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ABSTRACT Echocardiography is an ultrasound-based imaging modality that helps the physician to visualize
heart chambers and valves motion activity. Recently, deep learning plays an important role in several clinical
computer-assisted diagnostic systems. There is a real need to employ deep learning methodologies to increase
such systems. In this paper, we proposed a deep learning system to classify several echocardiography
views and identify its physiological location. Firstly, the spatial CNN features are extracted from each
frame in the echo-motion. Secondly, we proposed novel temporal features based on neutrosophic sets. The
neutrosophic temporal motion features are extracted from echo-motion activity. To extract the deep CNN
features, we activated a pre-trained deep ResNet model. Then, both spatial and neutrosophic temporal CNN
features were fused based on features concatenation technique. Finally, the fused CNN features were fed
into deep long short-term memory network to classify echo-cardio views and identify their location. During
our experiments, we employed a public echocardiography dataset that consisted of 432 videos for eight
cardio-views. We have investigated several pre-trained network activation performance. ResNet architecture
activation achieved the best accuracy score among several pre-trained networks. The Proposed system based
on fused spatial neutrosophic temporal deep features achieved 96.3% accuracy and 95.75% sensitivity. For
the classification of cardio-views location, the proposed system achieved 99.1% accuracy. The proposed
system achieved more accuracy than previous deep learning methods with a significant decrease in the
training time cost. The experimental results showed promising results for our proposed approach.

INDEX TERMS Ultrasound, echocardiography, cardio-views, deep learning, neutrosophic temporal desrip-

tors, CNN features fusion, LSTM.

I. INTRODUCTION

Echocardiography is an ultrasound modality, which captures
the cardiac activity during its motion based on M-Mode
imaging and provides the physicians with more details about
the blood supply [1]. In echocardiography, the physiologi-
cal cardiac motion is recorded inside consequential frames,
which represent a 3D structure. These dimensions are as
follows: frame width, frame height, and time. Echocardiog-
raphy imaging has several views for the heart while moving
the transducer with different angles to capture heart motion
activity [2]. After the physician manually recognizes the
view, several anatomical structures can be detected and ana-
lyzed. The most considered eight views as shown in Fig. 1
are changing according to the transducer position into three
locations. Location A consists of 4 views as the following:

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiping Hu

135184

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

apical 2 chambers (A2C), apical 3 chambers (A3C), api-
cal 4 chambers (A4C), and apical 5 chambers (ASC). Loca-
tion B consists of a single view, which is parasternal long axis
(PLA). Location C consists of 3 views, which are parasternal
short axis of aorta (PSAA), parasternal short axis of papillary
(PSAP) and parasternal short axis of mitral (PSAM) [3].
These views fundamentally obtain a discriminative informa-
tion based on spatial and temporal perspective. Therefore, the
accurate classification of such cardio-views aims to analyze
and diagnose several cardio-diseases.

Traditional artificial intelligence systems are based on pre-
Computer aided diagnostic (CAD) systems helps the physi-
cian to improve the diagnostic quality for several soft-tissue
examination tasks [4]-[13].

CAD systems based on traditional artificial intelligence
approaches consists of pre-processing, hand crafted-features
extraction, features processing, and classification. Classical
features extraction techniques are based on spatial features,
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FIGURE 1. Samples for eight cardio-views of echocardiography.

morphological features, and temporal features [14]. There are
real challenges in echocardiography to extract such classical
features due to its sensitivity to motion artifacts [15].

In [16], LeCun introduced CNN as a new machine learn-
ing methodology to tackle the handcrafted features extrac-
tion procedure, which is commonly named with deep learn-
ing. CNN employed separable learnable convolutional fil-
ters to extract deep CNN features automatically without
a need for handcrafted features extraction. Deep learning
frameworks have been extended to several network archi-
tectures after plain CNN architecture such as deep incep-
tion CNN architecture [17], residual CNN architecture [18],
deep generative adversarial architecture (DGAN) [19], deep
belief network (DBN) architecture [20], and deep LSTM
architecture [21].

Due to the exponential growth of hardware resources, deep
learning was employed in several multi-class general classi-
fication tasks [22], [23]. On the other hand, deep learning
has been proven as an excellent tool for several video clas-
sification tasks [24]-[35]. Recently, deep learning has been
employed for several medical image modalities, dimensions,
and applications. Deep learning has been applied to several
images modalities such as x-ray [36], CT [37], MR [38],
microscopic pathology [39], and ultrasound [40]. Deep learn-
ing has been applied to several two-dimensional medical
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images such as [41] and several 3D medical imaging sys-
tems [42]. Deep learning has several applications in auto-
mated medical image assessment (AMIA) systems such as
de-noising [43], segmentation [44], classification [37], and
detection [45].

The echocardioviews classification systems were based on
traditional features extraction or even spatial CNN features
extraction, lack of accuracy, and consumed a lot of process-
ing time [46]-[48]. Therefore, the employment of several
deep learning architectures that have successfully increased
the video recognition systems is very important to enhance
echocardiography views classification systems. On the other
hand, it is important to decrease the processing time of such
systems. In this paper, we aim to increase the state of art
echocardoviews classification systems. Therefore, the inte-
gration of physician interpretation with accurate information
extracted from CAD systems provides predictive information
that cannot be detected due to human error and increase the
diagnostic quality.

The rest of the paper is organized as the following.
In section II, we cover the previous work for echocar-
diography computer assessment systems. In section III,
we introduce the proposed classification system for echo
cardio-views. In section IV, the results with its discussion are
presented. Finally, in section V, the conclusion for our work
is presented.

II. LITERATURE REVIEW

In this section, firstly, we present literature for recently
artificial intelligent (AI) systems that had been employed
to enhance echocardiography clinical examination. Then,
we introduce several articles that were applied to move for-
ward the echocardiography Al systems based on traditional
machine learning or even deep learning techniques.

Al generally aims to increase the diagnostic capabili-
ties of echocardiography computer assisted-systems such
as detection of pathological cardio-diseases, quantification
of cardio-motion [46], and computing echo image quality
[47]. AI also helps the physicians automatically to classify
several cardio-views [48], [49]. Al detected several cardio-
pathological diseases such as wall motion disorders [50],
detection of left ventricle disorders [51], mitral regurgitation
[52]. AT also helps the physicians to quantify several cardiac-
motion parameters such as: MV (Myocardial velocity) [53],
EF (ejection fraction) [54], and LS (longitudinal strain) [55].

In [52], the authors presented a mitral regurgitation heart
disease classification system. They utilized gradient local
binary pattern descriptors. The system achieved 99.5% accu-
racy based on linear discriminant analysis combined with
template matching algorithm for about 5000 image frames
distributed between normal, mild, moderate, and severe
cases. In [54], the authors proposed an automated system for
heart failure with preserved ejection detection fraction under
stress. They utilized high-dimensional descriptors, then they
employed supervised dictionary learning and it achieved an
average accuracy of 95% for only 70 echo-clips. In [53], the
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FIGURE 2. The proposed system architecture to classify 8 cardio-views.

authors proposed a system to detect cardio-wall motion dis-
orders based on dual-tree discrete wavelet transform descrip-
tors. The system employed the linear discriminant classifier
and it achieved 96% accuracy with 279 images. In [56], the
authors proposed an automated system for only three apical
views of echocardiography. They utilized spatial-temporal
cuboid descriptors, then they employed supervised dictio-
nary learning and it achieved average accuracy of 95% for
only 70 echo-clips. In [57], the authors presented an auto-
mated system for pathological cardio-diseases. They utilized
high-morphological descriptors, then they employed support
vector machine and it achieved 87% sensitivity, and 82%
specificity for 139 patients included with their patient history.
In [51], the authors presented an automated system to detect
the left ventricle based on the active contour algorithm and
random forest classifier. The system achieved 90% accuracy
for only 85 images. In [58], the author presented an automated
system to quantify wall motion stress. They employed mor-
phological descriptors, then they utilized the hidden Markova
model to classify stress echocardiography and the system
achieved an improvement in classification (84.17%).

In the literature, a few numbers of researches had been
proposed to classify cardio-views based on deep learning
[48], [49]. In [48], a system to classify 8 cardio-views had
been presented based on CNN training from scratch. The
system achieved 92.1% accuracy after the fusion of spatial
and acceleration features. In [49], the deep learning had been
employed to classify 15 cardio-views based on CNN training
from scratch. It achieved 96% accuracy based on spatial deep
CNN features.

The previous studies showed that traditional machine
learning methods consume a lot of time to extract handcrafted
features and are very sensitive to motion artifacts [51]-[58].
On the other hand, deep learning methods based on training
CNN from scratch consume a lot of time, which reached
to a few days, and there is still a challenge to increase

135186

its accuracy [48]. In this paper, we propose a robust auto-
mated system to classify eight views of echocardiography
imaging based on CNN activation combined with the LSTM
network. We propose new descriptors that based on CNN
features fusion between spatial and temporal descriptors. Our
proposed system consumes less significant processing time
compared to other methods in the literature. The proposed
system achieved higher performance than traditional machine
learning systems or even the state of the art one [48].

Ill. PROPOSED METHOD

In this paper, we apply a new methodology to classify cardio-
views based on deep learning framework, which combined
between convolutional neural network and LSTM architec-
tures as shown in Fig.2. We utilize our proposed system to
classify 3 cardio-locations. Moreover, we extract novel tem-
poral descriptors based on neutrosophic sets domain. In this
paper, we combine spatial and neutrosophic temporal descrip-
tors. We extract both deep CNN features by employing the
pre-trained networks as a deep features extractor. After spatial
and temporal deep features extraction, we fuse both features
types. Finally, we employ LSTM classifier to classify each
echo-clip into 8 cardio-views.

A. NEUTROSOPHIC TEMPORAL FEATURES EXTRACTION
The temporal descriptors contain the motion features between
each two consequences frames. We propose novel temporal
descriptors based on neutrosophic subsets as described in
Algorithm 1.

Echocardiography clips are usually stored in DICOM for-
mat with 4-D (height, width, channels, and frames depth).
Each frame contains the spatial descriptors, and each conse-
quence frames contain the temporal descriptors. We extract
the temporal features by dividing each frame into different N
blocks, which is set here by 8 blocks. The temporal features
represent the difference of pixel values between each block
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Algorithm 1 Temporal Neutrosophic Sets Approach

Read Each two echo-cardio consequences frames.
Divide each frame into blocks.
Get Temporal features descriptors f(x,y).
For z =1: frames depth-1
Calculate T, 1, F subsets for each pixel inside f(x,y)
based on Eq.1, 2,and 3.
End
Obtain the final neutrosophic sets temporal descrip-
tors (NTD) based on Eq.4

in the current frame and the opposite block in the next frame.
Each pixel in the neutrosophic domain has three values mem-
bership as follows: Truth (T), Indeterminacy (I), and False (F)
[59]. The study of similarity between neutrosophic subsets
provides more useful information than the standalone sunsets
[60]. For this reason, we utilize the similarity score algorithm
between both truth and indeterminacy subsets and neglect the
false subset value. The neutrosophic subsets can be given by
Eq.1, 2 and 3 [59], [60]:

_ ft(x,y) _ﬁmin

g (X7y) ﬂmax _ftmin (1)
_ S y) — fidyin

! (X7y) = ﬁdmax _ﬂdmin (2)

Fx,y)=1-T(x,y) (3

where ft (x,y) represents the input temporal pixel and ftd(x,y)
represents the gradient value on the temporal pixels values.
The neutrosophic temporal descriptors (NTD) can be derived
from the similarity degree between three neutrosophic (T, I,
and F) subsets as in Eq.4, shown at the bottom of the page,
[59], [60], where A* represents the ideal alternative. T, s ch
and F¢; represent neutrosophic at specific criteria (Cj).

A sample of original cardio-view is shown in Fig.3.a,
predicated temporal feature map is shown in Fig.3.b, and the
NTD features map is shown in Fig.3.c.

B. PREPROCESSING

DICOM-formatted echocardiogram clips, which are used in
our paper was stored in RGB format with two different resolu-
tions (434 x 636 pixels x 26 and 341 x 415) with 26 frames
depth. All pre-trained networks employed in our study have
the following sizes: AlexNet input layer is (227 x 227 x 3),
VGGNet architectures, GoogleNet, DenseNet, three ResNet
architectures input layer size are (224 x 224 x 3). There-
fore, we resize both spatial and temporal frames to fit each
pre-trained network input layer.

)

FIGURE 3. (a) An example of an original cardio-view frame, (b) temporal
features map, and (c) NTD map.

C. CNN FEATURES EXTRACTION

In image task classification, CNN can be used based on three
methods, which are training from scratch method, pre-trained
network activation method, and fine-tuning of pre-trained
network method [39]. As introduced in the literature, the
CNN training from scratch or even fine-tuning of pre-trained
networks still consume a lot of processing time. Therefore,
we employ the pre-trained networks as CNN features extrac-
tor and transfer learning based on pre-trained networks will be
more efficient. These networks had been trained previously
and acquired their learned parameters to distinguish between
different general images datasets. These datasets are such
as CIFAR10 / CIFAR100, Caltech 101/ Caltech 256, Ima-
geNet. These pre-trained networks are Alexnet, VGG16Net,
VGG19Net, GoogleNet, densenet, ResNet18, ResNet50, and
ResNet 101. In this paper, we evaluate each pre-trained
network performance related to its classification accuracy.
Deep activation features can be extracted from each convolu-
tional features map inside CNN. However, in [61], the author
proved that the latent fully connected layer activation features
achieved the best performance. In this paper, we extract the
last deep CNN features from the latent fully connected layer
in the pre-trained network.

D. DEEP FEATURES FUSION

The fusion procedure helps to collect the latest informa-
tion of concatenated spatial- temporal descriptors from both
fully connected layers (FC) of the two model’s streams.
In AlexNet and VGG16/19, we have two features pole with
a size 4096. In GoogleNet, we have two features pole with
a size 1024. In DenseNet, we have two features pole with a
size 1920. In ResNet 18, we have two features pole with a
size 512 In ResNet 50/101 architectures, we have two fea-
tures pole with a size 2048. As followed in [62], we employ
the concatenation fusion function that achieved the best
performance.

E. LSTM CLASSIFICATION
In our proposed system, we employ the LSTM network to per-
form the classification task for the fused deep CNN features.

[Te, (x. ) Te, (A%) + Ig; (x. y) Ic; (A*) + F, (x, y) Fe, (A)]

NTD(f (x, y), A*) =

“

VIR + 1 (e 3) + FE . ), [(T (A7) + I (4%) + FE (4"))
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FIGURE 4. The proposed LSTM architecture.

Our proposed LSTM architecture as shown in Fig.4 con-
sists of seven layers as follows: an input layer, bidirectional
LSTM (BiLSTM) layer, dropout layer, LSTM layer, fully
connected layer, and a classification layer.

The input layer receives the deep features pole, which
consists of spatial-temporal descriptors. The input layer is
followed by a BILSTM layer. The traditional LSTM receives
its information only from old values. The BiLSTM layer
advantage is that it learns between the start of input sequences
data to the end in bidirectional form. Therefore, it helps the
network to get effective and faster learning. After the first
BiLSTM, we increase the depth of LSTM architecture by
adding another unidirectional LSTM layer. In this paper, the
input layer size is set to fit the fused deep features. The no.
of hidden units inside the first BILSTM layer is 64 units. The
no. of hidden units inside the second LSTM layer is 128 units.
To achieve the best performance with the lowest training time,
we insert a dropout layer after both LSTM and BiLSTM layer
to prevent overfitting after BILSTM layer. We set the two
dropout neurons to 0.5 inside each dropout layer. Finally, the
classification layer based on a softmax classifier is applied
to classify a given echo-view and its cardio-location. In our
experiments, we optimize the best optimize to train the pro-
posed LSTM classifier.

IV. RESULTS AND DISCUSSION

In this paper, we employ an echocardiography public dataset,
which contains eight cardio-views [48]. The dataset con-
tains 432 echocardiography clips. The data was collected
from 2 different hospitals in China provided with their
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ground truth and from different 93 patients. Each echo clip
was acquired using GE-Vivid 7 ultrasound equipment for
only 1 sec. The recorded frame rate was 26 frames/sec. In our
paper, we prevent overfitting and make our proposed system
more robustness by randomly splitting the dataset into 3 sets
as follows: training set (70%), validation set (15%), and test
set (15%).

The proposed deep learning architecture is implemented
using the Matlab 2019 a. During our algorithm training,
we utilize Quad-Core 2.9 GHz Intel i5 with 16 GB of memory,
and moderate graphic processing unit NVIDIA TITAN-Xp
GPU with 12 GB RAM.

A. EVALUATION CRITERIA

To evaluate our proposed system results, at first, we evalu-
ate the performance of LSTM through different optimizers.
Secondly, we compare our proposed fused features with the
previous features in the literature. Thirdly, we compare dif-
ferent pre-trained networks that we utilize for CNN features
extraction procedure.

To compare our proposed system results versus the pre-
vious deep learning system in the literature [48], we utilize
the confusion matrix, accuracy, precision, sensitivity, and
specificity as quantified metrics to evaluate as follows:

TP+ TN + FP + FN

A = 5
ccuracy TP L FN (®)]
. TP

Precision = —— (6)
TP + FP

Sensitivity — P )
ensitivity = TP+ FN

Specifity = o (®)
PEYy = TN T FP

Moreover, we compare our proposed system with the pre-
vious traditional systems and deep learning systems [48] that
classified the same dataset into 8 cardio-views and 3 cardio-
locations. Finally, we compare our feature extraction and
training time cost vs. the previous deep learning system in
the literature [48].

B. OUR PROPOSED SYSTEM RESULTS

In our experiments, firstly, we investigate the following
points: the training and validation accuracy curve, the training
and validation loss curve through different network optimiz-
ers. We select the best optimizer based on the lowest epoch’s
numbers and the highest accuracy score. Secondly, we inves-
tigate, which pre-trained network activation will work better
as a feature extractor. We utilize 8 different network architec-
tures for our classification task. Thirdly, we discuss the eval-
uation metrics for our proposed system. Finally, we discuss
the confusion matrix results for both cardio-views and cardio-
locations.

The Optimization algorithm plays a crucial role during the
training process to increase the performance of the LSTM
network [63]. To select the best optimizer in our proposed
method; we compare the performance of root mean square
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(rmsprop), stochastic gradient descent (SGD), and adaptive
moment estimation algorithm (Adam) optimizers. During the
training process, we utilize 500 epochs to ensure that the
training phase will be converged with min-batch size 16. The
initial learning rate setup is 0.001.

Learning curve represents an efficient tool to evaluate the
performance of the LSTM classifier during its training pro-
cess through a mathematical representation of the learning
process that occurs during iterations. For the training set, the
performance of Adam optimizer learning curve appears to be
more robust with lower required training time. The rmsprop
optimizer achieved similar performance to Adam optimizer.
SGD optimizer achieved the lowest performance during the
training process. The performance of training process related
to the three examined optimizers is shown in Fig.5.
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FIGURE 5. The proposed system training accuracy performance through
different optimizers.

For the validation set, the performance of Adam optimizer
achieved the highest training accuracy score of 87.5% with
lower required training time. The rmsprop optimizer achieved
similar performance to Adam optimizer with lower train-
ing accuracy score of 86.05%. SGD optimizer achieved the
lowest performance of training accuracy score 83.72%. The
performance related to the three examined optimizers of the
give validation set is shown in Fig.6.

In Fig. 7 and 8, both training and validation sets loss
are shown. The performance of Adam optimizer learning
curve appears to be more robust with lower required training
time. The rmsprop optimizer achieved similar performance
to Adam optimizer with higher loss. SGD optimizer achieved
the highest loss performance during training and validation.
From the previous experiment, we prove that Adam optimizer
is more efficient and robust during our echo-cardio views
classification task.

For the following experiments, we utilized the test set to
visualize our system robustness as followed in Gao et.al [48].

In this experiment, we investigate the most discrim-
inant powerful features pole suitable for our classifica-
tion task. As shown in Fig.9, we compare several hand
crafted features, deep CNN features, CNN spatial-temporal
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FIGURE 7. The proposed system training loss performance through
different optimizers.

features fusion, our proposed spatial features, NTD fea-
tures, and our proposed fused features. In [48], deep fea-
tures achieved higher accuracy than traditional handcrafted
features. On the other hand, CNN features based on training
from scratch achieved accuracy of 89.5% and increased to
92.1% after spatial-temporal features fusion. Our proposed
system based on pre-trained network activation and LSTM
network achieved the following accuracies: spatial features
achieved 90.5% accuracy, NTD features achieved 93.1%, and
both features fusion achieved 96.3%, which is better than the
previous handcrafted features or even deep CNN features.

As shown in Fig.9, a significant improvement related to
the proposed system accuracy reached 2.6% has been noticed
based on NTD descriptors, which reflect the robustness of the
proposed neutrosophic temporal features. On the other hand,
it has been noticed that the previous CNN features fusion
based on training CNN from scratch achieved higher accu-
racy than our proposed spatial features and lower accuracy
than our proposed NTD descriptors.
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FIGURE 9. Proposed system accuracy vs. previous traditional and deep
systems based on proposed fused features.

In this experiment, we investigate the accuracy of each
pre-trained network activation with input features (spatial
features, NTD features, and fused features) as shown in
Fig. 10. We employ several pre-trained networks such as
AlexNet, GoogleNet, DenseNet, ResNet, architectures, and
VGGNet architectures. ResNet50/101 architectures achieved
the highest accuracies 91.2%, and 96.3% respectively with
the proposed fused features. On the other hand, GoogleNet
achieved the lowest accuracy of 76% with the input spatial
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features. We have also noticed that NTD features increase
the classification accuracy through all pre-trained network
activation. Moreover, the fusion of both spatial and NTD
features helps to increase the classification accuracy through
all pre-trained network activation. ResNet 101 architecture
achieved the highest accuracy score (90.5%) for the spatial
features, the highest accuracy score (93.1%) for the NTD
features and the highest accuracy score (96.3%) for the fusion
of spatial features with NTD features.

We compare our proposed system with the state of the art
[48] based on the achieved accuracy, sensitivity, specificity,
and precision for 8 cardio-views classification. For the 3
cardio-locations, we compare our proposed system based
on the achieved accuracy. Moreover, we compare between
our proposed system and the previous method [48] for each
cardio-view classification accuracy and each cardio-location
classification accuracy. Finally, we investigate the time cost
of features extraction procedure and classifier training time.

The confusion matrix of the 8 cardio-view classification
system is shown in Fig. 11. It is noticed that the high true
positive value of A2C and PSAA cardio-views classification
with 100 % accuracy. A3C cardio-view achieved the lowest
accuracy of 87%. The misclassification between A3C, and
(A2C, A4C) cardio-views has been noticed. A4C, A5C, and
PLA cardio views achieved accuracy above 95%. PSAM and
PSAP achieved 91.7% and 92.9% respectively. The overall
system accuracy is 96.3% for 8 cardio-views classification.

As followed in [48], we evaluate our proposed system to
classify 3 cardio-views locations (Location A, Location B,
and Location C). Location A represents the apical angle,
location B represents the parasternal long axis, and location C
represents the parasternal short axis. In Fig. 12, the confusion
matrix to for 3 cardio-locations classification is shown. Loca-
tion B achieved the highest classification accuracy of 100 %.
Location A achieved intermediate accuracy score of 99.5%.
Location C achieved the lowest classification accuracy
of 98%.

In this experiment, we compare our proposed system with
the state of the art based on the evaluation criteria introduced
in the evaluation criteria section as shown in Fig.13. The
proposed system achieved the highest performance through
several metrics. It achieved 96.3% accuracy greater than the
state of the art accuracy with a significant increase of 4.2%.
The sensitivity of our proposed system achieved 95.75%
greater than the state of the art sensitivity with a significant
increase of 4.2%. The precision of our proposed system
achieved 96.41 % greater than the state of the art precision
with a significant increase of 4.4%. On the other hand, our
proposed system achieved a little impact more on the speci-
ficity performance more than the state of art specificity with
increase of 0.6%.

In this experiment, we compare between our proposed
system and the state of art based on each cardio view clas-
sification accuracy as shown in Fig.14. For A2C cardio-view
classification accuracy, our proposed system achieved equal
performance classification accuracy with 100 % accuracy
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FIGURE 11. Confusion matrix for our proposed system to classify 8
cardio-views.
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FIGURE 12. Confusion matrix for our proposed system to classify three
cardio-Locations.

score. Our proposed system reflects the highest classification
accuracy for PSAP, PSAM, PSAA, PLA, and A5C. However,
the state of art achieved more accuracy than our proposed
system for A3C and A4C.

In this experiment, we compare the state of the art [48],
and our proposed method based on each cardio location clas-
sification accuracy as shown in Fig.15. The proposed system
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FIGURE 13. A comparison between our proposed system and the state of
art for 8 cardio-views classification based on several metrics.

achieved 99.1 % accuracy greater than the state of the art
accuracy with a significant increase of 1.1 %. The proposed
system achieves more classification accuracy than the state
of the art for both location A and location B. However, the
state of the art achieved a little increase in the classification
accuracy more than our proposed one with 0.5%. This can be
explained by the low classification accuracy of A3C and A4C
classification accuracy.

In this experiment, we compare between our proposed
system and the previous state of art [48] based on the required
processing time for both features extraction and training pro-
cedures. Table.1 shows the training processing time between
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FIGURE 15. A comparison between our proposed system and the state of
art for each cardio-location classification accuracy.

TABLE 1. Time cost of our proposed system vs. the state of the art [48].

Features Extraction Time | Classifier Training Time
Cost Cost
Gao.et .al [48] Two Days Two Days
Our Proposed System 29 min 30 sec 3 min 43 sec

our proposed system and Gao.et.al [48]. The state of the art
is consumed about two days for offline handcrafted features
extraction and two days for training CNN from scratch. One
of the advantages of our proposed system is the lower pro-
cessing time that it achieved. It only consumes about 14 min
for CNN deep features extraction through deep activation.
On the other hand, the LSTM classifier training consumed
only about 4 min to achieve 96.3% accuracy.

V. CONCLUSION

In this paper, an echo-cardio views and locations classifi-
cation system architecture have been proposed. Moreover,
novel temporal features descriptors based on neutrosophic

135192

sets similarity have been proposed. We propose a
novel spatial-temporal deep features pole based on con-
catenation fusion. The proposed neutrosophic temporal
descriptors achieved the highest accuracy more than the
previous temporal descriptors or even deep spatial features.
ResNet 101 architecture achieved the best performance as
a deep features extractor for both spatial, temporal features,
and fused features pole. A significant improvement in the
classification accuracy of cardio-view classification accuracy
score 96.3% and 99.1% for cardio-location classification
accuracy. Adam optimizer achieved the best performance
for LSTM classifier. The proposed system has been saved
the time cost required for training and features extraction
procedure. Experimental results were very promising and we
suggest generalizing our methods for other medical applica-
tion recognition problems. In the future work, we suggest
increasing the system performance by employing a robust
optimization-training algorithm.
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