [19]. For
STLF, the versatility of algorithms such as Expert Systems,
Time Series Analysis, Similar Day Look Up Approach, SVM
and FL augments as shown in Fig. 5. Single methods used
for STLF are somehow reliable for MLTF as well. Grey
model, Adaptive Neuro Fuzzy Inference System (ANFIS),
andWavelet Transform (WT) and several distinguishedmeth-
ods are added to the list for LTSM along with those used for
MLTF [20]. For the employment of such methods, a clear
concept of the exercised terminologies are necessary, which
are provided and compared with respect to the evaluation
criteria in the subsection that follows.

A. LEARNING BASED METHODS
1) DEEP LEARNING (DL)
The termDeep Learning (DL)was first introduced byDechter
[21] in 1986. Apparently, after a gradual improvement in the
algorithm and context, it is now renowned as Deep Neural
Network (DNN). A neural network is a shallow structure
consisting of an input layer, a hidden layer and an output
layer. However, a deep learning system architecture consists
of more layers than a traditional three-layered multilayer per-
ceptron (MLP). The networking structure of deep learning is
the best possible simulation of human cerebral cortex, where
it mimics the human brain function [22]. Due to its feature
of modeling nonlinearity, DL is widely used in various fore-
casting applications [23]. It can represent the complex high-
dimensional functions and hyper variable functions, which
deteriorates the computational complexity of the forecasting
models. One major drawback of this system is the over-fitting
issue due to the requirement of large number of layers for
precise output. Due to its algorithmic complexities, DL often
requires a huge amount of runtime. There are several DL
methods including convolution neural network (CNN), deep
belief networks (DBN) and deep auto encoder (DAE) etc.
Ryu et al. [23] proposed two different DNN models to learn
complicated relations between weather variables, date and
previous consumptions for individual customers.

This DNNmodel is later used to produce a day-ahead fore-
cast of 24 hours load profile from the past data observations.
He et al. [24] proposed amodel to forecast the hourly load of a
power grid. Their model combines the co-movement analysis
from Copula model with layer-wise pre-training-based deep
belief network. A comparative analysis between Support Vec-
tor Regression (SVR), Neural Network (NN), ExtremeLearn-
ing Machine (ELM) and classical DBN in both day-ahead
and week-ahead forecasting shows better result in the pro-
posed semi-parametric data-driven method. The major over-
fitting issue of DL is addressed in a study of Shi et al. [25].
By increasing the diversity and volume of the data, they were
able to address the over-fitting issues of DL. Their proposed
novel pooling-based deep recurrent neural network (PDRNN)
batches a group of customer load profiles into a pool of inputs.
The proposed method consists of two stages: 1) load profiles
pooling, and 2) household STLFwith Deep-Recurrent Neural
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Network (D-RNN). This method has a prerequisite of suffi-
cient diversity in customer load for learning common sharing
uncertainties such as weather conditions and pertaining fac-
tors. Testing on 920 smart metered customers from Ireland,
the proposed method outperforms ARIMA by 19.5%, SVR
by 13.1% and classical D-RNN by 6.5% in terms of RMSE.
A framework based on resident behavior [26] was designed
with a long-short term memory (LSTM, a variant of RNN)
based DL, which took appliance consumption sequence into
consideration. A constant nature of the power grid network
system is its high variability and volatility. To mitigate this
challenge and reduce the errors of the forecasting of the elec-
tric parameters, DBN is combined with Copula Model [27]
and bidirectional Recurrent Neural Network [28], [29] for
day and week ahead forecasting. An LSTM based hybrid DL
method was tested by Motepe et al. [30] for South African
distribution network, showing an improved performance,
considering the inclusion of temperature data. Deng et al.
[31] devised a deep multi-scale CNN (MSCNN) with time
cognition and a self-designed time coding algorithm, which
outperformed recursive multi-step LSTM, direct multi-step
MSCNN and the direct multi-step gated CNN by MAPE
of 34.73%, 14.22% and 19.05% respectively. An improved
DBN especially for Demand Side Management was designed
by Kong [32] for STLF, outperforming autoregressive inte-
grated moving average (ARIMA), Least Square SVM and
conventional DBM with MAPE and RMSE of 3.864 and
341.601 respectively. RNN and its different approaches
are widely used for short-term residential load forecasting
[33]. LSTM was further integrated with Gated Recurrent
Unit (GRU) for hybrid distribution feeder LTLF by Dong and
Grumbach [34]. The model was scrutinized for an urban grid
inWest Canada, which exceeded the performance of ARIMA,
bottom-up and feed-forward NN.

2) EXTREME LEARNING MACHINE (ELM)
Huang et al. [35] reviewed that learning speed of
feed-forward neural network is far slower than required and
the main reasons behind this are: (1) the slow gradient-based
learning algorithms that are extensively used to train neural
networks, and (2) all the parameters of the networks are
tuned iteratively. To overcome this problem, the authors
proposed a new learning algorithm called extreme learning
machine (ELM) for single-hidden layer feed-forward neural
networks (SLFNs) which randomly chooses hidden nodes
and analytically determines the output weights of SLFNs.
ELMs are feed-forward neural networks with a single layer
of multiple layers of hidden nodes. These hidden nodes
can be randomly assigned and never updated (i.e. they are
random projection but with nonlinear transforms), or can
be inherited from their ancestors without being changed.
Another interesting feature of this method is that these hidden
layers need not to be tuned.

Fig. 6 shows the structure of ELM, depicting m number
of inputs denoted as x1,x2, . . .xm. These inputs traverse
through n hidden layers. Each values from the input neu-

FIGURE 6. Structure of extreme learning machine, with m input neurons
choosing between n hidden layer neurons proceeding towards the
forecasting of output Oj [36].

rons are assigned a different weights ω1,ω2, . . .ωn from
input to the hidden layer and linear weights β1,β2, . . .βn
from the hidden layer to acquire the predicted output Oj .
Its learning speed can be thousands of times faster than
traditional feed-forward neural network learning algorithms
like back-propagation (BP), which can obtain better gener-
alization performance [35]. Also the ELM tends to reach the
solutions straightforwardwithout facing issues like localmin-
ima, improper training rate and over fitting etc. Li et al. [37]
proposed a novel ensemble method for short-term load fore-
casting where wavelet transform, ELM and partial least
squares regression are integrated. From different combina-
tions of mother wavelet and number of decomposition lev-
els the individual forecasters are derived. A parallel model
consisting of 24 ELMs is invoked to predict the hourly load
of the next day, for each sub-component from the wavelet
decomposition. The individual forecasts are then combined
to form the ensemble forecast using the partial least squares
regression method. This proposed method has been tested
using data from two electric utilities for 1 hour and 1 day
ahead load forecasting and the output result have showed
better forecasting accuracy than other state-of-the-art mod-
els. Ertugrul [38] proposed a new model incorporating ELM
with RNN, naming the model Recurrent Extreme Learning
Machine (RELM). RNN shows better results in the forecast-
ing dynamic systems compared to the feed forward ANN
model. This model shows great result as the training time is
much lower and this method can be used for real-time dynam-
ical systems for load forecasting. Zhang et al. [39] worked
with the short-term load forecasting emerged on ELM under
the supervision on Improved Gravitational Search Algorithm
(IGSA), which is a combination of Particle Swarm Optimiza-
tion and Gravitational Search Algorithm, where it is used to
search the optimal set of input weights and hidden biases for
the ELM. Li et al. [40] proposed a STLF method based on
the improved extreme learning machine which is the capable
of autonomously selecting the number of hidden neurons
according to the group number of input samples, whichmakes
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FIGURE 7. Structure of an ideal MLP model with two hidden layers,
taking the output error into consideration for enhancing the accuracy.

the training error close to zero, and the test error is as tiny
as possible. Chen et al. [41] proposes a novel short-term load
forecastingmethodwhich is based on empirical mode decom-
position (EMD) and ELM. EMD is an empirical approach
to obtain instantaneous frequency data from non-stationary
and non-linear data sets. The empirical mode decomposition
is utilized to decompose the load series for capturing the
complicated features of the electric load and to de-noise the
data [42]. This method is tested on the state of New South
Wales, Victoria and Queensland in Australia for half hourly
electric load forecasting and the results clearly showed great
improvement.

3) MULTILAYER PERCEPTRON (MLP)
A perceptron is an algorithm that classifies input by sepa-
rating two categories with a straight line. In other words,
it is a linear classifier. Based on several real-valued inputs
by forming a linear combination using its input weights,
a perceptron generates a single output, y as shown in the
following equation.

y = ϕ
(∑n

i=1
wixi+b

)
= ϕ(wTx+ b) (1)

where, w denotes the vector of weights, x is the vector of
inputs, b is the bias andϕ is the non-linear activation function.
An MLP is basically a deep, artificial neural network

(ANN). Fig. 7 demonstrates the structure of an ideal MLP,
having a three-layered structure. One is input layer which
receives the signal, an output layer that makes a prediction
about the input and in between those two, an arbitrary number
of hidden layers that are the core computational machine of
the MLP. It has the ability of manipulating the input space
by adjusting weight matrices continuously between layers
until the error between target value and the predicted value
is minimized.

Ferreira and Da Silva [43] developed two nonparamet-
ric procedures for solving the problems of NN structure

and input selection for STLF. Their proposed model can
improve the outcome of MLP and RBFs. Ding et al. [44]
compared between the Naïve model and NN model using
MLP for STLF. The investigation shows that accuracy of
the MLP model is 4.7% better than the Naïve model.
Bokingkito et al. [45] used Multilayer Perceptron Neural
Networkmodel for week ahead load forecasting. The sigmoid
activation function in resilient propagation showed the most
efficient and least network error in the training. Interestingly,
in the study of Kuo and Huang [46], the proposed deep neural
network named DeepEnergy which outperformed MLP, RBF
and several other popular machine learning technology. Due
to the effectiveness of MLP in MTLF, Askari and Keynia
[47] combined two search algorithms, i.e. Particle Swarm
Optimization (PSO) and improved Ant-Lion Optimiser to
design an MLP based model to solve the MTLF problem.

4) SELF-ORGANIZING MAP (SOM)
The Self-Organizing Map also known as Kohonen network
was initially developed by Kohonen [48] in 1982. It is a
computational method for the analysis and visualization of
high-dimensional data, a type of ANN that is trained by unsu-
pervised learning to generate low-dimensional, discretized
representation of the input space of training samples, called
a map. SOM apply competitive learning as opposed to error
correction learning e.g. BP with gradient descent and use
a neighborhood function to preserve the topological prop-
erties of the input space. Consider first data items that are
n-dimensional Euclidean vectors

x (t)= [ξ1 (t) ,ξ2 (t) , . . . ,ξn (t) ] (2)

where, t is the index of the data item in a given sequence.
Let the i-th model be represented by the following

equation,

mi (t)= [µi1 (t) ,µi2 (t) , . . . ,µin (t) ] (3)

where, t denotes the index in the sequence in which
the models are generated. This sequence is defined as a
smoothing-type process in which the new value mi (t + 1) is
computed iteratively from the old value mi (t) and the new
data item x (t) as:

mi (t + 1)=mi (t)+ α(t)hci(t)[x (t)−mi (t) ] (4)

where, α(t) is a scalar factor that defines the size of the
correction; its value decreases with the step index t. The index
i refers to the model under processing, and c is the index
of the model that has the smallest distance from x (t) in
the Euclidean signal space. The factor hci (t) is a kind of
smoothing kernel, also called the neighborhood function. It is
equal to 1 when i = c and its value decreases when the
distance between the models mi and mc on the grid increases.
Moreover, the spatial width of the kernel on the grid decreases
with the step index t. These functions of the step index, which
determine the convergence, must be chosen very exquisitely.

Fan et al. [49] used traditional SOM to learn time-series
load data with weather information as parameters and to
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improve the accuracy of the prediction. The dataset used in
this study consist of the daily peak electrical consumption
and weather data in New York City and Long Island from
July 1, 2001 to September 31, 2004. An extension of SOM
algorithm based on error-correction rule is also used. The
peak load is generated by averaging the output of all the
neurons. Their model achieved minimum number of MAPE
value 1.93% using 15 × 15 number of neurons. In their
study, López et al. [50] showed the effect of SOM neural
networks in load forecasting. They also performed a deep and
through analysis of real world prediction. In this study, data
from Spain energy consumption from 2001 to 2010 has been
used to validate the model. The proposed model forecasts
daily market load with 2.32% MAPE value. Li et al. [51]
proposed a localized Bayesian-Regularization NARX (Non-
linear Autoregressive models with Exogenous Input) Neural
Network model combining with Self-Organizing Mapping,
where SOM is utilized to extract the meteorological distribu-
tion and K-means is used to cluster the data according to the
nearest mean. They also used the Bayesian-Regularization
BP algorithm to train the target network structure which even-
tually improved the predictive ability of the localized NARX
neural network. The proposedmodel is tested in Sydney using
half hourly power system load and electricity prices data. The
results showed a great accuracy in prediction which can prove
beneficial both economically and socially.

B. RULE BASED METHODS
1) FUZZY C-MEANS (FCM)
The Fuzzy C-means (FCM) clustering algorithm was ini-
tially developed by Dunn [52] and was later developed by
Bezdek et al. [53]. FCM is a method of clustering which
allows one piece of data to belong to two or more clusters.
Clustering is a popular and widely used mathematical tools
that attempts to discover structures or certain patterns in a
dataset and the objects inside each cluster showing a certain
degree of similarity. Among the clustering algorithms, one
of the most popular algorithms, Fuzzy clustering algorithms
and Fuzzy Set theory was first proposed by Zadeh [54].
He gave an idea of the uncertainty of belonging which was
described by a membership function and the central idea in
fuzzy clustering which is the non-unique partitioning of the
data into a collection of clusters. FCM algorithm is based on
minimization of the following objective function:

Im =
∑N

i=1

∑C

j=1
umij (5)

where, m is any real number greater than 1, uij is the
degree of membership of xi in the cluster m, xi is the ith of
d-dimensional measured data, cj is the d-dimension center of
the cluster.

Radial Basis Function (RBF) network is superior to BP
network because the ability to approach nonlinear function
and the convergent speed are better the ones of BP network
model [55]. Zhu and He [56] overcame the slow convergence
speed and local minima problem of BP network algorithm

FIGURE 8. Algorithmic structure of fuzzy rule base system, showing the
conversion of crisp to fuzzy values through fuzzification and
defuzzification process.

by introducing the application of FCM based RBF model
to short term load forecasting problem. The proposed algo-
rithm was tested on the actual power load data and the
results showed a good average percentage error of 4.04%.
Yi et al. [57] proposed an ultra-short time forecasting based
on FCM algorithm to increase flexible process capability of
power systems. FCM algorithm was used to calculate the
daily load change rate. This method showed more accurate
and predictable result in the practical application of power
grid company where the error analysis index showed much
better result than the traditional prediction algorithm. Clus-
tering is equally used for LTLF [58] and residential load
forecasting [59] due to its improved fluctuation management
algorithm.

2) FUZZY RULE BASE SYSTEM (FRBS)
Fuzzy rule-base system (FRBS) is one of the great applica-
tions of fuzzy set or fuzzy logic. Fuzzy logic systems address
the imprecision of the input and output variables by defining
fuzzy numbers and fuzzy sets which that can be expressed
in semantic variables. Fuzzy rule-based approach is based on
verbally formulated rules which is overlapped throughout the
parameter space. They use numerical interpolation to handle
complex non-linear relationships. Fuzzy rules are linguistic
IF-THEN- constructions that have the general form ‘‘IF A
THEN B’’, where A and B are (collections of) propositions
containing linguistic variables.
A is called the premise and B is the consequence of

the rule. In effect, the use of linguistic variables and fuzzy
IF-THEN-rules exploits the tolerance for imprecision and
uncertainty. In this respect, fuzzy logic mimics the crucial
ability of the human mind to summarize data and focus
on decision-relevant information. As shown in Fig. 8, the
raw output, called the crisp output is inserted in a process
‘‘Fuzzyfier’’ to ‘Fuzzify’ the crisp values for generating the
fuzzy input. The Fuzzy rule base are determined by the user to
the Fuzzy inference engine or software as per the requirement
of the forecasting system, From the Fuzzy input, the inference
engine follow the conditions to generate Fuzzy output, which
are then converted to a crisp input by a ‘‘Defuzzifier’’ for real
world application.
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FRBS is the combination of two ideas; one is knowledge
and another is reasoning. The approximate reasoning is the
very popular fuzzy set that has multi-valued logic systems
was introduced by Lukasiewicz in the 1930 and modified
by Zadeh in the 1960 [54]. Ranaweera et al. [60] did a
comprehensive exploratory investigation of the application of
a Fuzzy Logic model for STLF problem. The proposedmodel
showed a great forecast with a MAPE value below 2.3%.
One of major problems faced when designing a fuzzy model
is the finding of an optimized fuzzy rule base. Generally
it is done by a process called trial-and-error which is time
consuming and arduous. But Kang et al. [61] presented an
approach to the evolutionary design of an optimum fuzzy
rule base for modeling and control where evolutionary pro-
gramming is used to simultaneously evolve the structure
and the parameter for a fuzzy rule. The method’s capa-
bility in simultaneous handling of quantitative or qualita-
tive information and uncertainties have been discussed by
Khosravi et al. [62]. They have proposed the application of
IT2FLS for STLF. Later, they have developed a model using
Takagi-Sugeno-Kang fuzzy inference systems (TSK-FIS) to
develop IT2-TSK-FLS hybrid algorithm for load forecasting.
The experiment conducted on actual load data shows pre-
cisely approximated future load demands with an acceptable
accuracy. Hassan et al. [63] presented a method of interval
type-2 fuzzy logic systems (IT2FLS) for load forecasting
where extreme learning machine (ELM) is used to tune the
parameter of IT2FLS for chaotic and nonlinear data. This
method used multi-inputs for proper input-selection along
data pre-processing. To select the influential inputs a partial
autocorrelation analysis was utilized. The time-delays of the
dataset which have cabalistic coefficients are selected as input
to the model. Ali et al. [64] proposed fuzzy logic model
for LTLF based on the weather parameters (temperature and
humidity) and historical load data. This model comprises
the steps for data collection, constructing fuzzy interface,
Fuzzifying input and output, assigning membership function,
setting up Fuzzy rule base, building fuzzy logic models and
simulations, and analyzing errors. The fuzzy logic model
forecast a year-ahead load with a MAPE of 6.9% and effi-
ciency of 93.1%. Another TSK based method used Fuzzy
model across the entire domain, improving MAPE by 0.13%
compared to seasonal autoregressive integrated moving aver-
age (SARIMA) and Gustafson-Kessel clustering [65].

3) FUZZY REGRESSION (FR)
Regression-based methods such as autoregressive (AR) mod-
els, autoregressive moving average (ARMA) models, and
autoregressive integrated moving average (ARIMA) models
are usually applied to make short-term load forecasting [66].
Fuzzy regression is introduced in order to overcome some
of the limitations of linear regression, such as the vague
relationship between the dependent variable and the inde-
pendent variables, insufficient numbers of observations, and
hard-to-verify error distributions. The fundamental difference
between the assumptions of the two techniques relate to

the deviations between the observed and estimated values:
linear regression assumes that these values are supposed to
be errors in measurement or observations, while fuzzy regres-
sion assumes that they are due to the indefiniteness of the sys-
tem structure [18]. Many interesting models based on fuzzy
regression for electric load forecasting are already described
in the available literature. Song et al. [67] developed the fore-
castingmodel for short-term prediction using Tw-based fuzzy
arithmetic operations. In [68], several fuzzy linear regression
models were compared in forecasting performance on electric
load data. For oil consumption forecasting the FLR served
also very well [69].

More complex model for time series forecasting with sev-
eral pre-processing and post-processing procedures, includ-
ing fuzzy regression, was proposed in [70]. This paper
presents a fuzzy polynomial regression method with data
selection based on Mahalanobis distance incorporating a
dominant weather feature for holiday load forecasting. Selec-
tion of past weekday data relevant to a given holiday is critical
for improvement of the accuracy of holiday load forecasting.
In the paper, a data selection process incorporating a dom-
inant weather feature is also proposed in order to improve
the accuracy of the fuzzy polynomial regression method. The
dominant weather feature for selection of historical data is
identified by evaluating mutual information between various
weather features and loads from season to season [71].

This application-oriented paper proposes a fuzzy interac-
tion regression approach to STLF. Through comparisons to
three models (two fuzzy regression models and one multiple
linear regression model) without interaction effects, the pro-
posed approach shows superior performance over its counter-
parts [72].

A possibilistic linear function can be defined as:

Y = A1X1 + A2X2 + . . . ..AnXn = Ax (6)

where, xn is non-fuzzy. An is a symmetric fuzzy number
denoted by (αi, ci)L , with αi as the center and ci as the
spread. In this paper, we assume that the reference function
L(x) = max(0, 1− |x|). The type of fuzzy parameter Ai is a
symmetrical triangular fuzzy number

µAi(ai) = L((ai − αi)/ci) (7)

where ci > 0. The possibilistic linear function Y = Ax is
obtained by the following membership function:

µY (y) =


L((y−xT ai/cT |x| , x 6= 0
1, x 6= 0, y = 0
0, x = 0, y 6= 0

(8)

where, |x| = (|x1 |, |x2|, . . . , |xn|)T .
Identification of the parameters of the fuzzy linear regres-

sion model can be formulated as a linear programming
problem:

min
α,c

J (c) = cT |x|

s.t yi ≤
∣∣∣L−1 (h)∣∣∣ cT |xi| − xTi α,
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− yi ≤
∣∣∣L−1 (h)∣∣∣ cT |xi| − xTi α,

c ≥ 0,

i = 1, 2, . . . . . . ,N , (9)

where, h is the threshold to control the width of the spread,
and 0 ≤ h < 1.

Vantuch and Prílepok [73] proposed an innovative algo-
rithm entitled as ensemble of fuzzy linear regression (EFLR)
and it bases on fuzzy linear regression combined with boost-
ing mechanism. The fuzzy linear regression is optimized
making use of multi objective optimization. The original data
of electric load patterns are involved in order to develop and
evaluate a load forecasting model as an experimental appli-
cation of EFLR. The comparison of EFLR with basic fuzzy
linear regression revealed improvement of more than 2% in
all measures which proves the necessity of ensemble-based
approach in the fuzzy linear regression. Luy et al. [66] stud-
ied on handling the problem that is caused by the growing
knowledge base, and improves the load forecasting perfor-
mance of fuzzymodels through nature-inspired methods. The
proposed models have been optimized by using ant colony
optimization and genetic algorithm (GA) techniques. The
training and testing processes of the proposed systems were
performed on historical hourly load consumption and tem-
perature data collected between 2011 and 2014. The results
show that the proposed models can sufficiently improve the
performance of hourly short-term load forecasting. The mean
absolute percentage error (MAPE) of the monthly minimum
in the forecasting model, in terms of the forecasting accuracy,
is 3.9% (February 2014). The results show that the proposed
methods make it possible to work with large-scale rule bases
in a more flexible estimation environment. Although fuzzy
regression has been tried for STLF for about a decade, most
research work is still focused at the theoretical level, leaving
little value for practical applications. A primary reason is that
inadequate attention has been paid to the improvement of the
underlying linear model [72].

C. METAHEURISTIC METHODS
1) ARTIFICIAL BEE COLONY (ABC)
Artificial Bee Colony is a swarm based meta-heuristic algo-
rithm that was first developed by Karaboga [74] in 2005.
Karaboga developed this model based on the model proposed
by Tereshko and Loengarov [75] for the foraging behavior of
honey bee colonies. The minimal model of forage selection
that leads to the emergence of collective intelligence of honey
bee swarms consists of three essential components: food
sources, employed foragers, and unemployed foragers. It is
an optimization tool which is developed by the intelligent
behavior of honey bees where individuals called food posi-
tions are modified by the artificial bees with time and the aim
of the bees is to discover the food sources with high nectar
amount and finally the one with the highest nectar. Honey
bee colony is the combination of employed bees, onlookers
and scouts where number of employee bee same as the food

FIGURE 9. Algorithmic flowchart of artificial bee colony, the employed,
onlooker and scout bees are updated to save the best food source till the
termination criteria is satisfied.

source. The employee bee first calculates the nectar amount
and gives this information to the onlooker’s bee. Onlookers
bee find the best solution of source, and then the scout bees
go to collect the honey [74]. ABC algorithm was developed
based on this basic working principal of honey bee where
first half swarm is consider employee bee and least of the
half is Onlookers bee. Employed bees perform the exploita-
tion process in the search space and the scout’s control the
exploration process [76]. It has the great ability to get out
of a local minimum problem. Fig. 9 demonstrates the flow
of command for the ABC algorithm. After the initialization
of the parameters, employed, onlooker and scout bees are
updated to remember the best source of food. The search
iterates until it meets the termination criteria to choose the
best solution. One of the great limitations of this algorithm is
convergence performance of ABC for local minimum to be
slow [77]. Safamehr and Rahimi-Kian [78] developed cost
efficient method to solve the proposed two-objective opti-
mization problem of a micro grid using intelligent demand-
response program such as ABC. Çevik et al. [79] proposed
swarm intelligence viz. ABC and PSO algorithm for load
forecasting on smart grids. They used previous data of four
years (2009-2012, Turkey) for training and validation where
three years data were used for creating model and one year
data were used for validation. Load profile divided into four
parts as winter, spring, summer and autumn.

2) ARTIFICIAL IMMUNE SYSTEM (AIS)
The Artificial Immune System (AIS) was first introduced in
the mid-1980s with articles authored by Farmer et al. [80]
and later developed by Bersini and Varela [81] on immune
networks. According to Rowe [82], the IS can function as
‘‘second brain’’, as it can generate responses to new and
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FIGURE 10. Algorithmic flowchart of artificial immune system. After
starting the antibody population and affinity evaluation, the clonal
operation is conducted until the stopping criteria is met.

novel networks. Artificial Immune System is a mathematical
and computer modeling of immune systems, or the abstrac-
tion of immunology-related principles into algorithms to
address systematic goals. Immune System (IS) has an adap-
tive response that enables it to learn protein structures that
characterize pathogens it encounters, and remember those
structures [83]. This helps the IS to response to the same
pathogens quickly and efficiently in future [84]. Develop-
ment of AIS can be seen as having two target domains:
the provision of solutions to engineering problems through
the adoption of immune system inspired concepts; and the
provision of models and simulations with which to study
immune system theories [85]. However in themid-1990s, AIS
became a field in its own right and initial articles were pub-
lished by Forrest et al. [86] and Kephart [87]. Also, in an arti-
cle, Dasgupta [88] made an elaborate overview on Artificial
Immune Systems and its application. According to Fig. 10,
an initialization of antibody population led the algorithm to
perform clonal proliferation. Affinity of eachmutated clone is
evaluated. The tournament for further proliferation is selected
based on the aging operation. The iteration proceeds until
the stopping rule is met. Yong et al. [89] propounded a load
forecasting method using AIS which is the combination of
Immune Network Regulation and Immune Programming.

AIS algorithm is used to sustain the diversity of population
and defeated the deficiency of premature phenomenon so that
it enhances the speed of searching and precision of optimiza-
tion. This model showed the MAPE of 2.038%. A load note
of a certain 10 KV distributing net in Beijing and its data

FIGURE 11. Algorithmic flowchart of genetic algorithm, showing the
order of operation to generate a new population by selection, crossover
and mutation to be fed back for evaluation.

are processed as the example. The proposed method of this
study has been validated by the historical load data used in
this study.

Dudek [90] proposed an electricity load forecasting
method to mitigate gap between the demand with genera-
tion where AIS is used to train to recognize the antigens.
It gives the one-day ahead power system load forecasting.
The complete learning process of antibody illustrates over-
lapping clusters of same antigens where solving the problem
is considered as antigen and solution of the problem can be
considered as antibody.

3) GENETIC ALGORITM (GA)
Inspired by Charles Darwin’s theory of natural evolution,
Genetic Algorithms (GAs) are adaptive heuristic search algo-
rithm which is used for solving both constrained and uncon-
strained optimization problems. GAs are frequently used to
produce high-quality solutions to optimization and search
problems based on bio-inspired operators such as mutation,
crossover and selection. This method was initially discovered
by Holland [91] of University of Michigan. Three main types
of rules are used by Genetic Algorithm at each step to create
the next generation from the current population such as:
• Selection rules: select the individuals known as par-
ents which contribute to the population of the next
generation.

• Crossover rules: combine two parents to form children
for the next generation.

• Mutation rules: apply random changes to individual par-
ents to form children.

Fig. 11 presents the order of the algorithm. The data or
the population, upon initialization, proceeds to the evalu-
ation process, where specific populations are selected for
a crossover to generate a new population with combined
characteristic of the previous population. After crossover and
mutation, the new population is fed back for evaluation, until
the evaluation meets the cherished result.

Ghareeb and El Saadany [92] presented a new variant of
genetic programming, namely Multi-Gene Genetic Program-
ming (MGGP) for STLF. In MGGP, each individual of the

134924 VOLUME 8, 2020



A. A. Mamun et al.: Comprehensive Review of the Load Forecasting Techniques Using Single

TABLE 3. Comparative study among single load forecasting method.

population is a weighted linear combination of sparse trees
and each tree in this combination can be considered as a gene.
This model outperformed other models like standard GP and
RBF network with lowest average MAPE value 1.5716%.

Table 3 shows the comparative study between the single
load forecasting techniques.

VI. HYBRID MODELS WITH TWO METHODS
Single methods for load forecasting often comes with sev-
eral types of disadvantages including computing efficiency,

computational complexity, and high error percentage. Over
the years, researchers have been working on building hybrid
load forecasting methods and models to get better accuracy
with minimum error rate. Hybrid models are generally a com-
bination of two or more single methods where each method
helps to make the forecasting more accurate and efficient.
The single methods in a hybrid model is chosen accord-
ing to its best advantages to contribute to the forecasting.
SVM and ANN are the two most popular methods that are
being hybridized with other single methods to gain the best
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load forecasting model with minimal error percentage. SVM
works well with unstructured and semi structured data to gain
the best output. Kernel trick is the real strength of SVM’s
model where an appropriate kernel function can solve any
complex problem. When the optimality is rounded, SVM
can produce a unique solution. This forms a fundamental
difference of SVMandNeural Networks, which producemul-
tiple solutions based on local minima, which makes them not
trustable over different samples. On the other hand ANN can
learn and generalize from training data so there is no need for
vast feats of programming. Like the ‘‘graceful degradation’’
found in biological systems, ANNs are particularly fault
tolerant. Overall, there adaptive learning capability based
on the data given for training made ANN one of the most
popular method for load forecasting. This section reviews
and shows comparison between the hybrid models developed
based on SVM and ANN to maximize the best forecasting
result. Also hybridmodels withmore than two singlemethods
are discussed here with comparison between them.

A. SUPPORT VECTOR MACHINE (SVM)
Support Vector Machine is one of the popular machine learn-
ing algorithms which was initially developed by Cortes and
Vapnik [93] in 1995. Support Vector Regression (SVR) is a
methodology to train the SVM where a function is estimated
using observed data and is used for many machine learning
tasks including time series prediction, regression analysis etc.
In a given training data set:

{(X1,Y1) , . . . , (Xi,Yi) , . . . , (X1,Y1)} ⊂ Rn × R (10)

In SVM for linear regression (SVR), the following function
is to be estimated,

f (x) =< w, x > +b w, x ∈ Rn, b ∈ R (11)

Here the regularized risk function R is being minimized,

R (w, b) = C
1
l

∑n

i=1
L(Yi, f (Xi))+

1
2
‖W‖2 (12)

where, the former term indicates the empirical error measured
by loss function L. C is called the regularization constant
which determined tolerated deviations from the loss function.
The latter term consists of a regularizer W , which will make
the function as flat as possible to control the function capacity.

SVM has been a popular choice among the machine learn-
ing enthusiasts since 1990. SVM is defined by a convex
optimization problem (no local minima) for which there are
efficient methods (e.g. Sequential Minimal Optimization).
Besides SVMs deliver a unique solution, since the optimal-
ity problem is convex. This is an advantage compared to
NNs, which have multiple solutions associated with local
minima. Computationally expensive and slow running is one
of the common drawbacks of SVM. To obtain the global
minimum for load forecasting, SVM is an assuring learning
tool. By providing a necessary parameter for the user-selected
kernel function, this unique method can be optimized with
the different type of kernel function and all the parameters of

FIGURE 12. Pictorial representation of notable hybrid models with two
methods based on support vector machine that are explained in the
subsection.

SVM. Some of the most popular hybrid methods integrating
SVM with other single methods are:

1. SVM and Broyden-Fletcher-Goldfarb-Shanno Firefly
Algorithm

2. SVM and Harmony Search Algorithm
3. SVM and Fruit Fly Optimization Algorithm
4. SVM and Genetic Algorithm
5. SVM and Particle Swarm Optimization
6. SVM and Artificial Bee Colony
7. SVM and Simulated Annealing Algorithm

Fig. 12 presents the commonly used hybrid two-method
models comprising of SVM. These methods are presented in
the following subsection with their uses in load forecasting
technology, the performance of which are further compared
on the basis of their accuracy.

1) SVM AND BROYDEN–FLETCHER–GOLDFARB–SHANNO
FIREFLY ALGORITHM (SVM-BFGSFA)
FireflyAlgorithm (FA) is one of the recent swarm intelligence
methods developed by Yang [94] in 2008 and is a kind
of stochastic, nature-inspired, meta-heuristic algorithm that
can be applied for solving the hardest optimization prob-
lems including load forecasting. Its unique ability to search
and find the global and local optima concurrently made it
a very popular algorithm for forecasting. This algorithm is
based on the characteristics of the flashing light of fireflies.
The flashing light produced by the fireflies by biochemi-
cal process of bioluminescence which helps to characterize
them. Kavousi-Fard et al. [95] combined a Modified Firefly
Algorithm (MFA) and the SVR model to enhance both the
search ability and the convergence of FA. As a case study,
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this work used half-hourly electrical power consumption data
of New South Wales, the state of Victoria, and the State
of Queensland in Australia to validate the predictability of
the proposed combined model. To overcome the weaknesses
of FA which are slow convergence speed and the imprecise
accuracy of convergence, Xiao et al. [96] proposed a new
combined model where they integrated multiple seasonal
patterns, several neural networks, non-positive constraint the-
ory and Broyden–Fletcher–Goldfarb–Shanno Firefly Algo-
rithm (BFGSFA) where it has shown great result compared
to the other single models. To retain the advantages of FA,
such as powerful global exploration and exploitation abilities,
and overcome the weakness of FA during the latter period
of optimization, such as the slow convergence speed and
the imprecise accuracy of convergence. BFGS is used when
FA updates solutions in an iteration to find a local optimal
solution to enhance the local optimization ability and the
speed of the local convergence of the whole algorithm. This
combinedmodel can be useful to forecast electric load, power
scheduling and can avoid power grid collapse and reduction
of the spinning reserve capacity of thermal power plants. The
averageMAPE values of the combined model were 0.7138%,
1.0281%, 4.8394%, 0.9239%, 9.6316% and 7.3367% lower
than other models e.g. Back-Propagation Neural Network,
GA based ANN, Wavelet based NN, GRNN, ARIMA and
Random Walk.

2) SVM AND HARMONY SEARCH ALGORITHM (SVM-HS)
Harmony Search (HS) is a meta-heuristic optimization search
algorithm inspired by amusician effort to search for the better
harmony [97]. It is called during the training phase to select
the optimum parameter. In order to develop the process of
determining the parameters of STLF model harmony search
was adopted to LS-SVM by Zeng et al. [98] Their results
showed the improvement in solution quality and a higher
training speed. Interestingly, theMAPE value of the proposed
methods is 0.77% lower than PSO while the training time
and speed are 36.7% and 2.59% higher, respectively. From
their study, it is being concluded that through the analysis
of load influencing factors with GRNN, the accuracy of the
forecasting model (HS-LS-SVM) can be improved. The key
factors were selected at first by GRNN as the economic and
non-economic factors affect the STLF. The proposed method
achieves higher precisions and faster speed than BPNN,
LS-SVM and PSO, and its correctness and efficacy are also
verified.

3) SVM AND FRUIT FLY OPTIMIZATION ALGORITHM
(SVM-FOA)
Pan [99] proposed Fruit Fly Optimization Algorithm (FOA)
at first, based on food process of the fruit fly. The shorter
program code made it popular compared to other optimiza-
tion algorithm. FOA algorithm has been applied to various
forecasting applications including load forecasting, as it can
reach the global optimal solution fast. Li et al. [100] have
proposed a hybrid model SVM-FOA in their work. Compared

to other heuristic optimization algorithm such as GA and
Stimulated Annealing (SA), SVM-FOA, showed great results
by minimum searching time to locate the global optimum
including decent forecasting error (∼3%) for annual load.
In another work, Cao and Wu [101] proposed a novel hybrid
approach to forecast monthly electricity consumption, com-
bining SVM with FOA. In this study, monthly electrical load
consumption of China has been used since January, 2010
to December, 2015. This 72 months of dataset has been
divided into training set (the preceding 60 months) and the
testing set (last 12 months). The results shows that FOA has
outperformed PSO algorithm in some cases.

4) SVM AND GENETIC ALGORITM (SVM-GA)
GAs are well suited to the concurrent manipulation of models
with varying resolutions and structures since they can search
non-linear solution spaces without requiring gradient infor-
mation or a priori knowledge of model characteristics [102].
It provides an optimization solution to find a computer pro-
gram of unspecified size and shape to solve, or approximately,
a problem. GA has the ability to search through a space to
find the nearly optimal solution. Fitness function is evaluated
to measure the computer solving speed of a given problem
[103]. One of the advantages of GA is that, it search parallel
from a population of points, therefore, it has the ability to
avoid being trapped in local optimal solution like traditional
methods e.g. regression. It uses probabilistic selection rule
rather than deterministic ones. GAworks on the chromosome,
which is encoded version of potential solutions’ parameters,
rather the parameters themselves. It uses fitness score which
is obtained from objective functions, without other derivative
or auxiliary information. In his work, Lee et al. [104] has
shown that Genetic Programming (GP) model outperforms
the results of regression methods to solve the LTLF problem.

GA has been hybridized with SVM to optimize the
SVR parameter values in many studies. Hsu et al. [105],
at first proposed a GA-SVR model to overcome the prob-
lem of SVR parameters. SVR has been integrated with an
improved adaptive genetic algorithm (IAGA) [106] to opti-
mize the ratio values of meteorological factors and electric-
ity cost, outperforming state-of-the-arts. A separate hybrid
genetic-based SVR model (HGASVR) has been proposed by
Wu et al. [102]. The dataset used in this study was down-
loaded from EUNITE network. It consists of all-half-hour
electricity values and average temperature value for 1997
and 1998. Additionally, the holidays of these two years also
included in the dataset. To achieve better forecasting accuracy
their proposed model can automatically optimize the SVR
parameter integrating the real-valued genetic algorithm and
inter genetic algorithm. In their study, it is proposed that the
Poly kernel function could be an appropriate choice of SVR
Kernel function in forecasting daily electricity load. The Poly
kernel function might outperform the RBF kernel function in
a non-linear electricity load forecasting problem. The optimal
MAPE, RMSE and maximum error by HGASVR are 0.76,
7.73 and 20.88 respectively.
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TABLE 4. Comparative study of SVM based hybrid methods.

5) SVM AND PARTICLE SWARM OPTIMIZATION (SVM-PSO)
PSO was initially developed by Kennedy and Eberhart in
1995 [107]. It is similar to GA in that sense that the system
is initialized with a population of random solutions [108].
It has a unique feature of storing all the good solutions of
all the particles. For non-linear problems, a few parame-
ters can be adjusted. Unlike GAs and SA, it has a memory
storage function. Hong [109] proposed a hybrid SVM-PSO
algorithm to locate optimal parameters of SVR model which
can be used for load forecasting. It shows better result than
SVM-GA and SVM-SA. One of the biggest drawbacks of
PSO is that unlike GA and SA, it cannot overcome the
local minimization drawback efficiently. Jiang et al. [110]
designed an SVR based forecaster with a two-step hybrid
parameter optimization scheme with Grid Traverse Algo-
rithm for global to local parameterization, and with PSO
for determining the best local parameters. Their method
showed better performance compared to ARIMA (11.21%),
SVM-GA (5.27%) and ANN (6.62%) with MAPE value
of 2.53%.

6) SVM AND ARTIFICIAL BEE COLONY (SVM-ABC)
ABC was applied for searching the global minimum of three
well-known test functions (Sphere function, Rosenbrock val-
ley and Rastrigin function) [74]. It can make a good balance
between global and local searches by conducting both in each
iteration instead of initiating global search at the beginning
and the local search at the end stage of PSO [111]. For
better parameter determination, Duat et al. [112] proposed a
modified ABC algorithmwhich can provide a better accuracy
of an electric load forecasting model based on Least Square
Support Vector Machine (LS-SVM).

7) SVM AND SIMULATED ANNEALING ALGORITHM
(SVM-SA)
Simulated annealing algorithm is an optimization technique,
analogous to the annealing process ofmaterial physics. SVMs
have been employed to solve nonlinear regression and time
series problems. Pai and Hong [113] applied SA algorithm to
choose the parameters of a SVMmodel. The SVM-SAmodel
performs structural risk minimization rather than minimizing
the training errors. This method outperforms the ARIMA and
GRNN model in generalized performance. Wang et al. [114]
proposed a new optimal model Stimulated Annealing Particle
Swarm Optimization Algorithm that combines the advan-
tages of PSO and SA algorithm. The model is able to
enhance the accuracy and improved the convergence ability
and reduced operation time by numerical experiment.

Table 4 presents a comparative study of the advantages
and disadvantages between the SVM based hybrid methods.
A comparative analysis of the MAPE of these methods are
presented in Table 5. Also the value of these metrics are
different for different datasets and parameters. Therefore it
is quite difficult to compare the results of different tech-
niques. Also, there is no such task where all the methods
are experimented in a single dataset, to find the comparison
between them. In this researchwork, the best accuracy of each
discussed method are tabulated in the subsequent sections
from different forecasting methods.

B. ARTIFICIAL NEURAL NETWORK (ANN)
ANNs are processing devices (algorithms or actual hard-
ware) that are loosely modeled after the neuronal structure of
the mammalian cerebral cortex but on much smaller scales.
A large ANNmight have hundreds or thousands of processor
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TABLE 5. Comparative MAPE, RMSE values and factors of SVM based
hybrid model.

units, whereas a mammalian brain has billions of neurons.
ANNs provide an analytical alternative to conventional tech-
niques which are often limited by strict assumptions of nor-
mality, linearity, variable independence etc. Because an ANN
can capture many kinds of relationships it allows the user
to quickly and relatively easily model phenomena which
otherwise may have been very difficult or impossible to
explain otherwise. ANN is popular choice for load forecast-
ing technique. A recurrent type ANN, proposed by Baek
[118], have shown an MAPE value of 1.57% for MTLF in
South Korea. In this study, dataset includes daily load con-
sumption, real-time temperature, weather, and day type from
July, 2011, a week before 168h load data as the training set
and July 8th, 24 hour of the same year as test set. The power
consumption value has been taken in 15 minutes interval
same as temperature record. Whereas, the day and weather
type recorded once a day.

MLP, another architecture of ANN model was employed
by Park et al. [119] to STLF. One of the major disadvantage
of this method is it takes large MLP structure to train the real
data and it also raise redundancy issues. Some of the most
popular hybrid methods integrating ANN with other single
methods are:

1. ANN and Fruit Fly Optimization Algorithm
(ANN-FOA)

2. ANN and Firefly Algorithm (ANN-FA)
3. ANN and Clustering Techniques (ANN-CT)
4. ANN and Neural Fuzzy Interference System

(ANN-NFIS)
5. ANN and Artificial Immune System (ANN-AIS)
6. ANN and Wavelet Transform (ANN-WT)
7. ANN and Particle Swarm Optimization (ANN-PSO)
8. ANN and Genetic Algorithm (ANN-GA).
Fig. 13 presents the commonly used hybrid two-method

models comprising of ANN. These methods are presented in
the following subsection with their uses in load forecasting
technology, the performance of which are further compared
on the basis of their accuracy.

FIGURE 13. Pictorial representation of notable hybrid models with two
methods based on artificial neural network that are explained in the
subsection.

1) ANN AND FRUIT FLY OPTIMIZATION ALGORITHM
(ANN-FOA)
Pan et al. [99] discussed about the basic fundamental part
of the FOA algorithms which helps to find the maximal
value and minimal value. The searching viability of FOA
algorithm is a help for parameter selection of neural net-
work. Li et al. [120] combined GRNN and FOA for annual
power load forecasting where FOA is used to determine the
spread parameter value of the GRNN model. The MAPE and
MSE values of their proposed model were 1.149% and 1.421
respectively which is also compared with the other five fore-
casting models namely FOA-GRNN, GRNN, PSO-GRNN,
Sparse Approximation Scheme for Least Square SVM, and
Ordinary Least Squares-Likelihood Ratio. It was found that
FOA-GRNN shows the best performance compared to other
methods.

2) ANN AND FIREFLY ALGORITHM (ANN-FA)
In ANN-FA method, FA is used to create the nonlinear
mapping and ANN works to achieve the learning ability.
It helps to develop relatively efficient and accurate forecast-
ing model, but shows a poor performance with respect to
RMSE. Kavousi-Fard et al. [121] combined FA and ANN
to develop a more efficient and accurate forecasting model
where FAwas used to create the nonlinear mapping and ANN
works to achieve the learning ability. Their proposed hybrid
MFA and ANN model mathematical expression is

Xk = [wi,1,wi,2, . . . ,wi,Mw, bi,1, bi,2, . . . , bi,Mb](1,M )

M = Mw +Mb (13)
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where, Xk is the randomly selected firefly from a set of
fireflies, wi is the adjusting coefficient for the ANN arranged
in anM dimensional row vector, andMw,Mb are the number
of weighting and biasing factors, respectively. In addition,
by comparing ANN-MFA method with the other methods
showed that the proposed method results very low forecasting
value of 2.0322which is amore suitable result than the others.
Another studywas done byXiao et al. [96] where he proposed
a combined model of FA neural network where sufficient
work is done to reduce the error of the load forecasting.

3) ANN AND CLUSTERING TECHNIQUE (ANN-CT)
Clustering Technique (CTs) was developed by Driver and
Kroeber in 1932.The major advantage of CT is suitable
for datasets with compact spherical clusters that are well-
separated. Hernández et al. [122] discussed about the STLF
using two different data set for microgrid where they amal-
gamated the K-means clustering algorithms with MLP. This
model showsMAPE value for the data Set A 15.34% and data
Set B 16.69%. Quilumba et al. [123] used the CT to group
customers behavior based on similarities in consumption. The
average MAPE value was reduced by 1.7%, increasing the
number of clusters from one to four and showed a good
forecasting accuracy. Fahiman et al. [124] combined the
DL and clustering methods to improve the accuracy of load
forecasting where clustering is used to identify the customers
behavior into sub-populations based on similar demand pro-
files. This model used K- clusters C = {c1, c1, . . . , ck}
to train a neural network with k prediction models FC =
{Fc1 ,Fc2 , . . . ,Fck } as:

Faggr =
∑k

i=1
Fci (14)

For real-time forecasting, the DNN based K-clusters fore-
casting model shows the best accuracy among the four pro-
posed methods discussed by the author. The author suggest
to use dynamic clustering methods for real-time forecasting.

4) ANN AND NEURAL FUZZY INFERENCE SYSTEM
(ANN-NFIS)
This forecasting method is a combination of ANN with the
neural fuzzy inference system (NFIS). ANN is a method to
obtain an approximate solution throughArtificial Intelligence
techniques, which is based on the imitation of the functioning
of brain [125]. ANNs are organized as layers, i.e. input layer,
hidden layer and output layer. Fuzzy inference use the FL to
process the mapping from given input variable to an output
variable. Using fuzzy logic (IF-THEN) \ rules, the variables
arematched and the response is acquired through fuzzy impli-
cations [126]. The researchers combine both the techniques to
enrich the performance by controlling decision-making and
analyzing data. To find the best parameters, fuzzy classifica-
tion technique can help the neural network by grouping the
rule base. This is extremely helpful to forecast with irregular
datasets which is usual in most of the cases of forecasting.
Neuro-fuzzy modeling is also easy to incorporate human
expertise about the target system directly into the modeling

process [127], [128]. Khotanzad et al. [129] combined FL
along with ANNs to develop a two-stage fuzzy logic where
it is found that the MAPE is less than the Artificial Neural
Network based Short Term Load Forecaster.

5) ANN AND ARTIFICIAL IMMUNE SYSTEM (ANN-AIS)
The advantage of the immune system is that it has the
powerful information processing capabilities which made
the system highly parallel. This system is inspired by the
immunology of human body. Immune Algorithm (IA) was
applied by Yong et al. [89] to design back propagation neu-
ral network (BPNN). It was named as Artificial Immune
Network (AIN). This MAPE value of this model is 2.52%
whereas the AIN MAPE is 2.038%. A new model was devel-
oped by Hamid and Rahman [130] where the ANN is trained
by the AIS. It is capable to provide a comparable forecast of
ANN with BP.

6) ANN AND WAVELET TRANSFORM (ANN-WT)
Wavelet is a complement to classical Fourier decomposi-
tion method. Wavelet transforms allow the components of a
non-stationary signal to be analyzed and the filters to be con-
structed for stationary and non-stationary signals. To decom-
pose the loads into multiple frequency components WT is
prescribed in various works. Jawerth and Sweldens [131]
focused on multi-resolution analysis of WT. Bashir and
El-Hawary [132] used the back propagation algorithm for
solving short-term load forecasting and build a structure of
wavelet neural network. This technique showed the average
percentage error is less than the individual ANN. Zhang and
Dong [133] included Artificial Neural models along with
wavelet transformation to show that the useful information
can be captured on various time scales. The proficiency of
this method has been tested by the Australian electricity
market to predict electricity demands in short term data series
and showed promising results. Guan et al. [134] integrated
wavelet neural networks (WNN) with data pre-filtering.
Li et al. [135] utilized wavelet decomposition to reduce the
non-stationary load sequence and performed an augmented
Dickey-Fuller test to determine the stationary components of
the decomposition. The forecasting of the wavelet features
was analyzed using a second-order gray neural network for
performing STLF with MAPE value of 2.41% for 9 layers.
Wavelet based decomposition are used for the construction
of probabilistic load forecasting models, combined with tree
based Random Forest and quantile regression forests as pro-
posed by Alfieri and De Falco [136]. El-Hendawi and Wang
[137] forecasted the load of Ontario, Canada and successfully
reduced 20% of MAPE value with the ensemble method of
ANN-WT in comparison to conventional NN.

7) ANN AND PARTICLE SWARM OPTIMIZATION (ANN-PSO)
El-Telbany and El-Karmi [138] combined the PSOwith ANN
where PSO used to train the feed forward network for load
forecasting of the Jordanian electricity system. The authors
found that PSO algorithm performed better than the BP algo-
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TABLE 6. Comparative study of ANN based hybrid methods.

rithm. Due to the over trained and complexity, BP (trained
by Neural Network) showed the poor performance. Another
application of ANN-PSO is made by Liu et al. [139]. They
applied PSO to optimize the parameter of the ANN. The
superiority of PSO is that from a set of possible alternatives it
can find best element and also computationally inexpensive,
easily implemented, and does not require gradient informa-
tion of the objective function but only its values. Zhang and
Ma [140] integrated the PSO algorithm and the RBF neural
network algorithm where PSO used to optimize the weights
and RBF neural network to learn the accuracy. This model
showed better performance the typical RBF network.

8) ANN AND GENETIC ALGORITHM (ANN-GA)
Ling et al. [141] proposed a novel neural network based on
GA algorithm. The proposed network’s parameter can be
tined by a GA with arithmetic crossover and non-uniform
mutation. This model has a two activation function namely
static activation function (SAF) and dynamic activation func-
tion (DAF). If vij is the synaptic connection weight from the
i-th input node xi to the j-th neuron, nh is the nodes in hidden
layer, net js(·) is the j-th SAF, net jd (·) is the j-th DAF, and
net lo(·) is the activation function for l output neurons, m

j
d and

σ
j
d are the dynamic mean and dynamic standard deviation for

the j-th DAF, their proposed model mathematical expression
for the daily electric load forecasting is:

yl (t) = net l0

 nh∑
j=1

net jd (net
j
s

(
24∑
i=1

xivij

)
,mjd , σ

j
d

wjl)

l = 1, 2, . . . , 24. (15)

This model showed the MAPE value is less than the tradi-
tional neural model, also providing the training information
which is better on proposed model. An integration study was
performed by Azadeh et al. [142] to developed a logarithmic-
linear model which was later studied on the Iranian agricul-
ture sector. The author proposed ANN model MAPE value
which is much better than time series model. Ventura et al.
[143] studied on which parameters are best for the implement
the integration between GA and ANN. Previously mentioned
PSO and ANFIS has also been integrated with GA and Gaus-
sian process regression to optimize the input of the ANFIS
based PV power forecasting for the plants [144].

Table 6 presents the comparative study of the advantages
and disadvantages, computational complexities between the
ANN based hybrid methods. A comparative analysis of the
MAPE factors of the ANN based hybrid methods are pre-
sented in Table 7.

VII. HYBRID MODELS WITH MORE THAN TWO METHODS
In recent times, scientist and researchers are working more on
developing hybrid models with more than two single methods
where each single method has their own purpose of work.
Some of these hybrid models are discussed below:

A. GENERALIZED NEURAL NETWORK-WAVELET
TRANSFORM-GENETIC ALGORITHM WITH FUZZY LOGIC
(GNN-WT-GAF)
To overcome the major narrowness of single and double
hybrid methods, Chaturvedi et al. [150] proposed a tech-
nique where Generalized Neural Network (GNN) integrates
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TABLE 7. Comparative MAPE, MSE/RMSE values and factors of ANN based hybrid methods.

with WT to train the genetic algorithm with fuzzy sys-
tem (GAF) namely GNN-WT-GAF model. This proposed
model is useful to limiting the drawbacks of ANN, to improve
the convergence of GA and enhance the performance of
fuzzy concepts. This proposed method has been tested using
datasets from a 15 MVA, 33/11 kV substation at Dayalbagh
Educational Institute (D.E.I.), Agra, India where datasets
are divided into four wavelet components where wavelet
is a mathematical function used to divide a given function
of continuous- time signal into different scale components,
namely one approximate component (a3) and three detailed
components (d1, d2, d3).These component are used to train
the GNN model with given load pattern at time t, t1, t2 as
input and t + 1 as output. In final stage the wavelet com-
ponents of GNN was trained by an adaptive genetic algo-
rithm using fuzzy system (GAF). Furthermore, the proposed
GNN-WT-GAF techniques compare with the other methods
such as ANN-BP, GNN-BP, GNN-GAF, GNN-WT-BP and
GNN-WT-GAF. This proposed method shows a RMSE value
0.0486 kW which is a more suitable result than the others.

B. EMPIRICAL MODE DECOMPOSITION-PARTICLE
SWARM OPTIMIZATION-SUPPORT VECTOR REGRESSION
(EMD-PSO-SVR) OR ADAPTIVE NEURO FUZZY INFERENCE
SYSTEM (EMD-PSO-ANFIS)
For enhance the accuracy of load forecasting, EMD-PSO are
garnering popularity due to the ability of EMD to decom-
pose complicated load data into different intrinsic mode
functions (IMFs), which can further be optimized by PSO.
Wang and Wang [151] developed a load forecasting method
where EMD-PSO is combined with SVR. Semero et al. [152]
proposed a similar approach by integrating EMD-PSO with
ANFIS. Their models have three superior capability. Firstly

load data is divided into a number of IMFs components and
one residue by EMD, secondly prognosis IMFs and residual
value separately by SVR or ANFIS, thirdly PSO select the
parameter of SVR or ANFIS automatically. Then the combi-
nation is used to make aggregate calculation and predict the
result. For testing the ability of the proposed model they used
the actual daily peak load data of State Grid Handan Electric
Power Company in China for SVR and of a microgrid in
Beijing for ANFIS. The proposed EMD-PSO-SVR model is
compared with the various model such as EMD-SVR, PSO-
SVR, SVR which showed that the proposed method results
very low error values, i.e. MAPE value of 2.7510, a RMSE
of 0.0595, and an MAE of 0.0414 for an alternate case study.

C. ENSEMBLE EMPIRICAL MODE
DECOMPOSITION-EXTREME LEARNING
MACHINE-GRASSHOPPER OPTIMIZATION
ALGORITHM (EEMD-GLM-GOA)
Wu et al. [153] combined three single method for short
term load forecasting to propose a new excellent hybrid
model,which is assembled by the Ensemble Empirical Mode
Decomposition (EEMD), ELM and grasshopper optimization
algorithm (GOA). This model is superior to find the suitable
weight and threshold values of ELM by GOA. This model
has been examined using datasets from five main states in
Australia, New South Wales, Queensland, Tasmania, South
Australia and Victoria. In training phase, original electrical
data set was decomposed by EEMDaswell as suitable param-
eter are select byGOA for ELM. Then a non-linearmodel was
constructed by ELM. The propose EEMD-ELM-GOAmodel
was compared with three other types of models, i.e. Ensem-
ble Empirical Mode Decomposition – Extreme Learning
Machine – Dragonfly Algorithm (EEMD-ELM-DA), Ensem-
ble Empirical Mode Decomposition – Extreme Learning
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Machine – Grey Wolf Optimizer (EEMD-ELM-GWO), and
EEMD-ELM-PSO where proposed model has the best per-
formance.

D. GLOBAL HARMONY SEARCH ALGOTRITHM-FUZZY
TIME SERIES-LEAST SQUARES-SUPPORT VECTOR
MACHINE (GHSA-FTS-LS-SVM)
Chen et al. [115] proposed a hybrid GHSA-FTS-LS-SVM
electrical load forecasting model based on Global Harmony
Search Algorithm (GHSA) with Least Squares Support Vec-
tor Machines (LS-SVM) and the Fuzzy Time Series (FTS).
In this proposed model, FTS calculate the clustering center
of each cluster where the LS-SVM is used to model the
resultant series, which is optimized by GHSA. Datasets from
the Guangdong Province Industrial Development was used to
test the accuracy of the proposedmodel result, whichwas also
compared with different types of models such as ARIMA and
other algorithms hybridized with LS-SVM including PSO,
HS and GA. In addition, the proposed GHSA-FTS-LS-SVM
techniques shows MAPE, MAE, and RMSE values of 3.709,
14.358 and 18.180 respectively which has a more suitable
result than the others.

E. T-COPULA-IMPROVED EMPIRICAL MODE
DECOMPOSITION-DEEP BELIEF NETWORK
(T-COPULA-IEMD-DBF)
The proposed hybrid technique by Haq and Ni [14] is
designed for STLF, which are tested by the real time data
from Australia and the United States of America. Dataset
included weather data, time categorical data, social data
and energy load demand for particular sampling time. Load
demand time series, after decomposing into low frequency
components with improved Empirical Mode Decomposition
(IEMD), the effects of the loss components are retrieved using
T-Copula based correlation analysis. On deriving the peak
load indicative binary variables from value at risk (VaR), the
combined data is fed to DBN for STLF. For five locations in
Australia, the proposed method is compared to the standard
NN, DBN and EMD-DBN data derived from [154] and for
the standard NN, DBN and Copula-DBN derived from Texas,
USA [27]. The model outperformed with respect to MAPE
and RMSE for most of the cases. On average, the values for
the hybrid models are reduced by 21.19% and 16.93% in case
of Australia, and by 15.27% and 13.86% in case of the USA.

F. GENETIC ALGORITHM-NON LINEAR AUTO REGRESSIVE
WITH EXOGENOUS INPUT-NEURAL NETWORK
(GA-NARX-NN)
Jawad et al. [155] combined GA based training method
for NARX-NN for 168 hours ahead STLF and 1 month
ahead MTLF problems. A wind speed pattern recognition
was also designed with the model. Preliminary model was
designed using elitist GA, an advanced form of GA to
improve the convergence in real-number coding. The chro-
mosome population of GA are provided to NARX-NN as the
initial weight to assess the fitness function for iteration. The

concluding performance of the proposed model was com-
pared with different single methods including auto-regressive
(AR) with exogenous input (ARX), AR moving average
with exogenous input (ARMAX), NARX, regression tree
(RT), Levenberg-Marqardt (LM)-ANN and LM-NARX-NN.
Experimentation showed a regression value greater than 0.99
for load forecasting, showing excellent values of 1.12%
MAPE and 1.39% RMSE (with 0.00036 variance) tested for
MTLF from ERCOT data for the month of December.

G. FUZZY COMBINATION WEIGHT-EMPIRICAL MODE
DECOMPOSITION AND KALMAN FILTERING-BAT
ALGORITHM-SUPPORT VECTOR MACHINE
(FCW-EMD AND KF-BA-SVM)
A multiple method based hybrid model is proposed by
Liu et al. [156] which addresses multiple decomposition
based factors into consideration (such as preprocessing, same
day selection, sequence decomposition, selection and opti-
mization). Fuzzy Combination Weight (FCW) assists the
selection of dense days, reducing the data for forecasting.
After EMD decomposes the components into series IMF, Bat
Algorithm (BA) is then used to optimize the SVM parame-
ters, the forecasted values of which are fine-tuned by Kalman
Filter (KF). SVM is in the core of the complete model.
The model is tested with the transformer substation data in
South China for specific days with varying load profile. The
model excelled over KF-BA-SVM, EMD and KF-BA-SVM,
showing MAPE value of 1.10, which was 1.77 and 0.96
less than those methods respectively. In comparison with
GA-SVM, PSO-SVM and EMD-SVM, where these models
showed MAPE value of 13.5115%, 12.932% and 4.2519%
respectively for a holiday of 2015, the proposed combina-
tion showed 1.9052%, outperforming all the aforementioned
models.

H. GENETIC ALGORITHM-PARTICLE SWARM
OPTIMIZATION-ADAPTIVE NEURO FUZZY
INFERENCE SYSTEM (GA-PSO-ANFIS)
Semero et al. [157] proposed a hybrid model for VSTLF
in microgrids integrating GA, PSO, and ANFIS. The binary
genetic algorithm selects important predictors that notably
influence the load pattern among a number of input variables
whereas PSO algorithm is used to optimize an ANFIS-based
model for VSTLF. The proposed model was compared with
other three models: BP neural network, ARIMA, and per-
sistence models. The proposed method shows 40% reduced
average execution time for one-step-ahead load forecast-
ing. Apart from these notable hybrid methods, novel com-
bined and complex algorithms such as Bidirectional Gated
Recurrent Unit (Bi-GRU) based EGA-STLF [158], two
layer hybrid neural network and three stage based enhanced
ELITE (E-ELITE) framework and consensus-based mixed
integer PSO assisted TRUST-TECH (CMPSOATT) method
[159], EMD and fuzzy RBF-AR method for energy time
series forecasting [160], and multiple scale Variational Mode
Decomposition (VMD), K-Means Clustering and LSTM
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TABLE 8. Comparative study of hybrid methods (more than two model).

assisted for short term wind power forecasting [161] are
being analyzed. These complex algorithms work for specific
cases, and are being researched for general applications of
load forecasting for different time horizons. Table 8 summa-
rizes the advantages, disadvantages, computational complex-
ity and difficulties in designing the notable models for load
forecasting.

VIII. OUTCOMES
The major findings after performing a comparative study of
different state-of-the-arts of predictive models are enlisted as
follows:

• For designing a particular load forecaster, forecasting
time, weather of the location and economy of the system
have significant effect on the accuracy.

• Previous load data can contribute to the augmentation of
the accuracy.

• The values from STLF can be approximated to MTLF
or LTLF by adding econometric variables, load data or
by performing statistical operations.

• The values ofMAE, RMSE andMAPE can be utilized to
evaluate the accuracy of any single or hybrid predictive
model.

• Even though single predictive models can forecast loads
with substantial precision, different models are inte-
grated to improve the value of the forecast.

• Among the single methods mentioned, ELM provides
fast training, FCM provides better error analysis index,
FRBS has the universal approximation capability and
MLP has the highest classification accuracy.

• SVM or ANN based double predictive models have
shown improved results compared to the combination of
other single predictive methods for load forecasting.

• More than two methods are designed in cascade to
perform sequentially and improve the accuracy of each
individual output.

• Each hybrid method, having their own merits, perform
better than the combination of two methods as amal-
gamated methods contribute to the fine tuning of the
parameters.

IX. CONCLUSION
As electrical load prediction requires precision and frequent
check for the varying parameters, researchers have worked
on numerous ML models to enhance the performance of
the existing forecasting technologies. This paper has pre-
sented a comprehensive study of notable single methods
and delineated the state-of-the-art for constructing hybrid
models. Different load forecasting technologies with respect
to time horizons have been described in the study, based
on which various prediction models have been enlisted for
performing an extensive literature study and comparative
analysis. The combination of two or more predictive models
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has been shown in the literature to construct hybridmodels for
demanded accuracy. SVM, ANN, and their relevant models
have been proven fruitful, as these schemes have showcased
excellent opportunities in achieving a well-organized power
system utility where the demand load can be predicted with a
minimum error percentage.

Statistical measurement has been utilized to compare the
percentage error to assist in the selection of the most appro-
priate method for the particular forecasting routine. The out-
come of the research has been enlisted to aid the readers in
acquiring a detailed knowledge of contemporary predictive
models, which can prove useful in selecting a particular
model to design new hybrid forecasters as per the feature of
the individual methods. As hybrid models with more than
two methods have the considerable advantage compared to
single or double models, future research will be focused on
the design and comparison of hybrid models with three or
more methods which will address the disadvantages of the
current forecasters.
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