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ABSTRACT Accurate transmission line parameters are the basis of power system calculations. Aiming
at obtaining accuracy online transmission line parameters in the case of large random noises even bad
data in Phasor Measurement Unit (PMU) measurements, which occurs frequently in the practice, a new
adaptive robust identification method combining adaptive linear neuron (ADALINE) and traditional robust
IGG (Institute of Geodesy & Geophysics, Chinese Academy of Sciences) method is proposed. In detail,
first, the identification model of transmission line parameters is presented based on the multi-period PMU
measurements at both ends of the transmission line. Then, a parameter solving model based on ADALINE
is established. Furthermore, to fully use measurement information, the adaptive robust ADALINE (ARA)
are proposed, which applies the robust IGG weight function (Scheme I) to ADALINE to realize ‘‘three
segments’’ robust identification. In addition, to improve the robustness, the expectation and variance of the
equation residual sequence are estimated adaptively with the median principle to adjust the threshold for
the IGG function to assure robustness (TAR), which is independent of the known information for the error
of the measurement equipment. The cases based on PSCAD simulated data and measured data show the
effectiveness and engineering practicality of the proposed method.

INDEX TERMS PMU, ADALINE, robust IGG, transmission line parameters identification, bad data,
median estimation.

I. INTRODUCTION
Transmission line (TL) parameters are essential for power
system analysis, operation and control. The accuracy of TL
parameters will affect the credibility of various applications
such as power flow calculation, state estimation, and power
loss analysis [1]. Traditionally, the methods to obtain the TL
parameters mainly include (1) offline power measurements,
(2) live measurements.

However, the parameters obtained through offline power
measurements will be different from the actual values more
or less, as the TL parameters will change slowly under the
influence of some factors such as geographic environment,
temperature, and operating conditions [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Mingjian Cui .

In the live measurement methods, the increasing number of
phasor measurement units (PMU) affords an access to online
identify the TL parameters. As the GridEye [3], the PMU
can provide high-precision, high-upload frequency voltage
and current phasors of the power grid [4], which are applied
to state estimation [5], oscillation localization [6], stability
evaluation [7], line outage detection [8], frequency response
estimation [9] etc. Among them, the identification of TL
parameters based on PMU data has also received widespread
attention.

Currently, methods for TL parameter identification can be
divided into two categories: 1) Methods based on 2 PMUs at
both ends of the line. 2) Methods based on multiple PMUs in
power grid.

In the methods of the first category, Ref. [10] identifies
the erroneous transmission line parameters first, and then
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identifies the accurate line parameters using the least square
algorithm based on PMU data at multiple snapshots. Ref. [11]
employs a three-phase static state estimation to reduce the
impact of noise and identifies the line parameters based on
Kalman filter. Ref. [12] identifies the parameters in two cir-
cumstances, synchronous measurements and asynchronous
measurements. Ref. [13] applies orthogonal distance regres-
sion approach for solving the zero-sequence parameter esti-
mation problem.

In the methods of the second category, Ref. [14] proposes
the PMU positive sequence measurement error model and
estimates the actual transmission line parameters throughout
the whole system. Ref. [15] proposes a numerical method to
identify the topology and estimate line parameters without
the information of voltage angles based on Newton-Raphson
iteration and power flow equations.

Under normal PMU operating conditions, the above meth-
ods can realize the identification of line parameters even if
there is measurement noise. However, due to gross error [16],
worn-out equipments [17], timestamp shift [18], communi-
cation channel blockage [19], [20], GPS signal loss [21] and
even cyberattacks [22], [23], themeasurements of PMU could
be abnormal and even missing, which have been observed
commonly in practice. For example, Ref. [24] observes the
impulsive deviation, zero value jump, continuous zero and
Ref. [25] observed the angle step jump in measured data.
In addition, Ref. [26] shows that small phase angle error
may result in large reactance error in light load. Therefore,
Ref. [22] defines multiple indexes to classify and detect
the PMU data manipulation attacks; Ref. [23] assumes two
different manipulation attacks and correct them based on
DBSCAN; Ref. [27] detects the cyberattack effectively based
on the generalized graph Laplacian (GGL) and flexible Bayes
classifiers (BCs). Besides, for the TL parameter identifi-
cation, the robustness can be enhanced through improving
the algorithms. Ref. [28] applies an adaptive IGG (Institute
of Geodesy & Geophysics, Chinese Academy of Sciences)
criterion to robust least square method. And Ref. [29] pro-
poses an adaptive data selection scheme to remove bad data.
Refs. [30], [31] apply the median principles to improve the
robustness of the methods.

In addition, over the last few decades, many researchers
have studied the applications of artificial intelligence in
power system, e.g., deep learning is applied in frequency
disturbance event detection in Ref. [32]; regression tree is
applied in voltage stability in Ref. [33]; reinforcement learn-
ing is used to emergency frequency control in Ref. [34];
adaptive linear neuron (ADALINE) is applied in parameter
estimation [35]–[39]. Among methods for parameters esti-
mation, ADALINE is widely used to identify the parameters
as it applies the least mean square algorithm as the conver-
gence criterion, which can achieve unbiased estimation of
parameters. Specifically, Refs. [35]–[38] use the ADALINE
to identify the generator parameters, and Ref. [39] uses
the ADALINE to estimate the phase angle. However, the
ADALINE is rarely applied to TL parameter identification.

FIGURE 1. π-type equivalent circuit of transmission line.

On the other hand, as mentioned above, there may be bad
data in PMU data, so it is worth to develop a new robust
identification method, which combines the existing method
and artificial intelligence, to resist the bad data under various
conditions.

Recognizing the above problems, this paper proposes a
robust TL identification method, named as adaptive robust
ADALINE (ARA), based on ADALINE and adaptive robust
IGG weight method. Specifically, based on the π -equivalent
model of the TL, a parameter solution method based on
ADALINE is proposed, and furthermore, combining the IGG
weight function and adaptive estimation of threshold to assure
robustness (TAR), the adaptive robust ADALINE is pro-
posed. The main contributions of this article are as follows:

(1) An adaptive robust ADALINE method is proposed to
identify the TL positive-sequence parameters.

(2) The IGG weight function and ADALINE are combined
to realize the ‘‘three-segment’’ robust identification, which
can make full use of the measurement information and can
also well resist the adverse effects of bad data on the TL
parameter identification.

(3) Themedian principle is applied to estimate the expecta-
tion and variance of the residual sequence to adaptively adjust
the TAR of the weight function. Thus, the proposed method
is independent of the known information of the measurement
equipment’s error, and is robust and practical.

The rest of the paper is organized as follows. Section II
presents the identification model of TL positive-sequence
parameters. Section III gives the parameter solution method
based on ADALINE. Section IV proposes the adaptive robust
ADALINE method, which combines the IGG robust method
and ADALINE, and adjusts the TAR of IGG function adap-
tively based on the estimation of the expectation and variance
of the residual sequence with median criterion. Section V
illustrates the cases studies with simulated data to show the
robustness of the proposed method. And section VI presents
the case studies with measured PMU data to show the practi-
cality of the proposed method. Finally, Section VII gives out
the conclusions.

II. THE IDENTIFICATION MODEL OF TL
POSITIVE-SEQUENCE PARAMETERS
The equivalent model of TL can be divided into a lumped
parameter model and a distributed parameter model accord-
ing to TL length. Both models can be represented by π -type
equivalent circuit as shown in FIGURE 1.

In this paper, the TL positive sequence lumped parameter
equivalent model with π -type equivalent circuit is used.
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For TLs, the voltage phasors, current phasors, active power,
and reactive power can be obtained from the PMUs installed
at both ends of the line. Based on these PMU measurements,
the linear mathematical model of TL can be established,
as follows.

İm
İn
S∗m
S∗n

 =


U̇m−U̇n U̇m
U̇n−U̇m U̇n

U2
m − U

∗
m U̇n U2

m
U2
n − U

∗
n U̇m U2

n

[ 1/ZY
/
2

]
(1)

where Z = R + jX = 1/(g+jb) is the positive sequence
equivalent impedance of the TL, Y=jB = j2yc is the positive
sequence equivalent susceptance.

Furthermore, with real and imaginary parts, the Eq.(1) can
be rewritten as follows.

where θum = arg(U̇m), θun = arg(U̇n), θumn = −θumn =
arg(U̇m/U̇n). ImR, ImI , InR, InI is the real and imaginary part
of current phasor at bus m and bus n.

Mathematically, Eq. (2) can be written in the matrix form.
Besides, considering the random measurement noise, Eq. (2)
can be expressed as follows.

ht= Gtx+ vt (3)

where, Gt , ht are the PMU measurement matrix at time t , vt
is the residual vector at time t , x is the parameter vector to be
identified.

In addition, since the PMU measurements have a high
uploading frequency, multiple sets of data in a short time can
be used, which could increase the redundancy of the equation
and reduce the impact of random measurement noise. With T
snapshots, the equation can be obtained.

h = Gx+ v (4)

where, the coefficient of Eq.(4) is

G = [G1;G2; · · ·GT ]

h = [h1; h2; · · ·hT ]

v = [v1; v2; · · · vT ] (5)

III. ADALINE FOR TL PARAMETER IDENTIFICATION
Adaptive linear neuron (ADALINE) is a kind of neural
network, whose structure is similar to the perceptron, but
the activation function of the ADALINE is a linear function,
i.e. y = x. Therefore, the output of ADALINE is continuous

FIGURE 2. Illustration for the basic structure of ADALINE neural network.

and can be taken to any value. The structure of the ADALINE
is shown in FIGURE 2.

In FIGURE 2, wi is the weight of the ith neuron, A is the
input of the ADALINE, O is the output (predicted value) of
the ADALINE, and b is the target output (target value) of
ADALINE. n is the number of input neurons while m is the
number of input data. where,

A =


A11 A12 · · · A1n
A21 A22 · · · A2n
...

...
...

Am1 Am2 · · · Amn

 (6)

b = [b1, b2, b3 · · · bm]T (7)

W (k)
= [w(k)

1 ,w
(k)
2 ,w

(k)
3 · · ·w

(k)
n ]T (8)

According to the structure of the ADALINE, the predicted
value at the kth iteration is

O(k)
= AW (k) (9)

ADALINE is trained with Least Mean Square algo-
rithm (LMS), thus, its cost function is defined as follows.

E (k)
=

1
2

m∑
i=1

(bi − O
(k)
i )2 =

1
2

m∑
i=1

(v(k)i )2 (10)

The adjustment rules to the weight to minimize the cost
function is stated as follows.

W (k+1)
= W (k)

+ ηAT (b− O(k)) (11)

0 < η <
2
λmax

(12)

where η is the learning rate, λmax is the maximum eigenvalue
of input matrix A.
In this paper, to identify the positive-sequence parameter

of TLs, the ADALINE with three input neurons and one


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output neuron is constructed according to Eq. (2). And G in
Eq. (4) is the input data while h is the target data. i.e.,

A = G
b = h (13)

After training the ADALINE, the trained weight is the
identification result, i.e. W = [w1,w2,w3]T = [g b yc]T .
In addition, in this paper, the convergence criterion of training
ADALINE is that the iterations reach to 20000 or the cost
function is less than or equal to 10−4.

IV. ADAPTIVE ROBUST ADALINE (ARA)
In the case bad data exist in the measurements, the result
obtained from ADALINE may be inaccurate [26]. There-
fore, an adaptive robust ADALINE for TL parameter iden-
tification is proposed in this section. First, the theory of
robust ADALINE is introduced. Then, the IGG (Institute
of Geodesy & Geophysics, Chinese Academy of Sciences)
robust method (Program I) [40] and adaptive estimation for
the residual distribution are introduced. Finally, the overall
process of parameter identification is given.

A. ROBUST ADALINE
The general idea of the robust ADALINE is to assign different
weights to different training data to reduce the impact on
bad data. Specifically, compared to traditional ADALINE, the
change of the ith training data are as follows:
Input data:

[Ai1 Ai2 · · ·Ain]→ Ri [Ai1 Ai2 · · · Ain] (14)

Target output data:

bi→ Ribi (15)

where Ri is the weight of the ith training data
Then the cost function becomes:

E =
1
2

m∑
i=1

(Ribi−RiAiW )2 =
1
2

m∑
i=1

(Rivi)2 (16)

where Ai = [Ai1Ai2 · · ·Ain].
Eqs. (14)-(16) show that weighting the ith training data

is equivalent to weighting the corresponding residual in the
cost function, which can reduce the impact of abnormal data.
e.g., when the weights are assigned to be equivalent, assum-
ing R = [1, 1 · · · 1]T , the robust ADALINE is converted
into a traditional ADALINE. For the bad data, Ri can be set
to 0, whose corresponding items in the cost function will also
become 0, which reflects the robustness.

The above descriptions show that the robust ADALINE
retains the advantages of ADALINE and has a robustness
performance. The robustness of robust ADALINE is related
to the weight selection. Further, the weights need to be deter-
mined according to the distribution of the residuals, so they
need to be solved iteratively. In the following subsection, the
IGG weight function is introduced to determine the weights
of training data.

B. IGG ROBUST METHOD
The idea of the IGG (Institute of Geodesy & Geophysics,
Chinese Academy of Sciences) method (Scheme I) is apply-
ing different weight functions and robust criteria for different
measurement data, which aims to fully use the information
of measurement data. The IGG method divides the measure-
ment data into three categories: (1) the normal measurement;
(2) the available measurement; (3) the harmful measurement.
Correspondingly, the weight is divided into three categories:
(1) the security zone; (2) the weight down zone (3) the
elimination zone. Compared with a ‘‘two-segment’’ robust
method (e.g. the Huber estimation in Ref. [41]) which only
divides the measurement data into the normal measurement
and the harmful measurement, the ‘‘three-segment’’ IGG
robust method can make more effective use of measurement
information.

The weight function of the IGG is

Ri(vi) =


1 |vi| ≤ sσ0
sσ0
|vi|

sσ0 < |vi| ≤ rσ0
0 |vi| > rσ0

(17)

where vi is the residual of the ith measurement, Ri is the
weight assigned to the ith measurement, s, r is the coefficient
of the threshold to assure robustness (TAR, i.e. sσ0 and rσ0 in
Eq.(17)), and σ0 is the standard deviation of the measurement
error. s could take 1.0 ∼ 1.5, r could take 2.5 ∼ 3.0. And
s = 1.5, r = 3.0 are used in this paper.
Eq. (17) shows that, the IGG can divide the measurements

into three categories, and assign different robust criteria.
1) If the residual is not larger than sσ0, then the least square

method is used, and its weight value is set to 1;
2) If the residual is between sσ0 and rσ0, Ri(vi) =

sσ0/ |vi| < 1. Then the weight is reduced, so the impact of the
larger residual measurement on the parameter identification
is reduced;

3) If the residual is larger than rσ0, then the measurement
is rejected, meanwhile, the corresponding weight value is set
to 0, which reflect the robustness.

C. ADAPTIVE ESTIMATION OF RESIDUAL DISTRIBUTION
To ensure the robustness of ARA and the credibility of the
identification results, the IGGweight function needs to divide
the weight down zone and the elimination zone reasonably,
i.e., the TAR needs to be selected reasonably. If the TAR
is selected too large, the available measurements cannot be
effectively suppressed or even all bad measurements cannot
be effectively eliminated, which may reduce the algorithm’s
robustness; but if the TAR is selected too small, most of
available measurements will be eliminated. Therefore, rea-
sonable selection of the TAR can ensure the effectiveness of
the algorithm and improve its adaptability.

The TAR of the weight function depends on the standard
deviation of the measurement error, but in fact, the measure-
ment equipment’s error is not fixed, and not completely the
same under different working conditions. So, the fixed TAR,
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based on the fixed standard deviation of the measurement
error, may not meet the requirements of parameter identifi-
cation. Therefore, in order to improve the adaptability of the
algorithm, the standard deviation of residual should be esti-
mated adaptively, according to the distribution of the residual
sequence in the actual measurement.

As the residual sequence generally obeys the normal dis-
tribution. Thus, based on the normal distribution theory, the
corresponding expectations and standard deviations are esti-
mated as follows:

µ ∼=
1
N

N∑
i=1

vi (18)

σ0 ∼=

√√√√ 1
N − 1

N∑
i

(vi − µ)2 (19)

However, for the measured data, the existence of bad
data will cause some gross errors in the residual sequence.
In this case, the main part of the residual sequence approxi-
mately obey the normal distribution, so, µ and σ0 estimated
by (18) and (19)will be disturbed by gross error and seriously
deviate from the true value. Therefore, the distribution of the
residual sequence can be effectively estimated only if the
gross errors are eliminated.

To prevent the interference of the gross error on the estima-
tion, the expectation and standard deviation of the residual
sequence is estimated approximately based on the median
principle [40], which is stated as follows.

_
µ ∼= median(v) (20)
_
σ 0 ∼=

median |ν −median(ν)|
0.6745

(21)

where median(v) is the median of the residual sequence.
When the number of samples is large enough, the expecta-
tion and standard deviation can be estimated effectively by
Eqs. (20) and (21), without interference from bad data, as the
median estimate has a strong robustness, which is still valid
when the proportion of bad data is less than 50%.

Based on the effective estimation of the residual sequence
distribution, the weight function of the IGG method can be
changed to

Ri(εi) =


1 |εi| ≤ s
s
|εi|

s < |εi| ≤ r

0 |εi| > r

(22)

where εi is the regularization of vi, i.e. εi =
vi−

_
µ

_
σ 0

.

Theoretically, based on the median principle, the expecta-
tion and standard deviation of the residual sequence can be
estimated effectively, and the TAR of the weight function can
be adjusted adaptively, which can improve the adaptive ability
to different measurement errors and improve the robustness
of the algorithm and the credibility of the identification
result. Combined with IGGmethod and median principle, the
ADALINE can identify the TL parameters adaptively, which
is called adaptive robust ADALINE (ARA).

FIGURE 3. The flow chart of parameter identification.

Remark:With the median estimation, the proposed method
is independent of the known information of the measurement
equipment’s error, thus, it is very practical.

D. TL PARAMETER IDENTIFICATION PROCESS
In general, the flowchart of the proposed parameter identi-
fication for the TL with ADALINE and IGG are shown in
FIGURE 3.

In FIGURE 3, x0 =Train (net0, A0, b0) means train the
ADALINE net0 with input data A0 and target output b0, and
the weight of trained ADALINE is x0.

Step 1: Obtain the PMU measurement data including volt-
age phasor, current phasor, active power and reactive power.

Step 2: Build the ADALINE with three input neurons and
an output neuron; Calculate the A0,b0 by Eqs. (2) and (13).
Step 3: Train the ADALINE based on A0, b0 to obtain the

identification results as the initial value and set the conver-
gence conditions 1, and set the number of iterations a = 1.
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FIGURE 4. The 220 kV system diagram in PSCAD.

Step 4: a = a+1 and calculate the residual νa−1 based on
Eq. (4)

Step 5: Calculate the _
µ and _

σ 0 based on Eqs. (20) and (21).
Step 6: Calculate the Ra, Aa, and ba by Eq.(22), Eq.(14)

and Eq.(15), respectively.
Step 7: Train the ADALINE based on Aa, ba to obtain the

identification results xa.
Step 8: If |xa-xa−1| <1, output the identification results;

else return to step 4.

V. CASE STUDIES WITH SIMULATED DATA
In this section, a 220 kV system is built, and two examples
are provided to verify the effectiveness and robustness of the
proposed method.

A. SIMULATION MODEL AND SETTINGS
A 220kV, 40km single-circuit transmission line is built in
PSCAD, as shown in FIGURE 4, with the parameters:
R = 0.7126�, X = 12.55�, B = 1.4623 × 10−4 S. The
data uploading frequency is 25Hz.

In this paper, 500 snapshots of steady-state simulated PMU
data are obtained with the load of 34+j8MVA. The simulated
PMU data include the positive-sequence voltage phasors,
current phasors, active power and reactive power at both
ends of the line. The iteration convergence condition is set
to 1R = 0.0001, 1X = 0.001, 1B = 0.001× 10−4.

B. EFFECTIVENESS TEST
To verify the performance of the proposed method, the noises
of different levels are added to the simulated data in this case.
A normal distribution noises whose mean is 0 and standard
deviation is σf of amplitude is added to the simulated PMU
amplitude data. A normal distribution noise whose mean
is 0 and standard deviation is σj is added to the simulated
PMU angle data(The standard deviation σ means that the
maximum of noise is 3σ [40]).
In the following simulation, the proposedmethod (ARA) in

this paper is compared with the ARLS (adaptive robust least
square method) proposed in Ref. [28] and the LS (least square
method ) proposed in Ref. [10]. The simulation results with
different noise levels (the noise level is the maximum error)
are shown in TABLE 1.

As shown in TABLE 1, if there is no noise, the three
methods have same results. As the noise intensity increases,
the relative errors of the results of the three methods gradually
increases. Among them, the relative errors of the results of
ARA and ARLS are close and better than LS.

This simulation case shows that, if there is no noise, the
three methods are equivalent. But when the PMUdata contain
noise, the identification results of ARA and ARLS is better

TABLE 1. Relative errors under different intensity Gaussian noises using
different methods.

TABLE 2. Relative errors with abnormal data in voltage amplitude using
different methods.

than LS as both methods adapt the IGG method to reduce the
effect of noise.

Overall, the three methods can identify the parameters
accurately, since the data with noise added is evenly dis-
tributed around the true value and do not contain bad data.
When there is no large deviation in measurements, the three
methods are similar to least square method essentially, which
have similar performance. Therefore, the three methods can
identify the parameters accurately in this case.

C. ROBUSTNESS TEST
In this subsection, the robustness of the proposed method is
tested.

In this simulation, the measurement data contain 0.2%
level amplitude noise and 0.2◦ level phase angle noise, and
furthermore, 20% of voltage amplitude data are added with
bad data as follows.

U ′m = Um × (1+ α) (23)

where α = 0.2 in this case study. With the above data, the
results of different methods are shown in TABLE 2

TABLE 2 shows that, the relative errors of the result of
ARLS and LS are larger than 60% while the relative error
of the results of ARA is less than 3%, which shows that the
proposed ARA has better robustness.

Furthermore, for the cases of different abnormal data per-
centages in voltage amplitude, the relative errors of the dif-
ferent methods can be obtained, as shown in FIGURE 5
(EREXEB are the relative error of R, X, B).
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FIGURE 5. Relative errors of different abnormal data percentages in
voltage amplitude using different methods.

FIGURE 5 shows that, LS can identify the TL parame-
ters effectively only when there is no abnormal data. If 5%
abnormal data exists, the error of LS identification results is
larger than 10%, which is unreliable. And the identification
result of ARLS is reliable when the abnormal data percentage
is smaller than 10%, while the identification result of ARA
is reliable when the abnormal data percentage is smaller
than 30%.

This case shows that LS has poor robustness performance,
while ARLS and ARA have certain robustness, and ARA
is better than ARLS. Thus, the proposed ARA has better
robustness and practicality.

VI. CASE STUDY WITH MEASURED DATA
The positive-sequence steady-state PMU measurements of
a two-terminal 220kV TL in China are used to identify the

TABLE 3. Identified results based on measured PMU data using different
methods.

positive sequence parameters. The TL is 28.548km long with
R=1.1420�, X=8.6500�, B = 1.073× 10−4S. The upload
frequency of PMU data is 25Hz. In this paper, 58s data,
(containing 1450 snapshots) are used. The overall PMUmea-
surement quality is good, but some data contains deviation,
as shown in FIGURE 6.

FIGURE 6 shows that, some impulsive bias may be con-
tained in the voltage amplitude, the current amplitude, the
active power and the reactive power around 7s and some step
bias may be contained in the voltage angle and the current
angle during 0∼7s at Bus m. Note that the curve of reactive
power looks like a kind of ‘‘square wave’’. The reason is that
the PMU measurements contain truncation errors, which is a
common phenomenon in PMU data.

With the LS, ARLS, ARA method, the identification
results can be obtained, as shown in TABLE 3.

TABLE 3 shows that, when the measured data contains
deviations, the identification results of LS are inaccurate,
while the identification results of ARLS and proposed ARA
are close to the parameters in control room (obtained from
offline power measure), which indicates that the proposed
method is effective. Note that as the true value of TL param-
eters is unknown, thus, the identification result is considered
as credible if it is close to the parameters in control room.

FIGURE 6. Measured PMU data for a 220kV TL in China.
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In addition, the identification results of ARLS and ARA
is close, the reason is that, in this case, the abnormal data
accounts for a small proportion, i.e., only part of data is
abnormal in 0-7s as shown in FIGURE 6. But according to the
analysis in Section V.C, if the measured PMU data contain
more abnormal data, the proposed ARA would have better
robustness than the ARLS.

The case study with measured data shows that the pro-
posed method can accurately identify the parameters when
the measured data contain some abnormal data, and has good
engineering practicability.

VII. CONCLUSION
An adaptive robust ADALINE, which combines the
ADALINE (Adaptive linear neuron) and traditional IGG
method, to identify the TL positive-sequence parameters,
is proposed in this paper. With the IGG weight function,
which can make full use of the measurement information,
and ADALINE to realize the ‘‘three-segment’’ robust iden-
tification, the proposed method could well resist the adverse
effects of bad data. Using the median principle to estimate the
expectation and variance of residual sequence to adaptively
adjust the TAR of the weight function, the proposed method
is independent of the known information of the measurement
equipment’s error. Thus, the proposed method has strong
robustness and practicality. The simulation results in the
cases with/without bad data shows that, the proposed method
can identify the TL parameters accurately and has better
robustness than the existing methods. The case study with
measured data shows that the method is practical even the
measured data contain bad data.
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