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ABSTRACT The research of multi-person pose estimation has been largely improved recently. However,
multi-person pose estimation in complex environments is still challenging. For example, the following two
situations cannot be handled well by existing pose estimation methods: first, there are pedestrians that are
not upright or even inverted in the image, and pedestrians of different scales appear in the same image.
To solve these problems, the Progressive rotation correction module (PRCM) and Scale-invariance module
(SIM) based on multi-scale feature fusion are proposed. First of all, the PRCM was proposed to address the
situation where pedestrians appear rotated or even inverted in the image. This module is divided into three
stages, with the aim of gradually correcting the inverted human to an upright one. Besides, SIM is designed
to handle multi-scale problems. In this module, dilated convolutions with different receptive field are used
to extract multi-scale information. Then, the extracted multi-scale features (different semantic information
in different feature maps) will be fused to solve the multi-scale problem. The experimental results show that
our algorithm can reach an AP value of 72.0% when tested on the COCO2017 dataset. Demonstrates that
the proposed method is superior to state-of-the-art methods.

INDEX TERMS Pose estimation, rotation invariance, multi-scale feature fusion, dilated convolution.

I. INTRODUCTION
Human pose estimation has always been a challenging
research area in computer vision. The purpose of human pose
estimation is to automatically capture the position of the key
points of human body. It is the foundation of human-computer
interaction and action recognition. Especially in the past
ten years, research on human pose estimation has become
more active. In the first place, Graphic structure or graphic
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model technology is generally used in traditional human pose
estimation methods [1], [2]. More specifically, the key point
estimation problem of single person is expressed as a tree
structure or a graphical model problem, and the key point
positions are predicted based on the manual features.

Recent works mostly rely on the development of convo-
lutional neural network, which largely improve the perfor-
mance of pose estimation [3]–[10]. Pose estimation is divided
into single-person pose estimation and multi-person pose
estimation, where single-person pose estimation is based on
a single human body predicting key points, and multi-person

132514 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-3640-3229
https://orcid.org/0000-0002-0633-7224
https://orcid.org/0000-0003-1788-3746
https://orcid.org/0000-0001-6479-5154
https://orcid.org/0000-0002-4059-4806


G. Huang et al.: Multi-Person Pose Estimation Under Complex Environment

pose estimation needs to further identify the key points of
everyone within an image. At present, most of single-person
pose estimation methods are based on deep learning frame-
works. Among them, Tompson et al. first predicted the coor-
dinates of each key point through a convolutional neural
network, and used the structural relationship between key
points of the human body to combineMarkov random field to
optimize the prediction result [3]. Tomas et al. predicted the
heatmap of each key point by convolutional neural network
to return to the key point of the human body, which greatly
improved the single coordinate point compared with the
regression. This network is completed based on successive
steps of aggregation and upsampling to produce the final
prediction result [4]. Newell et al. proposed the structure of
Hourglass in 2016, which was first designed for single-person
pose estimation (now it has been generalized to multi-person
pose estimation) [5]. By repeating bottom-up and top-down
and jointly supervising the intermediate results, they can
make good use of the Spatial relationships between differ-
ent parts of the body. In addition, Wei et al. designed a
Convolutional Pose Machine (CPM) which is a multi-stage
architecture, first output a rough pose estimation result, and
then continue to refine this result in following stages [6].

Although single-person pose estimation has achieved good
results, scenarios with multi-person are more common in
practical applications. Therefore, multi-person pose estima-
tion is gradually being more widely studied. The approach
of multi-person pose estimation is mainly divided into two
categories: bottom-up approaches and top-down approaches.
The bottom-up approach first detects all the key points of
the human body and then combines them into a complete
skeleton. Cao et al. proposed Partial Affinity Fields (PAFs)
to learn to associate body parts with individuals in images.
This architecture aims to learn part locations and their asso-
ciations together through two branches of the same sequential
prediction process [7]. In addition, Newell et al. proposed a
network that could simultaneously output detection results
and group allocation information, which could determine
which joint belongs to which person [8]. The top-down
approach interprets the process of detecting key points as
a two-stage pipeline, that is, first locating and cropping all
persons from the image, and then solving the single-person
pose estimation problem. GlobalNet uses the Cascade Pyra-
mid Network (CPN) to detect points that are easier to detect,
while RefineNet is used to detect points that are more dif-
ficult to detect [9]. He et al. proposed a flexible network
structure Mask R-CNN, which added branches to the mask
that carried the key points of the human body [10]. In the
top-down multi-person pose estimation method, the first
step is to detect person from the image and then perform
single-person pose estimation [9], [11], [12]. Where, person
detection is mainly through the R-CNN family [13]–[15]
and YOLO [16], [17]. Our work is top-down multi-person
pose estimation, using YOLOv3 to detect the human body.
Besides, as mentioned, the stacked Hourglass Network was
also applicable to multi-person pose estimation [5].

Although pose estimation has made great progress, there
are still some issues that remain unresolved (as shown
in FIGURE 1). First, the existing method cannot handle the
case where the person in the image is rotated or inverted.
In addition, the distance between each person in the photo and
the camera may vary widely. However, the existing methods
cannot effectively solve the problem of large differences in
scales among individuals in the same image.

FIGURE 1. Example of multi-person pose estimation in complex
situations: (a) shows three persons in a rotated state and
(b) shows two persons with different scales in the same image.

Aiming at the difficult issues mentioned above, we propose
a novel pose estimation scheme with rotation-invariance and
scale-invariance in this paper. In summary, the contributions
are as follows:

1 In order to solve the problem of rotated or inverted
of the human body in the image, we propose a novel
Progressive rotation correction module (PRCM). This
module contains three stages that progressively correct
a rotated or inverted image to an upright position.

2 In order to solve the multi-scale problem in pose esti-
mation, we propose a Scale-invariant module (SIM)
based on multi-scale feature fusion. This module
includes two parts: multi-scale learning by different
receptive field and multi-scale feature fusion. Feature
extraction is performed by adding different dilated
convolutions to different feature maps, and then fuses
feature maps of different scales.

3 Our network has two modules and can be trained
jointly. The loss of PRCM is the Euclidean distance
between the predicted value of the regression box and
the ground-truth. The loss of SIM is the Euclidean
distance between the coordinates of the predicted key
points and the ground-truth. The cumulative sum of the
loss of these two modules is taken as the loss of the
entire network.

4 Based on the proposed algorithm, we achieve better
results on the COCO key points benchmark, with aver-
age precision at 72.0% on the COCO2017 dataset,
which is a 0.6% relative improvement compared
with 71.4%.

In the remainder of this paper, we first discuss related
works about rotation-invariant and multi-scale feature extrac-
tion in section II. We then introduce the details of proposed
method section III. In section IV, extensive experiments are
performed to evaluate the performance of proposed method.
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Finally, conclusions and future works are summarized
in section V.

II. RELATED WORK
A. STRATEGIES OF ROTATION-INVARIANCE IN DEEP
NEURAL NETWORKS
In multi-person pose estimation, there are still some complex
scenes that are difficult to handle, such as pedestrians tilting
or even upside down in an image. Although CNN is used to
process distorted and rotated images, it cannot handle well
of an image with person that rotates at a large angle. Once
upon a time, data augmentation is used in most methods to
deal with images of rotated or slanted person, but this method
could only solve small-angle rotations [9]. Nowadays, more
andmore rotation-invariancemethods are being considered in
deep learning networks. For example, Spatial Transformation
Network (STN) allows spatial transformation of data in the
network explicitly [18]. This differentiable module can be
inserted into the existing convolutional architecture, enabling
the neural network to actively transform featuremaps in space
to achieve the effect of processing rotation. Deformable con-
volution is the improved version of STN, which enhances the
spatial informationmodelling capabilities of the current CNN
network through a variable convolution structure, thereby
achieving the effect of processing rotation [19]. In order
to extract the rotation-invariant feature, Cheng et al. added
a rotation-invariance fully connected layer to the network,
and optimized a new objective function by adding a reg-
ular constraint term to ensure that training samples share
similar features before and after rotation [20]. Daniel et al.
applied a rich, parameter-efficient and fixed computational
complexity representation, showing that deep feature maps
within the network encode complicated rotational invari-
ants [21]. Welling et al. introduced Group Equivariant Con-
volutional Neural Networks (G-CNNs) [22]. Among them,
a network with isomorphism under a specific transformation
(rotation, translation, etc., which can also be expressed as a
special group) is proposed. They conducted experiments on
MNIST and CIFAR data with rotation transformation, and
confirmed that the rotation group CNN can resist rotation bet-
ter. In addition, Shi et al. proposed a Progressive Calibration
Network (PCN) to perform rotation-invariant face detection
in a coarse-to-fine manner [23].

Deformable convolution can handle with rotating objects
by a well-designed deformable convolution structure. This
structure deals with small-angle rotations well, but it does not
handle large-angle rotations, such as the inverted case [19].
Shi et al. proposed a progressive calibration network (PCN) to
complete the face detection process from coarse to fine [23].
In the early stage of the algorithm, a rough direction estima-
tion was performed, and then an accurate direction adjust-
ment was performed. In this way, the network can complete
end-to-end multi-directional face detection. PCN consists
of three stages, the first stage is to select a portion of the
candidate faces from the input image, remove the non-face

candidate box and place the Rough rotation of the candidate
box. The second stage further distinguishes more accurately
between faces and non-faces, regresses the bounding box,
and calibrates the face candidates. The third stage makes
the final decision easily, accurately determines whether it
is a face or not, and regresses the bounding box. Inspired
by PCN, we design a Progressive rotation correction module
to progressively (with three stages) correct a human body
in a rotated or inverted situation to an upright state in pose
estimation. The three stages of this module can gradually
correct an inverted person object to an upright state.

B. ACCURATE MULTI-SCALE PEDESTRIAN DETECTION
In the same image, the distance between each person being
photographed and the lens may be very different, which will
cause a large deviation in the scale of each person in the
captured image. In order to solve the problem caused by
multi-scale, most methods apply multi-scale feature fusion
strategies. Especially, earlier multi-scale fusion methods usu-
ally appeared in object detection tasks, and convolution ker-
nels of different sizes were designed to fit different sized
objects in the image structure. These methods are commonly
used to detect objects at different scales [24]. Redmon et al.
used upsampling and fusion methods to fuse information at
3 scales and independently perform detection on the fusion
feature maps at multiple scales [25]. Because the lower
scale has less feature semantic information, but accurate tar-
get location information; the higher scale has richer feature
semantic information, but the target location information is
coarse. Therefore, this multiscale feature fusion approach
is more effective in detecting small targets. In addition,
Fisher et al. proposed a Feature Pyramid Network (FPN)
to deal with the scale change of body parts [26]. Besides,
Newell’s Stacked Hourglass Networks can learn the local
features of key points through a multi-scale receptive field
mechanism [5]. This Hourglass module is designed to capture
the local information contained in images at different scales,
while the final pose estimation requires a consistent under-
standing of the whole body. The GlobalNet module were
designed by Chen et al [9]. This module fuses feature maps
with different scales of different receptive fields at different
layers to handle multi-scale problems. Besides, Sun et al.
have proposed a High-Resolution Network (HRNet) [27],
which consists of parallel high- and low-resolution subnet-
works, and this networks exchange information repeatedly
between multi-resolution subnets (multi-scale fusion). They
repeatedly perform multi-scale fusion so that each high-and
low-resolution representation can repeatedly receive feature
map information from other scales. Ronneberger et al. pro-
posed a method consisted of a contracting path to capture
the context, and a symmetric expanding path that enabled
precise localization [28]. This structure is a combination
of multi-channel convolution and FPN structure, and the
output of the feature extraction part will be fused in each
subsequent layer. Aiming at the problem that it is difficult
to identify smaller objects and larger objects in an image,
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FIGURE 2. The whole architecture of our network: First, a single person is detected by the object detection network,
and then the single person image is sent to the Progressive rotation correction module to correct the position. The
corrected image is sent to the Scale-invariant module for feature extraction. At the same time, two modules can be
trained jointly. Finally, the final result is output.

Singh et al. proposed a novel training scheme called Scale
Normalization for Image Pyramids (SNIP) which selectively
back-propagates the gradients of object instances of different
sizes as a function of the image scale [29].

As mentioned, many methods design different receptive
fields for different feature maps to learn multi-scale features
in multi-scale problems. Dilated convolution can enlarge the
convolutional kernel with original weights by performing
convolution at sparsely sampled locations, thus increasing the
receptive field size without additional parameter cost [26].
Dilated convolution is widely used for semantic segmentation
to extract context information by expanding the receptive
field [30], [31]. The dilated convolution can expand the
receptive field, without introducing additional parameters,
and can capture multi-scale contextual information. A large
convolution kernel is used in Convolutional Pose Machines
(CPM) networks to extend the receptive field to obtain con-
text information [32]. Furthermore, Deformable Convolution
is a more general convolution operator by adaptively learning
2D offsets [19]. Li et al. found that different receptive fields
have different effects on different scales [33]. They designed
the Trident Networks that use different dilated convolutions
to adapt to objects of different scales.

Inspired by these previous studies, for multi-scale prob-
lems in images, we can expand the receptive field method
in large-scale images to obtain key points information, and
similarly reduce the receptive field appropriately on small
scales. Then the feature maps of different scales are fused to
solve the multi-scale problem.

III. OUR APPROACH
In this section, we introduce the novel algorithm for multi-
person pose estimation in complex environments in details.

Likemost networks, ourmethod is a top-down approach. First
of all, each person is detected by YOLOv3 from each input
image. In the second step, the detected single person image is
sent to a Progressive rotation correctionmodule (PRCM), and
the rotated human body is gradually corrected to an upright
human body. In the third step, the corrected human image is
sent to the Scale-invariant module (SIM) for further feature
extraction. In this module, multi-scale information is learned
through convolution kernels of different receptive fields, and
multi-scale information is fused to deal withmulti-scale prob-
lems. In addition, our two modules can be jointly trained, and
the parameters of the network are optimized by accumulating
the losses of these twomodules and backpropagating. Finally,
the key points of the human body are predicted through the
trained network. The overall flow of the whole algorithm is
shown in FIGURE 2.

A. PROGRESSIVE ROTATION CORRECTION MODULE
At the beginning of the network, each person is detected
from an image with by using an object detection algorithm
(e.g. YOLOv3). The detected bounding box of each single
person is resized to 384×288, and then sent to the Progressive
rotation correction module (PRCM) to correct the rotating
human body. Especially, the proposed PRCM consists of
three stage that gradually calibrate the Rotation-Of-Angle
(ROA) of candidates to upright. Here, we select the centre
point of the candidate box. Then make a straight line perpen-
dicular to the image through the centre point as the central
axis of rotation. In the following, ROA is based on the central
axis as a rotation.

After an image is input, all candidates are generated
according to the sliding window principle. Candidates
are continuously trained by PRCM to regress the person
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bounding box and ROA. Actually, calibration means rotating
the body at the ROA angle to get an upright body. The first
stage, in PRCM-1, candidates are identified from images and
candidates are calibrated from bottom to top by correcting
the ROA angle range from [−180◦, 180◦] to [−90◦, 90◦].
In the second stage, in PRCM-2, the ROAs of candidates are
further distinguished and calibrated to the vertical range of
[−45◦, 45◦], thereby reducing the ROA range by half again.
In the third stage, PRCM-3 can accurately and quickly iden-
tify the candidate and correct the candidate to an upright state.
The proposed PRCM is shown in FIGURE 3.

FIGURE 3. An overview of the Progressive rotation correction module:
Our PRCM gradually calibrates the ROA direction of each candidate to be
upright to better regress to the bounding box. The person in the image is
rotated 60◦ to the left. In the first stage, no rotation is needed because
the candidate is already an angle in the range [−90◦, 90◦]. In the second
stage, the target candidate needs to rotate 90◦ to the right to correct it to
an angle in the range [−45◦, 45◦]. In the third stage, the candidate is
rotated to the left by a small angle to correct it to an upright state.

1) PRCM-1 IN FIRST STAGE
For each input single person image, it can be expressed as x.
PRCM-1 has two goals: regression bounding box and rough
correction, as shown in Equation 1:

[t, g] = F1(x) (1)

where F1 is a detector with a small CNN in the first stage.
Variable t is the score representing the bounding box regres-
sion prediction, and g is the ROA rotation angle score.

The second objective attempts to make the regression a fine
bounding box, as shown in Equation 2:

Lreg(t, t∗) = S(t − t∗) (2)

where S represents loss, t and t∗ represent the ground-truth
regression results and the predicted results. The regression of
the bounding box can be expressed as Equation 3:

tw = w∗/w,

th = h∗/h,

ta = (a∗ + 0.5w∗ − a− 0.5w)/w∗,

tb = (b∗ + 0.5h∗ − b− 0.5h)/h∗, (3)

where a and b denote the top-left coordinates of the bounding
box, w and h denote its width and height. Here, a∗ and a are
for the ground-truth box and predicted box respectively.

The second goal is to roughly predict the candidate’s ori-
entation in a binary classification as follows:

Lcal = y log g+ (1− y) log(1− g) (4)

where y is equal to 1, it means that the input image x is
upright, and when y is equal to 0, it means that the person
body is upside down.

Overall, the objectives of the first stage of PRCM-1 are
defined as:

loss1 = minL
F1
= λreg · Lreg + λcal · Lcal (5)

where λreg, λcal are parameters to balance the loss of first
objective and second objective.

After optimizing Equation 5, PRCM-1 can be used to
filter some candidates. For the remaining candidate boxes,
the new bounding box of the regression is updated according
to PRCM-1. Then, the updated candidate frame is rotated
based on the predicted rough ROA angle. The ROA angle pre-
dicted in the first stage is expressed as θ1, which is calculated
by the following formula:

θ1 =

{
0
◦

, g > 0.5
180

◦

, g ≤ 0.5
(6)

Specifically, θ1 = 0
◦

means that the candidate is facing up,
so there is no need to rotate, otherwise θ1 = 180

◦

means that
the candidate is facing down, and it needs to be rotated 180◦.
In this way, the range of the ROA angle is reduced from
[−180◦, 180◦] to [−90◦, 90◦].

2) PRCM-2 IN SECOND STAGE
The PRCM-2 in the second stage is similar to the PRCM-1
in the first stage, and further returns to the bounding box
and calibrates the candidates. Different from the first stage,
the rough prediction of the ROA angle range at this stage
is ternary classifications, that is, [−90◦, 45◦], [−45◦, 45◦]
and [−45◦, 90◦]. Predict the ROA angle and perform rotation
calibration in the second stage, as shown in Equation 7:

id = argmax gi,

θ1 =


−90

◦

, id = 0
0
◦

, id = 1
90
◦

, id = 2

(7)

where g0, g1 and g2 are the predicted ternary classification
scores. The candidates are rotated -90◦, 0◦ or 90◦ respectively.
After the second stage, the range of the ROA angle is reduced
from [−90◦, 90◦] to [−45◦, 45◦].

3) PRCM-3 IN THIRD STAGE
After the second stage, all candidates are calibrated to a
ROA angle range of [−45◦, 45◦]. Therefore, the third stage
of PRCM-3 can easily correct the candidate to an upright
state because the angle of the offset is relatively small, and
the regression bounding box can be accurately determined.
Because the ROA angle has been reduced to a smaller range
in the previous stage, PRCM-3 attempts to directly return the
candidate’s exact ROA angle, rather than a rough orientation.

Finally, the candidate’s ROA angle can be obtained by
accumulating the predictions of the three stages, expressed
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as θ , as follows:

θROA = θ1 + θ2 + θ3 (8)

The rotation angle of the candidate is obtained by the sum of
the ROA angles predicted in the three stages, that is, θROA =
θ1+ θ2+ θ3. In particular, θ1 has only two values 0◦ or 180◦,
θ2 has only three values 0◦, 90◦, or −90◦, and θ3 is a value
in the range [−45◦, 45◦]. We also provide some examples for
calculating the ROA angle, as shown in FIGURE 4.

FIGURE 4. Three stages of calculating ROA: Two rotated and inverted
images, after three stages of PRCM, are corrected to an upright state.

4) ARCHITECURE OF PRCM
As mentioned, the proposed PRCM consists of three stages.
The input image is 80 × 60 pixels. The output of each
stage is the ROA angle and the coordinates of the regression
box. In PRCM-1, a 3 × 3 convolution kernel is used for
convolution, and the stride is 2, each time the convolution is
performed, the size of the feature map is reduced by half, and
the dimension is doubled. At the end of the network, a fully
connected operation is used to output the ROA and bound-
ing box regression. Similarly, in PRCM-2 and PRCM-3,
a convolution structure similar to PRCM-1 is used, except
that the output of the fully connected layer is different. The
PRCM network structure is shown in FIGURE 5.

In order to better train the PRCM, we added two attributes
to the COCO dataset label, one is the ROA angle θ , and the
other is the coordinates of the human body’s bounding box
after corrected to upright. When creating the dataset, we first
tested the training images with baseline to find out the larger
rotated and inverted bounding boxes. At the same time, mark
the ROA of images with small rotation angles as 0. In the
training process, we only need to return the coordinates of the
human body’s bounding box and the ROA. By obtaining these
two attributes through the trained model, the inverted human
body in the image can be corrected to an upright human body.

B. SCALE-INVARIANT MODULE BASED ON MULTI-SCALE
FEATURE FUSION
In this section, we will introduce the Scale-invariant module
(SIM) in details to solve the problem of large differences
in object scale in the image. After the original image is
sent to the Progressive rotation correction module (PRCM),

FIGURE 5. Structure of PRCM: The detailed CNN structure of the three
stages in the proposed PRCM method. The input is the original image.
In order to show the rotation process more intuitively, we rotated the
input image by ROA. The output of the network is the of the ROA and the
bounding box regression.

the corrected upright image will be output. Then, the cor-
rected image is sent to the SIM for further feature extraction
to deal with multi-scale problems.

Our SIM contains two parts, one is to learn multi-scale
information using novel dilated convolution, and the other
one is multi-scale feature fusion. On one hand, the informa-
tion of feature maps of different scales is different. In large
scale feature maps have more detailed information, while in
small scale feature maps the information is more abstract.
Therefore, we have designed a novel dilated convolution that
uses different dilated convolutions for feature maps of differ-
ent scales. In different feature maps, multi-scale information
is learned through the adaptation of different receptive fields.
On the other hand, the features of each part of the human
body in pose estimation are not concentrated on the feature
map of the last layer, and features in different parts may be
distributed among feature maps of different scales. Therefore,
we need to fuse multi-scale features to improve the detection
effect. Regarding the design of the SIM, we use different
rate of dilated convolution to obtain different receptive fields
for feature map at different scales, as detailed in 1). After
learning multi-scale information through different receptive
fields, then multi-scale fusion is performed, which is detailed
in 2). The specific structure of Scale-invariant module based
on multi-scale feature fusion is shown in FIGURE 6.

FIGURE 6. Structure of Scale-invariant module (SIM): The corrected
single-person image is sent to ResNet for feature extraction. First,
multi-scale feature maps are learned by using dilated convolutions of
different receptive fields. Then feature maps of different scales are fused.
Finally, deconvolution is used to expand the feature map to predict key
points.
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1) MULTI-SCALE LEARNING BY DIFFERENT RECEPTIVE FIELD
In this process, we use ResNet as the backbone network, and
the output of the last residual module is represented asC1,C2,
C3 and C4. In large-scale layers, more effective information
is extracted using large receptive fields. Conversely, on a
smaller scale, the deeper the network is, the more abstract
the extracted semantic information is. If large receptive fields
are used in small objects for feature extraction, small objects
will be lost. Therefore, we have designed a novel dilated
convolution, which can adaptively learn multi-scale informa-
tion through different receptive fields. The proposed dilated
convolution is shown in FIGURE 7.

FIGURE 7. Dilated convolution of Scale-invariant module: The input
feature map x is convolved with 1× 1, 3 × 3 and 1 × 1 added to the input
x. Here, different convolution kernels can be used in dilated convolutions.
The output feature map is reduced to half of the original feature.

For feature maps of different scales, we use convolution
kernels of different dilated convolution rates to convolve to
extract multi-scale information. Multi-scale features can be
obtained by using dilated convolution which is a convolution
operation on a feature map using an interval convolution
kernel. This convolution process can not only expand the
receptive field, but also reduce the information loss caused
by downsampling.

In this paper, we use the dilated convolution to learn the
features of each scale and consider a dilated convolution
block defined as:

y = F(x)+ x (9)

where x and y are the input and output vectors of the layers
considered. The function F(x) represents the residual map-
ping to be learned. The operation F(x) + x is performed
by a shortcut connection and element-wise addition. In this
convolution, first, we use a 1×1 convolution kernel to expand
the dimensions, and then use a 3 × 3 convolution kernel to
convolve. Different dilated convolution rates are used in this
dilated convolution. The number of input and output channels
is the same. The dimensions of the input feature map will be
half of the original dimensions.

Our method is to use a convolution kernel of d = 3 in the
larger feature map C1, a convolution kernel with d = 2 for
the medium feature map C2, and a convolution kernel with
d = 1 for the small feature map C3. There, the dimensions
of the input and output remain the same, but the feature map
shrinks in general, using different dilated convolution rates
in the 3 × 3 convolution. Each time the dilated convolution
module is used, the number of channels of the feature map is
doubled, but the size of the feature map is reduced to half its
original size.

2) MULTI-SCALE FEATURE FUSION
In this section, we introduce the multi-scale feature fusion
in detail. Our method is based on the ResNet backbone, and
different levels of feature maps are obtained by different
downsampling in the four stages of ResNet. The result is the
original size, half size, quarter size and one eighth size of
the feature map. For the multi-scale problem of people in
images, we first feature extracted on different feature maps
using convolutional kernels with different dilated convolution
rates, and then fused the different scales of feature maps.

As the number of layers of the convolutional neural net-
work deepens, the semantic information is extracted from the
bottom to the top layers. For the extraction of key points of
the human body, the features extracted at the lower layers of
the network are only some contour features. As the network
deepens, the extracted features are higher semantic features
such as eyes, nose, etc., and finally the network reaches the
deepest layer to extract the key points throughout the human
body. However, as the network deepens, each layer loses
some information, and more information is lost in the last
layer. Therefore, we add the feature map of the previous
layer to the feature map of that layer, which preserves some
information of the previous layer and reduces the loss of that
layer Information. For pose estimation, not all features are
concentrated on the feature map of the last layer, and different
key points may be distributed on feature maps of different
scales. If only the featuremap of the last layer is used to detect
the key points, the detection effect will not be good.

The feature maps at different scales contain different levels
of semantic information, and fusing the information from
different scale layers can be better adapted to the images at
different scales. Using the fused feature map for detection
not only improves the accuracy of small object detection, but
also does not lose the detection of large object. Therefore,
the feature map is fused and then the key points are predicted.
The feature maps are defined as C1, C2, C3 and C4 from
large to small. After these feature maps of different sizes are
passed through the dilated convolution module, these feature
maps are fused. The process of fusion can be expressed as
Equation 10.

Rout = F(C1 ⊗ D1)⊕ F(C2 ⊗ D2)⊕ F(C3 ⊗ D3)⊕ C4

(10)
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whereRout represents the result after fusion,C represents four
different size feature maps, D represents four different con-
volution kernels. There F represents the convolution result
of the current size. The symbol ⊗ represents a convolution
operation, and ⊕ represents a fusion operation.

C. JOINT TRAINING OF TWO MODULES
After the feature extraction of the Scale-invariance mod-
ule (SIM), the resolution of the feature map at this time is
only 10× 8. At this time, it is necessary to generate a feature
map of 80 × 64 resolution for key points prediction. We use
deconvolution to generate high-resolution feature maps. If we
use upsampling directly, some information will be lost, so we
use a deconvolution operation, which is equivalent to convo-
lution and upsampling, so that more feature information can
be retained.

After using three deconvolution layers, the size of the gen-
erated feature map is 80× 64× 2048, where 2048 represents
the number of channels. Then use a 1 × 1 convolution to
generate k heat maps{H1,H2,H3 . . .Hk}, and finally predict
the key points in the heat map.

For the calculation Scale-invariant module of loss, we use
a Gaussian function to generate a heat map for each key point,
and also generate a corresponding heat map for the predicted
key points. The loss function is calculated as Equation 11.
θi represents the position of the real coordinates of the
i-th key point, θ̂i represents the predicted coordinates. Where,
s represents the size of the current image, and k represents k
key points in total. Calculate the Euclidean distance from the
ground-truth of each key point and the predicted heat map.
The loss of SIM can be defined as:

loss2 =
k∑
i=1

e−
‖θ̂i−θi‖

2
2

2s2k2 (11)

As mentioned, there are two modules in our network, and
the loss of these two modules must be back-propagated. Let’s
record the loss of the Progressive rotation correction mod-
ule (PRCM) as loss1 ich already defined in Equation 5, and
the loss of the SIM as loss2, then the loss of the entire process
is losstotal , as shown in Equation 12. During the training
process, both parts of the loss work, and the parameters are
optimized by backpropagation.

losstotal = loss1 + loss2 (12)

IV. EXPERIMENT ANALYSIS
In this section, we will discuss more details of our methods
according to the experiment results. Our overall pipeline
follows the top-down approach for multiple human pose esti-
mation. Firstly, we apply an object detector to generate human
proposals. For each proposal, we assume that there is only one
main person in the proposed cropped region, and then apply
a pose estimation network to generate the final prediction.
We first describe the experimental environment and evalua-
tion indicators in section A. In section B, we experimentally

verify our proposed Progressive rotation correction module
and Scale-invariance module.

A. EXPERIMENTAL ENVIRONMENT AND EVALUATION
METRIC
1) DATASET DESCRIPTION
Our network is trained on MS COCO trainval dataset
(includes 80000 images and 120000 person instances)
and validated on MS COCO minival dataset (includes
500 images). The testing sets includes test-dev set
(12000 images). In order to minimize the variance of pre-
diction, we apply a gaussian filter on the predicted heatmaps.
Following the same techniques used in [5], we also predict
the pose of the corresponding flipped image and average the
heatmaps to get the final prediction.

2) EXPERIMENTAL ENVIRONMENT
All proposed models of pose estimation are trained using
Adaptive moment estimation (Adam) algorithm with an ini-
tial learning rate of 0.0001. Batch normalization is used in our
network. Generally, the training of ResNet101 based models
takes about 1 day on eight NVIDIA Tesla K80 GPUs. Our
models are all initialized with weights of the public-released
ImageNet [34] pretrained model.

3) EVALUATION METRIC
Our experiments were evaluated in Object Key Point Similar-
ity (OKS) where OKS define the similarity between different
human poses. OKS can be defined as Equation 13.

OKS =

∑
i exp(−d

2
i /2s

2k2i )δ(vi > 0)∑
i δ(vi > 0)

(13)

where di is the Euclidean distance between the detected key
points and the corresponding ground truth, di is the vi is the
visibility flag of the ground truth, s is the object scale, and
ki is a per-keypoint constant that controls falloff. We report
standard Average Precision (AP) and recall scores: AP50

(AP at OKS = 0.50), AP75, AP (the mean of AP scores
at 10 positions, OKS = 0.50, 0.55 . . . 0.90, 0.95, APM for
medium objects, APL for large objects, and AR are averaged
over multiple OKS = 0.50, 0.55 . . . 0.90, 0.95) [27].

B. COMPARISON WITH STATE-OF-THE-ART METHODS
1) COMPARATIVE RESULTS ON PROGRESSIVE ROTATION
CORRECTION MODULE
To verify the effectiveness of the Progressive rotation correc-
tion module (PRCM), we only add PRCM to the network.
Inverted and rotated images are added to the network for
training to enhance the ability of PRCM to adapt to com-
plex scenes. There, our method is not data augmentation,
but simply correcting the rotated human body in the input
image to an upright state, without generating new data. In fact,
the proposed algorithm rotates only the bounding box and not
the whole image.

Our method is mainly compared with state-of-the-art
methods: Mask-RCNN [10], G-RMI [35], RMPE [11] and
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MultiPoseNet [36]. At the same time, we specially selected
images with a large rotation angle and inverted images for
testing. Since the methods such as Mask-RCNN cannot deal
with the rotation and inverted situation specially, the detection
error occurs in the image of the rotated scene. In contrast, our
method can detect complete human key points on rotated and
inverted images. Through the PRCM, the rotated or inverted
person object is corrected to an upright state in three stages
to process the rotated scene pose estimation. Our experiments
are tested in the COCO2017 dataset. The experimental results
are shown in TABLE 1. Compared with other methods,
the Average Precision (AP) of our method is higher than that
of other methods, and the AP reaches 71.5%.

TABLE 1. Performance comparison of rotation-invariant module test on
COCO test-dev dataset.

Visualization compare on rotation invariant is also shown
in FIGURE 8. On the inverted person of image (a),
Mask-RCNN incorrectly marks the key points of the face on
the top of the image, but the top of the image is the position
of the ankle rather than the face. Mask-RCNN [10] did not
recognize this as an inverted person. For slanted athlete in
image (c), neither Mask-RCNN nor RMPE [11] correctly
marked the right hand of the athlete. The visualization com-
parison show that our results achieve good performance in the
case of inverted and slanted characters in the image, as shown
in the second column.

FIGURE 8. Visualization compare with state-of-the-art: The first column is
the input image, the second column is the visualization of our method,
and the third and fourth columns are the visualizations of Mask-RCNN
and RMPE, respectively.

2) RESULTS ON SCALE-INVARIANT MODULE
To confirm the effectiveness of our proposed Scale-invariance
module (SIM), we designed eight ablation experiments.
ResNet50 and ResNet101 are adopted as our baseline.

In Experiment 1-4, ResNet50 was used as the backbone
network. In Experiment 1, in the feature maps of differ-
ent scales, all d = 1 dilated convolution modules were
used, and the model can be expressed as (ResNet50 + d1).
In Experiment 2, all the convolution modules with d = 2
are used, and the model can be expressed as
(ResNet50 + d2). In Experiment 3, using the dilated con-
volution module with d = 3, the model can be expressed as
(ResNet50 + d3). In Experiment 4, we use three different
types of dilated convolutions simultaneously, and the model
can be expressed as (ResNet50 + d1 + d2 + d3). Here,
we will introduce the design scheme of Experiment 4 in
detail. In the large-scale feature map C1, first use the con-
volution kernel with d = 3, reduce the feature map to 1/2 of
the original feature map, and then use the convolution kernel
with d = 2 to reduce the original feature map to 1/4. Then,
the convolution kernel with d = 1 is used to reduce it to 1/8
of the original feature map. Similarly, in the feature map C2,
the convolution kernel with d = 2 is used first, and then the
convolution kernel with d = 1 is used; in the feature map C3,
the convolution kernel with d = 1 is directly used; the feature
map C4 remains unchanged.
After these featuremaps pass through the above-mentioned

dilated convolution, the size of the feature map at this time is
10× 8, and the number of channels is 2048. At this time, the
feature maps are fused. The fusion at this time is an add oper-
ation and does not increase the number of channels. Finally,
three deconvolution operations are performed to generate a
feature map with a size of 80 × 64 and a number of chan-
nels of 17. Similarly, Experiments 5-8 used ResNet101 as
the backbone network. The experimental results are shown
in TABLE 2.

From TABLE 2, we can see that the model size with
ResNet50 as the baseline is 232M, and the model size
with ResNet101 as the baseline is 320M. For different
scale feature maps, different dilated convolutions are used.
In ResNet50 and ResNet101, the highest Average Preci-
sion (AP) are 69.5% and 71.7% respectively, while both
networks use different dilated convolutions. We can conclude
from the table that it is better to use different dilated convolu-
tions in different featuremaps than to use only specific dilated
convolutions. Because in large feature maps, the use of large
dilated convolution means that the larger the receptive field,
the better the ability to adapt to large objects. Conversely,
in small feature maps, the receptive field should be appro-
priately reduced. What’s more, the semantic information in
different feature maps is different. For pose estimation, not
all features are concentrated on the feature map of the last
layer, and different key points can be distributed on feature
maps of different proportions. Therefore, it is necessary to
fuse the information of different feature maps to adapt to
multi-scale input. So, the SIM designed by us can solve
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TABLE 2. Results of different dilated convolution in ResNet50 and ResNet101 on COCO test-dev dataset.

TABLE 3. Comparisons on COCO test-dev dataset.

the multi-scale problem in the image. Compared with using
the same convolution module alone, the multi-scale feature
fusion module we designed is indeed effective.

Visualization of ablation experiments is also shown as
FIGURE 9. Three different sizes of dilated convolution are
used byResNet101+ d1+ d2+ d3, compared to a single size
of dilated convolution. There is a significant improvement in
the performance of SIM using different dilated convolution,
especially at some smaller, denser scales.

3) COMPARISONS ON COCO2017 DATASET
To illustrate the effectiveness of our method, we have com-
pared it with the state-of-the-art. For testing the proposed
overall network, we designed three experiments. The first
is to add only the Progressive rotation correction mod-
ule (PRCM), which can be expressed as (PRCM + Ours).
The second experiment is to add only the Scale-invariant
module (SIM), which is the result of Experiment 8 above.
This experiment can be expressed as (SIM+Ours). The third
is to add both PRCM and SIM, which can be expressed as
(PRCM + SIM + Ours).

For our baseline here, a human detector with person detec-
tion Average Precision (AP) of 56.4% on COCO std-dev
split dataset is used. For reference, CPN [9] uses a human
detector with person detection AP of 62.9% on COCO mini-
val split dataset and SimpleBaseline [37] uses a human

FIGURE 9. Visualization of ablation experiments: The first column is the
input image and the second through fifth columns are the results of the
ablation experiments, respectively.

detector with person detection AP of 62.9%. Compared with
CMU-Pose [7], Mask-RCNN [10] and MultiPoseNet [36],
our method is significantly better. Compared to SimpleBase-
line [37], their human detection is better, but overall AP is
lower than us. Compared to MultiPoseNet [36], their feature
extraction network is ResNet152, but the overall AP is still
lower than ours. The results of other methods are summarized
in TABLE 3 in the literature on the COCO2017 dataset.

We also tested on the MPII dataset and achieved state-of-
the-art results across all key points on the MPII Human Pose
dataset. Our network use ResNet101 as the backbone network
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TABLE 4. PCKh@0.5 results Comparisons on MPII dataset.

FIGURE 10. Visualization compare with state-of-the-art: The first column
is the input image, the second column is the visualization of our method,
and the third and fourth columns are the visualizations of CMU-Pose and
Mask-RCNN, respectively. The input images (a) and (b) are rotated state,
and (c) and (d) are different scales case.

and joins PRCM and SIM, which can be represented as
(RIM + SIM + Ours). Evaluation is done using the standard
Percentage of Correct Keypoints (PCK) metric which reports
the percentage of detections that fall within a normalized
distance of the ground truth. ForMPII, distance is normalized
by a fraction of the head size (referred to as PCKh [5]).
Our results can be seen in TABLE 4, and the results on
MPII are very competitive reaching 98.6% at PCK@0.5 accu-
racy on the head. The other methods do not deal with the
issues caused by rotation and inversion. Instead, our method
takes into account these two special cases. The experiments
indicate that our proposed method is indeed effective and
achieves good results.

The visualization comparison with state-of-the-art is
shown in FIGURE 10. The figure below is our result. For
example, in (a), the CMU-Pose [7] method does not detect
well on the right foot. Besides, the CMU-Pose [7] method
does not correctly detect the buttocks in (b). In (c), Mask-
RCNN [10] method detects poorly the occluded left knee.
In image (d), Mask-RCNN [10] cannot detect eyes well, and

there is confusion. By contrast, we can see that our results
(in (d)) are better than others with almost error-free. In sum-
mary, experimental results show that the proposed method
is effective to tackle with the issues caused by rotation and
large-scale difference.

V. CONCLUSION
In this paper, we have proposed a novel multi-person pose
estimation under complex environment based on progressive
rotation correction and multi-scale feature fusion. The pose
estimation problem of rotating image and multi-scale person
object in images are solved by our algorithm. First of all,
we use a top-down approach, and then detect each person
from the image. Second, the single person image is sent
to a Progressive rotation correction module (PRCM), which
solves the problem of rotating or inverted human image.
The corrected image will be output after passing through
the PRCM module. Then, the corrected image is sent to a
Scale-invariant module (SIM) based on multi-scale feature
fusion. In this module, dilated convolutions with different
receptive fields are used to extract information in multiple-
scale. At the same time, considering the different amounts of
information carried in feature maps of different sizes in multi-
scale images, we adopt a multi-scale feature fusion method
to solve the problem of scale invariance. Then, we designed
ablation experiments and compared them with state-of-the-
art. A large number of experiments show that our proposed
PRCM and SIM can effectively solve the case of rotation
and multi-scale. Compared with the existing methods, the
proposed PRCM can achieve better detection results in the
case of rotated or inverted. In addition, the proposed SIM
also performs better than existing methods in multi-scale
images. Overall, the AP of our algorithm reached 72.0% in
the COCO2017 dataset. However, our method also fails to
detect when the person object is distorted or too small in the
image.

In the future, we hope to apply the PRCM to the Optical
Character Recognition (OCR) and the block alignment of
Person re-identification. At the same time, we will improve
the robustness of the PRCM to better adapt to the distorted
images in pose estimation. In addition, we will try to fuse fea-
ture maps of four different scales to extract deeper features,
and make predictions layer by layer to solve the detection of
smaller objects.
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