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ABSTRACT The long distance high frequency (HF) communication suffers from time varying multi-
path fading. Multiple-Input Multiple-Output (MIMO) and Single-Carrier Frequency Domain Equalization
(SC-FDE) have been introduced to HF communication system to combat fading. Because accurate channel
estimation is essential for system operation, an architecture of signal flow chart has been designed for the
HF MIMO SC-FDE system. In the architecture, an online Long Short-Term Memory (LSTM) estimator is
proposed. Different from the channel responses time series created by the LSTM training and prediction
loop, a corrected channel responses that are obtained through the received data symbols and the restored
transmitting data symbols make up the channel responses time series. In order to evaluate the performance
of channel estimators, a simulation system has been built. The uncorrelated and correlated channels are
simulated referring to International Telecommunication Union (ITU)-R F.1487 standard and Kronecker
model. The simulation results demonstrate that the online LSTM estimator outperforms Least Square (LS)
and Recursive Least Square (RLS) estimators in terms of Bits Error Rate (BER) and Mean Square Error
(MSE). The online LSTM estimator is capable of tracking the time varying HF MIMO channels. It has
potentiality in actual long distance HF communication.

INDEX TERMS HF MIMO SC-FDE, online LSTM, channel estimator.

I. INTRODUCTION
High frequency (HF) communication which range of radio
frequency is between 3 and 30 MHz has been widely utilized
in long-distance military and civil communications. Besides
its low cost and simple operation, the main advantage of
HF communication is that it is not easy to be destroyed
by wars and disasters owing to its propagation through the
ionosphere. However, the HF channel not only presents a
limited bandwidth and moderate data transfer rate, but also
exhibits time-varying nature that is made by the fluctuation of
ionosphere. The HF channel can provide a narrow bandwidth
allocation and exhibits multipath effect and time-varying
nature. The barriers to applying HF communication are its
low communication rate and poor reliability.

Multiple-Input Multiple-Output (MIMO) technology has
been introduced into HF communication systems to suppress
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the effect of multipath and increase the data rate. Compared
with the single input single output (SISO), MIMO achieves
higher data rate, better Bit Error Rate (BER) and wider cov-
erage. The combination of MIMO and HF has become the
development trend of the next generation HF communication
system [1]. Based on polarization diversity and radiation
pattern diversity, a heterogeneous array technology has been
proposed to implement a HF MIMO system in [2], [3].
Their results showed that MIMO technology can effectively
improve the channel capacity of HF communication. The
reliability of HF MIMO was investigated in [4], [5] [6]. The
experiment results demonstrated that the MIMO technology
could improve the BER performance of HF communication.
In the process of implementing HF MIMO, Single-Carrier
Frequency Domain Equalization (SC-FDE) and Orthogonal
Frequency Division Multiplexing (OFDM) are the two tech-
niques to mitigate the multipath interference of HF channel.
The conclusion that SC-FDE has the similar performance
and complexity as OFDM was proved in [7], [8]. Besides,
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SC-FDE has lower Peak-to-Average Power Ratio (PAPR)
and it is less sensitive to frequency offset [7]. SC-FDE is
considered more suitable for HF communication. It has been
successfully applied to HF MIMO system [6], [9], [10].
We combined MIMO with SC-FDE for HF communication.

Accurate channel state information (CSI) is of crucial
importance for precoding the spatial stream at transmitters
and detecting and decoding data at receivers. Channel esti-
mation is a crucial activity in the HFMIMO SC-FDE system.
When the transmitted signals arrive at the receiver antennas,
the equalization method to mitigate the effect of multipath
fading depends on the accurate estimation of CSI. The decod-
ing error of space-time block codes (STBC) will occur if
the accuracy of channel estimation is too low. If the CSI
is fed back to transmitter, adaptive transmission control and
pre-equalization can be implemented to further improve the
communication. Therefore, the study of HF MIMO channel
estimation is of great significance.

The MIMO channel estimation methods can be divided
into two categories, traditional methods andmachine learning
methods. Least Square (LS) [2], [10], Minimal Mean Square
Error (MMSE) [11], time domain correlation estimation [12]
and adaptive filtering [13] belong to traditional methods.
Except adaptive filtering, the other methods are presented
under the assumption that the channel is static or quasi-
static. LS estimator has low complexity and is easy to realize.
But LS estimator is poor at low signal-to-noise ratio (SNR).
MMSE estimator can provide better estimation performance
at low SNR. However, the numerical instability and high
computational complexity restrict its application. A time-
domain estimation method based on circular orthogonal pilot
sequence was proposed in [12]. The method can eliminate
the interference from other antennas by circular orthog-
onal sequence and improve SNR by extending sequence
length. LS, MMSE and time domain correlation estimation
all decline in time-varying channels. Adaptive filtering is
well-known approach that was proposed for time-varying
channels. The convergence speed and computational com-
plexity impede the estimation accuracy promotion and its
application. Because the HF channels are multipath and time
varying channels, the promotion abilities of traditional chan-
nel estimation methods are limited.

Machine learning techniques have been introduced to the
MIMO communication systems with the aim of making the
communication smarter. Intelligence will be one of the char-
acteristics of future HF communication [14]. Three modes
for applying neural network in wireless communication have
been proposed. First, the responses of pilot channels are
obtained by traditional channel estimation methods, then the
estimated results can be optimized by neural network [15],
[16] [17], [18]. In [18], the initial channel response was esti-
mated by LS, then the other channel responses were interpo-
lated and the noise was suppressed by image super-resolution
(SR) and image restoration (IR) algorithms. Second, the neu-
ral network was used to map the relationship between
the receiving symbol and transmitting symbol. The trained

network can be utilized to decode the received signal
directly [19], [20]. The channel estimation was implicit,
and the real channel response could not be obtained. Third,
the neural network was used to get the value of channel
response directly [21], [22]. All of the results show that
the neural network methods can improve the accuracy of
channel estimation and the communication quality. However,
when the neural network based methods were applied to
real communication, their performance declined. Because the
neural networks are trained mainly on channel model, they
are optimal for channel model rather than real channel [23].
Most time, the channel model does not match with the real
channel. So the pre-trained network can not work well.

Online training network based on real channel can over-
come the weakness of the pre-trained network [24]. Online
learning does not depend on the entire training data set.
It can adapt dynamically to new patterns in the data. In the
initial phase, network is trained by small dataset from real
channel. Then the network model is retrained and optimized
continuously by the constantly arriving data slices. The net-
work model can be continuously optimized [25]. Online
long short-term memory (LSTM) has been demonstrated that
it can accurately predict the energy consumption of smart
grid [25]. Online LSTM also succeeded in exchange rate
prediction and stock price prediction [26], [27]. The examples
show that significant improvements can be obtained by online
LSTM on one-dimensional time series prediction, such as
channel response estimation.

We designed a HF MIMO SC-FDE communication sys-
tem. The channel estimation is essential to restore the trans-
mitted data symbols at the receivers. Our contributions
involve two parts.

1) An online LSTM estimator is proposed to estimate
the channel responses of the received data symbols.
Different from the channel responses time series that
are created by the LSTM training and prediction loop,
the channel responses series of the online LSTM esti-
mator are composed of the corrected channel responses
that are obtained through the received data symbols.
The transmitting data symbols are restored in terms
of the communication procedure of the HF MIMO
SC-FDE system. The online LSTM estimator sup-
presses the accumulation error that is generated by
the training and prediction loop of the LSTM estima-
tion method. It can track the time varying HF MIMO
channels.

2) We designed the architecture of theHFMIMOSC-FDE
communication system and the signal flow chart.
The uncorrelated channels are simulated according to
the International Telecommunication Union (ITU)-R
F.1487 standard. The correlated channels are simulated
with regard to both ITU-R F.1487 standard and Kro-
necker model. The Zadoff-chu sequence [28] is used to
create orthogonal pilots between a pair of transmitters.
The channel estimation method based on the circular
orthogonal sequence is applied to the architecture to
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FIGURE 1. Architecture of HF MIMO SC-FDE System.

obtain the channel responses of the pilots for the online
LSTM estimator training.

We built a simulation system. The online LSTM estimator
has been compared with LS and RLS estimators. Simulation
results show that the online LSTM estimator outperforms LS
and RLS estimator in terms of BER and MSE. The remains
of the paper are organized as follows. Section 2 depicts
the MIMO SC-FDE system model and HF MIMO channel
model. Section 3 designs the online LSTM channel estimator.
Section 4 presents the experimental results and performance
analysis. Finally, section 5 summaries the paper.

II. HF MIMO SC-FDE SYSTEM
We built a HF MIMO SC-FDE simulation system. The
space-time block code has been applied to encode the signals
sent by the transmitting antenna. The channels of HF MIMO
SC-FDE system are modeled according to ITU-RF1487.

A. HF MIMO SC-FDE SYSTEM
We designed HF MIMO SC-FDE system shown in Fig. 1.
At transmitter, the information bits are mapped into complex
signals by baseband modulation. Data blocks are produced
through serial-to-parallel conversion of the complex signals.
K symbols make up a modulated data block. The data blocks
of MIMO transmission are generated through coding the
symbols of each modulated data block in terms of Alam-
outi STBC. A cyclic prefix (CP) with P length is inserted into
the front of each data block to combat the multipath fading
and suppress the inter-block interference (IBI). So, a data
block is composed of Alamouti coding data and CP. As shown
in Fig. 2, a number of data blocks form a data group. A pilot
group that is composed of several pilot blocks is inserted in
front of a data group. The pilot blocks are created in terms

FIGURE 2. Frame Structure for HF MIMO System.

of Zadoff-chu sequence. The pilot group is configured with
regard to the number of transmitter antennas. The pilot group
is used for online channel estimator and channel track. The
configured frame as shown in Fig. 2 is converted from parallel
to serial. The serial signals undergo filtering, up-sampling,
converting from digital to analogue (D/A), then, are sent
out from the transmitting antennas. When the transmitted
signals arrive at receiver antennas, they undergo analogue-
to-digital conversion, down-sampling, filtering and serial-to-
parallel conversion to obtain the receiver data frame that
matches the transmitter frame. The channel responses are
firstly estimated through the pilot group. The CP in each
receiver data block is removed. The channel responses of data
blocks are estimated through online LSTM. The estimated
channel responses, and data blocks are inputted to FFT (Fast
Fourier Transform) module. Then, the channel equalization
and Alamouti STBC decoding are implemented in frequency
domain. After that, the decoded data are processed by IFFT
(inverse fast Fourier transform), parallel-to-serial conversion,
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and baseband demodulation to recover the original informa-
tion bits.

The construction of data blocks are shown in Fig. 3 [29].
Each data block consists of two parts, the encoded data
and CP. Denote the k-th symbols of the m-th transmitted
data block from antenna i by s(m)i (k). According to Alamouti
STBC, pairs of data between two consecutive blocks are gen-
erated by formula (1), where m = 0, 2, 4, · · · . ()∗ represents
complex conjugation and ()K denotes module-K operation.

sm+11 (k) = −s∗(m)2 ((−k)K )

sm+12 (k) = s∗(m)1 ((−k)K ) (1)

FIGURE 3. Data block format for SC-FDE STBC.

Assume that the received signals are well synchronized. After
the CP is removed, the two consecutive data blocks at time
n = m,m+ 1 are represented as

yn = H_m(n)
1 s(n)1 +H_m(n)

2 s(n)2 + v
(n), n = m,m+ 1 (2)

where v is additive white Gaussian noise(AWGN) samples
vector, H_m(n)

1 is the circulant channel matrix between the
antenna 1 and the receiver antenna, and H_m(n)

2 is the cir-
culant channel matrices between antenna 2 and the receiver
antenna. The circulant channel matrices H_m(n)

i are cre-
ated in terms of the estimated channel impulse response
h(n)i = [h(n)i (0) h(n)i (1) · · · h(n)i (L)], where L is channel
response length. The circular convolution of two blocks is
converted to matrix and vector multiplication by H_m(n)

i .
H_m(n)

i can be written as

h(n)i (0) 0 · · · h(n)i (L) · · · h(n)i (1)
...

. . .
. . .

. . .
. . .

...

h(n)i (L−1) · · · h(n)i (0) 0 · · · h(n)i (L)
h(n)i (L) h(n)i (L−1) · · · h(n)i (0) 0 · · ·

...
. . .

. . .
. . .

. . .
...

0 · · · h(n)i (L) h(n)i (L−1) · · · h(n)i (0)


(3)

Then the relationship between the received data y(n) and the
estimated circulant channel matrix are mapped in frequency
domain by FFT.

Y (n)
= Wy(n) = D(n)

1 S(n)1 + D
(n)
2 S(n)2 + V

(n) (4)

where S(n)i = Ws(n)i and V (n)
= Wv(n).W is discrete Fourier

transform matrix and its elements are described by

W (i, j) =
1
√
K
e
−j2π ij
K (5)

D(n)
1 and D(n)

2 are diagonal matrices, which are calculated
as D(n)

i = WH_m(n)
i W∗. According to properties of digital

Fourier Transform (DFT) and formula (1), we have

S(m+1)1 (k) = −S∗(m)2 (k)

S(m+1)2 (k) = S∗(m)1 (k) (6)

where k = 0, 1, · · · ,K − 1 and m = 0, 2, 4, · · · . Combining
formula (4) and (6), we have

Y =

(
Y (m)

Ȳ
(m+1)

)

=

(
D1 D2
D∗2 −D∗1

)(
S(m)1
S(m)2

)
+

(
V (m)

V̄
(m+1)

)
= DS+ V (7)

where D =
(
D1 D2
D∗2 −D∗1

)
, S =

(
S(m)1
S(m)2

)
and V =

(
V (m)

V∗(m+1)

)
.

And (̄) denotes complex conjugation. Then we can get S(m)1
and S(m)2 from the received data by solving the following
linear equations

Ỹ = D∗Y =
(
D◦ 0
0 D◦

)(
S(m)1
S(m)2

)
+ Ṽ (8)

whereD◦ = |D1(i, i)|2+|D2(i, i)|2 and Ṽ = D∗∗V .We apply
MMSE criterion to implement frequency equalizations as
formula (9)

Ŝ = (D∗D+
σ 2
v

σ 2
s
I2K )−1D∗Y (9)

where I2K is a 2K ∗ 2K unit matrix, σ 2
v and σ 2

s are the noise
power and signal power respectively. At last, Ŝ is transformed
to its time domain counterpart by IFFT. The original informa-
tion bits can be obtained through baseband demodulation.

B. HF MIMO CHANNEL MODEL
We modeled the HF propagation that is reflected by iono-
sphere over long distance. Because the ionosphere is a
layered, heterogeneous, anisotropic, dispersive and random
time-varying medium, the HF channel experiences time vary-
ing multipath and Doppler frequency shift. The HF MIMO
channels vary in both time domain and frequency domain.

Watterson [30] model and Institute for Telecommunication
Sciences (ITS)model [31] are the twoHF channelmodels that
are widely used. The Watterson channel model consists of a
tap delay line, where each tap corresponds to an analytic prop-
agation path. Each tap has a double Gaussian Doppler spec-
trum that consists of two Gaussian functions in the frequency
domain. The Watterson model is suitable for narrowband
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FIGURE 4. Online LSTM Channel Estimation Structure.

(< 12KHz) and short times (<10min) channels. The American
Institute of Telecommunications Science proposed a broad-
band HF channel simulator that is known as the ITS model
in 1997. However, the ITS model is not recommended by
the ITU (International Telecommunication Union), because
there exist issues that have not been resolved. A series of
simplified channel models were specified by Recommenda-
tion ITU-R F.1487 for quantitative testing of high-frequency
modems [32]. There are two independent fading paths with
the same power in these models. The fading process has
Rayleigh-distributed envelope. The recommendedmodels are
widely used in the research of HF simulation. We adopt
the recommended models, ITU-R F.1487, in our HF MIMO
channels simulation.

In the modeling of HF MIMO channels, the correlation
among antennas is considered in the Kronecker model [11].
If a linear array antenna with interval 75 meters, correlation
among antennas can be ignored [5]. The channel between a
pair of transmitter and receiver can be modeled by the recom-
mended Watterson model. If the correlation among antennas
exists, the HF MIMO channel model should multiply the
correlation matrix.

We generate the uncorrelated HFMIMO channels in terms
of ITU-R F.1487. The HF MIMO channels with correlation
among antennas are generated by both ITU-R F.1487 model
and Kronecker model. The channels with correlation is mod-
eled as follow

HMIMO = 2
1
2
RxH ITU2

1
2
Tx (10)

where HMIMO represents MIMO channel and H ITU repre-
sents independent identically distributed ITU channel model.
2Rx and 2Tx denote spatial correlation matrices at the
receiver and transmitter, respectively. The spatial correlation
matrices are modeled as formula (11), (12) and (13).

2Rx =

 ρ1,1 · · · ρ1,Nr...
. . .

...

ρNr,1 · · · ρNr,Nr

 (11)

2Tx =

 ρ1,1 · · · ρ1,Nt...
. . .

...

ρNt,1 · · · ρNt,Nt

 (12)

ρi,j = J0(αdi,j) (13)

where ρ is spatial correlation matrix elements, J0 represents
the zero-order Bessel function, α is wave number and di,j is
the normalized distance between transmit(receive) antenna i
and transmit(receiver) antenna j [33].

III. CHANNEL ESTIMATION BASED ON ONLINE LSTM
The framework of online LSTM estimator is introduced
in Fig. 4. The online LSTM estimator is composed of two
stages, online training and online prediction. During the
online training, the channel response between one pair of
transceiver antennas is estimated through the circular orthog-
onal sequences based channel estimation [12] in terms of
the pilot block that is set for the corresponding transmitter
antenna. The LSTM network is trained by the pilot blocks
and the estimated channel response. During the online pre-
diction, the channel responses of data block are estimated by
LSTM framework based on the trained LSTM network and
the feedback from previously estimated channel responses.

A. CIRCULAR ORTHOGONAL SEQUENCES
The circular orthogonal sequences based channel estima-
tion [12] instead of LS estimator has been utilized for the
channel responses estimation of pilot block of each antenna.
The circular orthogonal sequences based channel estimation
performs better than LS estimator. The configuration of pilots
for HF MIMO is shown in Fig. 2. The pilot group of each
transmitter is composed of pilot blocks. The number of pilot
blocks corresponds to the convergence rate of online LSTM
network training. The rule for the pilot sequence construc-
tion of all transmitters is the same. The pilots of one trans-
mitter should be orthogonal to that of another transmitter.
Although the configuration of pilot sequences increases the
system overhead, it enhances the estimation accuracy of
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channel responses from different antennas through correla-
tion operations.

Assume Nt transmitters. The pilot blocks, such as
C1 and C2, are constructed according to Zadoff-chu
sequence. The Zadoff-chu sequence has cross-correlation
and auto-correlation properties that are required by the
circular orthogonal sequences based channel estimation.
The Zadoff-chu sequence with length Q is generated as
formula (14)

c(q) =

{
ejπrq

2/Q, for evenQ
ejπrq(q+1)/Q, for oddQ,

gcd(Q, r) = 1 (14)

where q denotes the q-th symbol of the sequence, r is an
integer coprime of Q. And the Zadoff-chu sequence of i-th
transmit antenna can be generated through circular shifting
as follow

ci = c(q+ (i− 1)ε)Q i = 1, 2, · · · ,Nt (15)

where ε is the shift step. Then the pilot block is constructed
by insert cyclic prefix and cyclic postfix. The configuration
of the pilot block is shown in Fig. 5. The last P symbols of
the Zadoff-chu sequence are duplicated and inserted in the
front of the Zadoff-chu sequence as cyclic prefix. The first P
ymbols are duplicated and added as cyclic postfix. In order to
suppress inter symbol interference (ISI), the length of cyclic
prefix P must be more than maximum delay spread L of
channel. And the shift step of formula (15) must meet ε ≥ P,
so that the sequences between different pilot blocks keep
orthogonality. The length of Zadoff-chu sequence must meet
Q ≥ NtP, where Nt is the number of transmitting antennas.

FIGURE 5. Circular Orthogonal Pilot Sequence Structure.

At receiver, yj represents the signal of j-th receiver antenna
after removing the cyclic prefix, and the channel response
from transmit antenna i to receive antenna j can be estimated
by formula (17)

ĥij(l) = (
1
Q
)
Q−1∑
q=0

ci(q)yj(q+ l), l = 1, 2, · · · ,L (16)

B. ONLINE LSTM CHANNEL ESTIMATION
1) NETWORK STRUCTURE
The LSTM network structure of online training and predic-
tion is shown in Fig. 6. It involves three parts: input layer,
hidden layer and output layer. The input layer accepts the
input data. The hidden layer is composed of the LSTM cells.
The output layer provides the prediction results. Each LSTM
cell contains input gate, forget gate and output gate [34]. The
input gate it controls whether the new information can be
stored in the cell state and prevents unwanted information
from entering the memory unit. The forget gate f i decides
whether discards previous step information from the cell
status C i−1. The forget gate and the input gate work together
to update the state of the memory cell C i. The output gate ot
decides what information will be outputted. The data flow of
LSTM network follows the following formulas

f i = σ (W f [ht−1, xt ]+ bf )

it = σ (W i[ht−1, xt ]+ bi)

C̃ t = tanh(WC [ht−1, xt ]+ bC )

C t = f t ∗ C t−1 + it ∗ C̃ t

ot = σ (Wo[ht−1, xt ]+ bo)

ht = ot ∗ tanh(C t ) (17)

FIGURE 6. Online LSTM Network Structure.

where C t and ht denote the cell state and cell output respec-
tively at current time.C t−1 is the cell state and ht−1 is the cell
output at previous time. W i,W f ,Wo and WC are the weight
matrix of input gate, forget gate, output gate and cell vectors
respectively. bi,bf ,bo and bC are the bias vector of input gate,
forget gate, output gate and cell vectors respectively.

2) LSTM BASED CHANNEL ESTIMATION
After getting channel responses through circular orthog-
onal pilots, we use them to train the LSTM network.
The LSTM based channel estimation process is shown
in Fig. 8(a). Assume the time series channel responses are(
h(1) h(2) · · · h(n− 1) h(n)

)
, where the vector h(n) repre-

sents the channel responses at different time. h(n) is predicted
in terms of

(
h(1) h(2) · · · h(n− 1)

)
. The procedure of the
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time series sliding for the LSTM network training is shown
in Fig. 7. Input sequences of Fig. 7 mean the set of channel
responses that are inputted to the LSTM network, and the
output data denote the output label. Assume the slide win-
dows length is t . The training starts on the vector window that
is composed of the first t vectors of the time series channel
responses. The first t − 1 vectors are LSTM network input,
and the last vector is output label. Then, the vector window is
moved one time step forward when a new channel response
comes. The LSTM network is trained again by the vectors of
the shifted forward window. The process is repeated until the
LSTM network converges.

FIGURE 7. The Transforming Method from Time Series to Supervised
Learning.

After the LSTM network is trained by the pilot block, it is
applied to predict the channel responses of each symbol in the
data block. Like the iterative training process, the predicted
channel responses are re-inputted to the training process to
update the LSTM network. The updated LSTM network
is used to predict the next symbol channel responses. The
training-prediction loop is iterated until the communication
of all the symbols of the data blocks finishes. The main risk
of this LSTM based channel estimation is that the prediction
error may be accumulated in the iterative loop [35]. The
deviation between the estimated channel responses of the
symbols at the end of the data sequence and the real channel
responses may be large.

3) PROPOSED ONLINE LSTM CHANNEL ESTIMATOR
To suppress the accumulation error of the online training-
prediction loop, we adapt the online LSTMchannel estimator.
As shown in Fig. 8(b), online LSTM estimator uses the pre-
dicted channel response vector ĥ(n) to reconstruct the label
and online learning. Lastly, the regenerated channel response
vector h̃(n) eliminates the accumulation error.

FIGURE 8. Comparison of LSTM Estimator and Online LSTM Estimator.

We utilize two transmitters and one receiver to illustrate
the revised process in Fig. 9. Assume the channel response
length between each pair of transmitter and receiver pairs is
L. ĥ11(n) =

[
ĥ111(n) ĥ

2
11(n) · · · ĥ

L
11(n)

]
denotes the estimated

channel responses vector from the transmitter 1 to the receiver
at time n corresponding to data block n (for n = 0, 2, 4, · · · ),
and ĥ21(n) =

[
ĥ121(n) ĥ

2
21(n) · · · ĥ

L
21(n)

]
are the channel

responses vector from the transmitter 2 to the receiver. The
two estimated channel responses by LSTM are used for chan-
nel equalization and the transmitted data recovery. The corre-
sponding frequency domain channel responses, Ĥ11 and Ĥ21
are obtained by FFT. Ĥ11 and Ĥ21 are rewritten as diagonal
matrix D11 = diag(Ĥ11) and D21 = diag(Ĥ21). Alamouti
decoding and channel equalization in SC-FDE system are
computed as formula (18)(

D̃ 0
0 D̃

)(
S̃1(n)
S̃2(n)

)
=

(
D11 D21
D∗21 −D∗11

)(
Y (n)

Ȳ (n+ 1)

)
D̃ = |D11|

2
+ |D21|

2 (18)

where Y (n) and Y (n+1) are the received data blocks at time n
and n + 1, (̄) denotes complex conjugation and ()∗ denotes
complex conjugation transposition. The output frequency
domain vector S̃ is converted to its time domain counterpart s̃
by IFFT. s̃ is the vector of the restored transmitted symbols.

The restored transmitted bits data, and the received blocks
Y (n) and Y (n+1) are re-computed according to the transmis-
sion process of HF MIMO SC-FDE with the aim of revising
the estimated channel responses. Bit data are re-modulated
and encoded by Alamouti STBC. The encoded symbols are
transformed to frequency domain by FFT.Tx1 andTx2 denote
the results of FFT. And they make up diagonal matrices X1
and X2. The new frequency domain channel responses at
time n are computed as formula (19). The new time domain
channel response h̃11(n) and h̃21(n) are obtained by IFFT.(

X̃ 0
0 X̃

)(
H̃11(n)
H̃21(n)

)
=

(
X∗1 −X2
X∗2 X1

)(
Y (n)

Y (n+ 1)

)
X̃ = |X1|

2
+ |X2|

2

X1 = diag(Tx1)

X2 = diag(Tx2) (19)

It is found that the new channel response h̃ij(n) is different
from the estimated channel response ĥij(n). h̃ij(n) is consid-
ered closer to the real channel response than ĥij(n), because it
is computed through the received symbols and the transmitted
symbols that is restored based on ĥij(n). h̃ij(n) instead of
ĥij(n) is sent to the online training process as output label to
suppress the accumulation error. It is also added to the chan-
nel response sequence. Then, because the Alamouti STBC
requires that the channels are fixed over two consecutive
blocks, i.e. h̃ij(n) = h̃ij(n+ 1), the channel response window
advances by one step for next channel response estimation
at time n + 2. Through the revised process shown in Fig. 9,
the accumulation error caused by the typical online LSTM
training-prediction process can be reduced. The channels of
HF MIMO SC-FDE can be well tracked.
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FIGURE 9. Proposed LSTM estimator algorithm diagram.

IV. EXPERIMENT RESULTS
We tested our methods on simulated system. Two kinds of
RF MIMO channel models, uncorrelated and correlated, are
tested in the simulation system. We also tested LS and RLS
channel estimator as typical traditional methods to demon-
strate the performance of our method.

A. SIMULATION EXPERIMENTS ON NON-CORRELATION
CHANNELS
1) PAREMETERS SETTING
The 2 × 2 HF MIMO SC-FDE system parameters are listed
in TABLE 1. The 2 × 2 HF MIMO uncorrelated channels
are simulated referring to the medium latitudes channel of
ITU-R F.1487 standard. This channel model simulates two
multipaths with varying time delays and Gaussian Doppler
power spectrum. The parameters of system frame struc-
ture are shown in Fig. 10. The bandwidth of the system is
3000Hz, which is less than the recommended bandwidth of
ITU-R F.1487, 12KHz. The symbols are delivered at a rate
of 4000 bauds. As shown in Fig. 10, a data block consists
of 128 symbols with QPSK modulation. The CP length is
set as 16. The duration of the CP is 16/2000 = 8ms, which
is more than time delay 2ms. So, the multipath interference
between two consecutive data blocks can be ignored.

In order to implement online LSTM estimator, we need
to transmit a group of pilot blocks for pre-training network.
We constructed the pilot sequence according to section III.A.
A pilot block is Zadoff-chu sequence with length of 32, and
the length of both cycle prefix and postfix is the same as data
block. The shift step length ε is equal to 16. Two circular
orthogonal pilot sequences are repeated 200 times. The pilot
blocks are used for channel estimation at the receiver, and
the estimated channel responses are used to trains the LSTM

TABLE 1. HF SC-FDE system parameter setting.

network. Pilot blocks are followed by data blocks and the
number of data blocks is set as 10000. The data blocks will
be decoded using the channel response estimated by online
LSTM network at the receiver.

The LSTM network has one input layer, two hidden layers,
one output layer. The LSTM network is trained with the aim
of minimizing the mean square error (MSE) between the
predicted response and the labeled response. The adaptive
moment estimator (Adam) optimizer is employed for LSTM
network training. Learning rate and batch size are set as
0.1 and 1, respectively. The parameters set for LSTM are
listed in TABLE 2. The 200 pilot blocks are used as the
training set, and the subsequent 10,000 data blocks are used
as the test set. In the online learning process, we adopt the
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FIGURE 10. Frame Parameter of Online LSTM Estimator.

TABLE 2. online LSTM parameter setting.

mean-square error loss function shown in formula (20)

LossMSE (θ ) =
1
F

(
F∑
n=1

(
f (ĥ(n), θ )− h(n)

)2)
(20)

where F denotes the total number of samples. f () is the trans-
formation formula and θ is all parameters of LSTM network.
f (ĥ(n), θ ) is output of network and h(n) is actual channel
response at time n. The optimal network parameters θ are
calculated with regard to the online gradient descent (OGD)
[36] on the loss function. The model parameters are updated
by formula (21)

θn+1 = θn − η∂LossMSE (θn) (21)

where η is learning rate. The LSTM network is trained on an
Intel (R) Core (TM) i7-7700HQ @ 2.80GHz CPU computer
using PYTORCH. After training 200 pilot blocks, the LSTM
network converges.

2) EXPERIMENT METHODS FOR COMPARISON
To demonstrate the performance of the proposed online
LSTM estimator, LS and RLS channel estimator are also
tested in our simulation environment. BER and MSE are the
two parameters to evaluate the performance of the compared
experimental methods.

• Ideal channel estimator
Assume the channel responses are known at receiver. Then,
the transmitted 9000 data blocks are recovered directly.

The ideal channel estimator is set as a criterion for
evaluating other methods.

• LS channel estimator
LS channel estimator was tested. The channel responses
of pilot blocks are estimated by LS method, and the
channel responses of a data blocks are obtained through
spline interpolation. The number of pilot blocks corre-
sponds to the number of transmitter antennas. As an
example, we assume there are two transmitters. The
frame structure of LS method is shown in Fig. 11.
In order to distinguish channel response of different
channel, the pilot group includes two pilot blocks. And
the first pilot block is Zadoff-chu sequence and the sec-
ond pilot block is set to zero in transmitter TX1. The
rule of pilot sequence construction for transmitter TX2 is
opposite to that of the transmitter TX1. In our experi-
ment, 9000 data blocks are transmitted. The pilot blocks
were inserted every 40 data blocks. The total number of
pilot blocks exceed that of the online LSTM estimator.

FIGURE 11. Frame Structure of LS-Interpolation.

• RLS channel estimator
An improved Recursive Least Squares (RLS) algorithm
in [37] was tested in our simulation. The traditional RLS
algorithm is combinedwith the STBC structure. The per-
formance of the improvedRLS is the same as RLS,while
the complexity is close to Least Mean Squares(LMS).
The method is divided into two parts, training mode
and data mode. The training mode uses pilot blocks to
train the estimator until convergence. After convergence,
the estimator becomes a data mode, which can decode
the received data and track channel changes.
The value of the forgetting factor λ affects the per-
formance of RLS estimator. RLS estimator has better
performance for stationary channels when λ is close
to 1. However, λ is set smaller than 1 for non-stationary
channels [37]. We set the forgetting factor as 0.99 when
channels are assumed as stationary channels. Consid-
ering the non-stationary channels that are composed of
HF-MM channel, HF-MQ channel or HF-MD channel,
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we set the forgetting factor value range of [0.6, 0.99]
with the increase step length of 0.01. The corresponding
relationship between the data frames and the channel
models is shown in Fig. 19 and we set SNR = 20dB.
We computed the influence of different forgetting factor
on BER through experiments. The experimental results
are shown in the Fig. 12. When the forgetting factor
is 0.72, the RLS estimator obtains the lowest BER.
In the non-stationary channel experiments, λ is 0.72.
In addition, we also considered using an RLS estimator
with adaptive forgetting factor in non-stationary channel
experiments. The algorithm proposed in [38] is used
to implement an RLS filter with adaptive forgetting
factor. The adaptive forgetting factor is computed as
formula(22),(23) and (24)

λmin = 0.72 (22)

λ (n) = λmin + (1− λmin) ∗ 2L(n) (23)

L(n) = −round(e2(n)) (24)

FIGURE 12. BER and forgetting factor in non-stationary channel.

where e(n) is error signal and round(e2(n)) represents
the smallest positive integer which close to the e2(n).
In non-stationary channels, when e(n) is tending to infin-
ity, λ(n) is tending to λmin. In stationary channel, when
e(n) is tending to 0, λ(n) is tending to 1 [38].
Convergence is another factor that represents RLS esti-
mator performance. Before application RLS for HF
SC-FDE channel estimation, 90 blocks of training data
were used to detect the appropriate length of training in
transceiving process of HF SC-FDE system. The rela-
tionship between training blocks and MSE performance
was computed and shown in the Fig. 13. After 6 itera-
tions, the RLS estimator converged. Therefore, we used
6 blocks to train the RLS estimator in the transceiving
process of HF SC-FDE system. Each training block con-
tains 128(FFT points) QPSK symbols. We retrained the
RLS estimator by adding 6 training blocks every 34 data
blocks as described in [37] to prevent the divergence of
the estimator.

FIGURE 13. RLS Covergence.

3) SIMULATION RESULT
• Comparison of Online LSTM and LSTM
First, we compared the performance of the online LSTM
estimator and LSTM channel estimator. We simulated a
HF MIMO SC-FDE system with two transmitters and
two receivers. There are four channels in the system.
We used medium latitudes moderate condition channel
of ITU-R F.1487 standard channel model to simulate
the four channels. Each channel has two multipath. The
results of LSTM estimator are shown in the Fig. 14.
The blue curves are the real channel response amplitude
of the four channels. The red curves are the estimated
results. It can be seen from Fig. 14 that the first 50 chan-
nel responses estimated by the LSTM estimator are
close to the real channel responses. However, the error
increases with time and the performance of LSTM esti-
mator also decrease with time.

FIGURE 14. Comparison Channel Amplitude of LSTM Estimator.

Fig. 15 shows the all channel response results of the
proposed online LSTM channel estimator. It can be seen
that the estimated response of online LSTM estimator is
close to the true channel response in more range. The
presented online LSTM estimator is better than LSTM
estimator.
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FIGURE 15. Comparison Channel Amplitude of Online LSTM Estimator.

• Comparison of Online LSTM to LS and RLS estimators
The online LSTM estimator is compared with LS and
RLS estimators in terms of BER andMSE. All the exper-
iments were established on the 2*2 HF MIMO channels
of ITU-R F.1487 standard. Fig. 16 shows the results
on medium latitudes moderate condition channels, and
Fig. 17 exhibits the results of the medium latitudes
disturbed conditions channels. The channel conditions
of the latter are worse because of the larger multipath
delay and doppler shift. It can be seen that the BER of
the online LSTM estimator is close to the BER of the
ideal channel estimator. When BER is on the 10−6 order
of magnitude, online LSTM estimator needs SNR =
16dB at receivers, while LS-Spline and RLS estimators
need SNR = 22dB and SNR = 24dB respectively.
The MSE of the online LSTM estimator is similar to
the LS-Interpolation and RLS when the SNR is less
than 2dB. The reason is that the reconstructed label of
the online estimator is interfered by noise. The MSE of
the online LSTM estimator decreases rapidly as the SNR
increases. The MSE of the online LSTM estimator is the
lowest.

FIGURE 16. BER and MSE Comparison of Different Estimator for HF-MM.

The time varying channel tracking by different channel
estimators was tested. The 2*2 channels are also sim-
ulated referring to ITU-R F.1487 standard. The trans-
mitted symbols are modulated by QPSK. The SNR at

FIGURE 17. BER and MSE Comparison of Different Estimator for HF-MD.

receivers are set as 10dB. The amplitude of channel
responses from the first 1000 points are drawn in Fig. 18,
where ha − b represent bth multipath of ath channel.
The MSE values are shown in table 4.3. According to
the TABLE 3, online LSTM estimator is better than LS
estimator and RLS estimator. The curve of the online
LSTM estimator in Fig. 18 is closer to that of the real
channel responses. According to the MSE performance,
online LSTM estimator is better than LS estimator and
RLS estimator.

TABLE 3. MSE comparison.

• Evaluation generalization capability
In order to show the generalization capability of online
LSTM estimator, we implemented experiments on
non-stationary channels. As shown in Fig. 19, we gen-
erated six channels for six consecutive data frames as
shown in Fig. 19. Each of channels was selected ran-
domly from the HF-MQ channel, HF-MM channel or
HF-MD channel. Each time varying channel was sim-
ulated with one alternative set of channel parameters
that involve different multipath delay and Doppler shift.
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FIGURE 18. Channel Tracking of Different Estimators on QPSK data.

Each channel corresponds to a frame of data. Under
the condition, we compared the performance of online
LSTM with LSTM, LS and RLS estimators.
Firstly, we compared the performance of LSTM and
online LSTM estimator at the same SNR. Each data
frame contains only 200 data blocks. The result of
LSTM estimator is shown in the Fig. 20. The LSTM
estimator can only track channel changes over part of
the time. Due to accumulated errors, LSTM prediction

FIGURE 19. Data Frame for Non-Stationary Channel.

FIGURE 20. Channel Amplitude of LSTM Estimator.

results will gradually deviate from the actual channel.
Lack of online learning makes LSTM difficult to deal
with the changes of channel parameters in time. The
BER of the LSTM estimator remained 0 at the first
33 data blocks, but then BER performance deterio-
rated, and it reached BER = 0.37 when the transmis-
sion of 200 blocks was finished. LSTM estimator can
not keep good tracking performance in non-stationary
channels.
Fig. 21 shows the channel track result of online LSTM
estimator. Even under non-stationary channel condi-
tions, online LSTM estimator can well track the channel
change. The BER kept 0 during the transmission of the
200 data blocks.

FIGURE 21. Channel Amplitude of online LSTM Estimator.

Then we compared the BER performance of online
LSTM, LS and RLS estimator. Fig. 22 shows that
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FIGURE 22. BER Comparison of Different Estimators for Non-stationary
Channels.

the online LSTM estimator has best performance on
non-stationary channels. The BER curve of LS estimator
appears flat since the SNR is 16dB, and the improvement
is limited as the SNR increases. Both RLS estimator and
RLS estimator with adaptive forgetting factor have been
tested. Their BER curves are similar when the SNR is
no more than 22dB. When the SNR is more than 22,
the BER curve of RLS estimator remains flat, while the
BER of adaptive RLS estimator reach 0. When BER is
on the 10−6 order of magnitude, online LSTM estimator
needs SNR = 18dB, while RLS estimators with adaptive
forgetting factor need SNR = 24dB. The experiment
results on changed channel models also demonstrate
that the online LSTM estimator has generalization
capability.

• Transmission rate comparison
We compared the efficient transmission rate of different
channel estimator. The transmission rate can be calcu-
lated as

v_tr = Baud ∗ order ∗
Nd

Nd + Np
(25)

where v_tr , Badu, Nd and Np represent transmis-
sion rate, baud rate, number of data and number of
pilot, respectively. According the formula(25) and frame
structure, we can calculate the transmission rate as
shown in TABLE 4. All channel estimator have the
same Baud rate, but online LSTM estimator adopts the
circular orthogonal sequences as pilot. It does not need
extra pilot blocks to distinguish channel response of
different path compared with LS estimator. Although
pilot blocks are inserted into frame header by the online
LSTM estimator, it does not need to insert pilot blocks
repeatedly such as LS estimator, because this estimator
can predict next time channel response. On the whole,
online LSTM estimator can improve the BER and MSE
performance ofHFMIMOSC-FDE system.Meanwhile,
it can improve the transmission efficiency when trans-
mitting mass data.

TABLE 4. transmission rate comparison.

• Complexity Comparison
Complexity is one of the important indicators to mea-
sure the performance of channel estimators. We selected
time and space consumption to compare the complexity
among online LSTM, LS andRLS estimators. For the LS
estimator, we needK times of complex division to obtain
the channel frequency domain responses of the pilot
position. Then the channel frequency domain responses
of the NB data blocks are obtained by interpolation.
So the time and space complexity of the LS estimator
depends on the product of the number of FFT points
K and the number of transmitted data blocks NB. For
the RLS estimator, diagonal matrix is introduced into
recursion formula, and complex matrix inversion is not
needed due to the combination of RLS and STBC coding
properties [37]. The time consumption of RLS estimator
mainly depends on the product of the number of FFT
points K and the number of transmitted data blocks NB.
Unlike LS, RLS estimator also needs to calculate weight
coefficient vectors, error vectors, gain vectors, etc. So its
time complexity is higher than LS estimator. But for
space complexity, the RLS estimator depends only on
the number of FFT points K because RLS is a recursive
algorithm. The results of the last calculation instead of
all the FFT results such as LS estimator should be saved
to deduce the current results. So, when the number of
data blocks NB is large, the advantage of the RLS esti-
mator to the LS estimator on space complexity will be
displayed. For the online LSTM estimator, the circular
orthogonal sequence is required to estimate the channel
response at the pilot position firstly. Because this is the
time-domain channel response, the required time and
space both depend on the channel response length L.
In general, the channel response length is less than the
number of FFT points K . Then the estimated channel
responses will be used to train the LSTM network.
The time and space complexity of training part depends
on the LSTM network size, such as input and output
dimensions, the number of hidden layer neurons and
time step. Finally, during the online prediction stage,
the time complexity of online LSTM estimator depends
on network size and the number of data blocks NB.
Because online LSTM is also a recursive algorithm in
nature, no additional storage space is consumed in this
stage. In summary, the time complexity of online LSTM
estimator depends on network size, channel response
length L and number of data blocks NB, while the space
complexity mainly depends on network size and channel
response length L. The LSTM estimator is similar to
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the online LSTM estimator, but the main difference is
the traditional LSTM does not have the online learning
process at prediction stage. So the time complexity of
LSTM estimator is less than the online LSTM. However,
the time cost of online LSTM estimator is a worthwhile.
Because it improved BER performance and channel
tracking performance dramatically.
In addition, in order to intuitively compare the com-
plexity, we counted the time and space consumed by
the three estimators in the experiment just like in [39].
We use three channel estimators on the same computer to
estimate the channel response of a frame of data. Except
for the estimator, the other conditions remain the same.
The experiment results are shown in Table 5. LS estima-
tor needs 12.465000s and 74.6537M bytes for a frame
data. RLS estimator needs 47.104000s and 0.7025M
bytes for a frame data. For online LSTM estimator,
the time consumption of the three stages was counted
respectively. The time domain estimated consumption
time of 200 pilot blocks was 0.031s, the LSTM network
was trained to consume 1.73s, and the online estimated
consumption of 10000 data blocks was 37.85s. Online
LSTM estimator needs 40.6024s and 0.3544M bytes for
a frame data. In terms of time consumption, LS estimator
consumes the least time. RLS and online LSTM estima-
tor consume the similar time, but they are all 4 times as
much as LS estimator. In terms of space consumption,
online LSTM estimator consumes the least space. How-
ever, LS estimator consumes the most space because it
needs to store the channel frequency domain response of
all data.

TABLE 5. Complexity comparison.

B. EXPERIMENTS ON CORRELATED MIMO CHANNELS
We applied the established 2*2 HF MIMO SC-FDE sys-
tem on the correlated channels. Except the channel model,
the other parameters are the same as that in TABLE 1. The
correlated channels are built with regard to [10]. We used
linear antenna arrays to realize theMIMOas shown in Fig. 23.
The interval between adjacent antennas was set as 3 meters,
5 meters and 7 meters, respectively. The corresponding cor-
relation coefficients were set as 0.82, 0.54, and 0.21 based on
formula (11), (12) and(13).

The BER of the online LSTM estimator on the correlated
channels is shown on Fig. 24. The lower correlation, the lower
BER.We also compared the online estimator with othermeth-
ods on the correlated channels. The correlation coefficient
was set as 0.54, and the data were modulated by QPSK.
Fig. 25 shows that when the SNR is lower than 10dB, the BER

FIGURE 23. Linear Antenna Array of HF MIMO System.

FIGURE 24. BER Comparison of Different correlation for online LSTM
Estimator.

FIGURE 25. BER Comparison of Different Estimator for Correlated MIMO
Channel.

of the online LSTM does not exceed that of the LS and RLS
estimators. When the SNR is higher than 10, the BER of the
online LSTM outperforms that of the LS and RLS estimators,
and it is close to that of the real channel response.

The simulation results demonstrate that our method can be
used in physical HF systems. To establish a HF MIMO-SC-
FDE system, some function modules, such as IQ imbalance
and synchronization, should be added besides the modules
shown in Fig. 1. We will build an experimental system in the
near future.
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Although our research focuses on the HF communication,
the presented method can be used in other bands. To adapt
to other bands, the only change is made on the parameters
of Table 1 and Table 2. If our method is applied to the
lower frequency, the online LSTM estimator may achieve
better performance due to the longer wavelength and more
stationary channel.

V. CONCLUSIONS
Long distance HF communication suffers from time varying
channel. MIMO and SC-FDE have been introduced to HF
communication to combat the multipath, avoid wave distor-
tion at transmitters and improve the data rate.We designed the
architecture of HF MIMO SC-FDE and the signal flow chart.
Channel estimation is essential in the HF MIMO SC-FDE
system. Restoring the transmitted data at the receivers
depends on the accuracy of channel estimation.

We present an online LSTM channel estimator for HF
MIMO SC-FDE system. Different from the training and
prediction loop of the LSTM estimator that is built on the
sliding window of channel response series, the online LSTM
channel estimator uses the received data symbols and the
restored transmitting data symbols to re-compute the chan-
nel responses in terms of the communication process of HF
MIMO SC-FDE. The corrected channel responses are added
to the channel response series for next LSTM network train-
ing and next channel response prediction.

The online LSTM network is firstly trained by the pilots
and their channel responses. The channel responses of pilots
are estimated by the circular orthogonal sequences based
channel estimation. The pilots are constructed referring to
the Zadoff-chu sequence. The configured pilots between dif-
ferent transmitters are orthogonal, making the pilots from
different transmitters can be recognized. After training on
the pilot blocks, the online LSTM estimator is applied to the
channel estimation of data blocks.

We established simulation system. The introduced online
LSTM estimator was compared with LS, RLS and ideal
channel estimation methods. The results of simulation show
that BER and MSE of the online LSTM estimator are lower
than other methods. The online LSTM estimator outperforms
LS and RLS methods. It has potentiality in long distance HF
MIMO communication.
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