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ABSTRACT Traditional biological experimental methods for enzyme function prediction have not been able
to meet the increasing number of newly discovered enzymes measured by X-ray crystallography or mag-
netic resonance. A good computational model and protein feature representation for predicting enzymatic
function can quickly annotate the functions of enzymes in chemical reactions. Existing machine learning
methods usually compress protein 3D structure information into pictures convenient for convolutional neural
networks (CNNs) and discard a large amount of relation information. Therefore, we proposed a method
using the relation between amino acids directly to predict enzyme function. First, in addition to common
structural features, we introduced a new structural feature, the relative angle of the amino acid (C−Cα−C)
plane. Additionally, all protein structure features were organized into a new representation. Then, a structure
relation network (SRN) to learn four features of the enzyme was established. Finally, the proposed model
was evaluated on a large dataset containing 42,699 enzymes and achieved 92.08% classification accuracy,
showing improvements compared with previous works.

INDEX TERMS Enzyme function prediction, relational network, amino acid object.

I. INTRODUCTION
As the volume of protein databases increases and new protein
families are discovered [1], protein function prediction is
beneficial not only for understanding proteins but also for
proteomics. Additionally, as the number of proteins in the
PDB database rapidly grows and far exceeds the ability to
manually annotate protein function, an efficient computa-
tional approach is important.

Many works use the enzyme commission (EC) num-
ber as a fairly complete framework for annotation. The
EC number is a numerical classification scheme based on
chemical reactions proven by experimental evidence [2].
Thus, protein function prediction can be treated as a multi-
label classification problem. There have been many machine
learning approaches in the literature [3], [4] for automatic
enzyme annotation. Before 2015, most methods used fea-
tures derived from amino acid sequences and applied some
classical machine learning models, e.g., KNN [5]–[7], SVM
[8]–[17] and neural networks [18]. In the past few years,
deep learning techniques, particularly convolutional neural
networks (CNNs), have been used for protein function predic-
tion. The main advantage of these methods is the automatic
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exploitation of features after data are processed into an appro-
priate image format. 1D convolution is applied to features
related to the amino acid sequence [19], while 2D convolution
is related to the position-specific scoring matrix [20] or other
feature maps. Some works [21], [22] calculate the torsion
angle and distance of each pair of amino acids and process
them into a fixed-size feature map for CNN. Learning with
structure information represented as a set of multichannel
images can exceed 90% accuracy. Although protein function
is determined by amino acid sequence and protein structure,
the research trend suggests that protein structure, i.e., the 3D
configuration of the chain of amino acids, is a more reli-
able predictor of protein function than amino acid sequence
because it is far more conserved in nature [23].

A graph is a kind of data structure that models a set
of objects (nodes) and their relationships (edges). Obvi-
ously, the relation between amino acids and protein-protein
interaction networks [24] are both graphs. The traditional
machine learning applications mentioned above deal with
graph-structured data by mapping the graph-structured infor-
mation to a simpler representation. Standard neural networks
such as CNN [25]and RNN do not properly handle graphs
because they pile the node features in a certain order and
only treat the correlation of edges as the characteristics
of nodes. One important class of models that can directly
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process graph data is called the graph neural network (GNN)
[26]. It has many variants, such as gated graph sequence
neural networks (GGNNs) [27] and capsule graph neural
networks (CapsGNNs) [28]. We consulted some existing
frameworks and comprehensive reviews on the graph neural
network [29]–[34]. They provide some mechanisms used in
graph neural networks, such as gate mechanisms, attention
mechanisms, and skip connections, and provide a thorough
review of different graph neural network models as well as
a systematic taxonomy of the applications. Although GNNs
have achieved great success in different fields, it is remark-
able that the research on graph neural networks only uses
graph structures to represent the input of neural networks
without using any knowledge reasoning related to graphs.
Moreover, the numbers of amino acids (nodes) and their
relationships (edges) in different proteins are usually differ-
ent. How to deal with graphs with dynamic structures is an
exciting challenging problem.

There are also some other reasoning models taking objects
and relations as input, to explain their interactions. The inter-
action network (IN) [35] takes as input a graph that repre-
sents a system of objects and relations, instantiates pairwise
interaction terms and computes their effects via a relational
model, which can explain how objects in complex systems
interact, supporting dynamical predictions, as well as infer-
ences about the abstract properties of the system. Relation
networks (RNs) [36] equipped on a deep learning architecture
as a simple plug-and-play module can implicitly discover and
learn to explain entities and their relations. It is a simple and
powerful approach for learning to perform rich, structured
reasoning in complex, real-world domains.

The relation between amino acids is a typical kind of
graph data so that the traditional feature representation loses
information and is limited by the fixed size of themodel input.
Additionally, the currently available data show that there
is no method using relational inference models to predict
protein function at present. Thus, this paper mainly addresses
extracting the relations information of amino acids accepted
by the RN model and builds a network model using RN as a
plug-in to predict protein function.

This paper is organized as follows: we introduce the
method used in the experiment in Section 2 and elabo-
rate on the material and experimental results in Section 3.
Finally, we provide some discussions and conclusions in
Section 4 and Section 5, respectively.

II. EXPERIMENTAL METHOD
In this section, we describe the method used in the exper-
iments. In the data processing stage, the residue sequence
information and structure information in each PDB file of
proteins were processed into a state matrix combining both
structure and amino acid sequence information. Extracting
the features of amino acids in a nonstatistical way was our
main work in the early stage. To predict protein function
using a novel feature expression method, a machine learning

framework with a relational network (RN) inference module
was established.

A. FEATURE EXTRACTION BASED ON AMINO ACID
SEQUENCE
The state description matrix is a sequence containing struc-
tural information, and each row is an amino acid object.
We used the enzyme protein collected from the PDB as
the initial dataset. Each PDB contains the amino acid
sequence of the protein and the specific three-dimensional
position of each amino acid atom. In addition to the torsion
angles of amino acids and the distance between amino acid
pairs commonly used, a relative angle γ was introduced to
describe the principal plane (C − Cα − C). In the obtained
state description matrix with dimensionality [m× l], m is the
number of amino acids in the protein, and l corresponds to
the length of the object state. Therefore, a state contains four
parts, including amino acid name (N), angles φ and ψ(A),
relative distance (RD) and relative angle γ (RA).

1) EXTRACTING NAME VECTOR
In the feature extraction process, 23 types of amino acids were
involved, including 20 standard amino acids, aspartic acid,
glutamic acid and other amino acids with undefined residues.
First, we extracted the amino acid name sequence from the
PDB file to form an original text. After the word frequencies
were counted and a word dictionary was generated, the words
in the text were numbered based on the dictionary. Word
embedding vector can not only be realized by word2ver tools
such as skip-gram and continuous bag of words(CBOW),
but also can be obtained as an auxiliary product when long
short-term memory (LSTM) network predicts the amino acid
sequence. We used LSTM augmented with stacked attention
modules to train the text. The sequence fragments cut out
from 4000 sequences were used as training samples. The
hyperparameters of LSTM during training were as follows:
the number of cell layers was 2, batchsize was 10, sequence
length was 96, learning rate was 0.006, and epochs was 20.
The output was optimized with a mean squared errors(MSE)
loss function using the Adam optimizer. Amino acid names
passed through an LSTM using a learnable lookup embed-
ding for individual words. The dimension of the word vec-
tor was generally set to 50 to 300. More dimensions mean
that more word information can be stored but require more
expensive calculation costs. The dimension of the lookup
table was [23× 60]. The one-hot representation of the amino
acid name was a 23-dimensional vector, where 23 corre-
sponds to the class of amino acids, while the word embed-
ding representation was a 60-dimensional vector. The name
vector obtained from training contained amino acid sequence
information.

2) EXTRACTING TORSION ANGLES
The shape of the protein backbone was expressed by the
two torsion angles of the polypeptide chain, which describe
the rotations of the polypeptide backbone around the bonds
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FIGURE 1. Calculate relative (C − Cα − C) plane angles and distances
between residues and standard amino acids.

between N − Cα (angle φ) and Cα − C (angle ψ) ∈
[−180, 180]. In past statistical methods, the torsion angle fea-
tures were often processed into the form of two-dimensional
histograms (also known as Ramachandran diagrams). All
amino acids in the protein were grouped according to their
type and the density of the torsion angles φ andψ . In contrast,
we kept the original angle data and considered it an inherent
property of residue, which was used to describe the method
of contacting adjacent residues. Therefore, the second part of
the state was 2 in length.

3) EXTRACTING RELATIVE INFORMATION
The relative rotation of (C −Cα−C) planes of two residues
on a sequence can be regarded as the accumulation of the
torsion angles of a series of intermediate residues. We pre-
sented an expression of the (C − Cα − C) plane. The
(C − Cα − C) plane of an amino acid was processed as a
relation between it and a referenced standard (C − Cα − C)
plane. Due to the self-similarity of amino acids, we first
sampled one instance for each type of amino acid as a stan-
dard and placed its center at the coordinate origin. Travers-
ing the amino acid sequence of the protein, we calculated
the rotation matrix Mr and translation matrix Mt , which
describes how the residue can eventually coincide with the
corresponding standard residue after translation and rotation.
Fig. 1 shows the matrix obtained when processing amino
acid sequences, where MSER1

r describes the relative distance
between SER1 and the standard SER, whileMSER1

t describes
the relative rotation between their (C −Cα −C) planes. For
example, the three atoms contained in the plane of SER1 con-
stitute point set A, which corresponds to the standard amino
acid point set B. The two point sets have the same number
of elements and can be placed in one-to-one correspondence.
Then, they satisfy the following formula:

B = MSER1
r × A+MSER1

t (1)

The calculation process based on singular value decomposi-
tion usually requires the following three steps:
• Calculate the center point of the point set.

µA =
1
3

3∑
i=1

PiA, µB =
1
3

3∑
i=1

PiB (2)

where µA and µB are the centers of A and B, respec-
tively, and P is the three-dimensional coordinate of the
atom.

• Recenter the point set and calculate the optimal rota-
tion matrix Mr . To calculate the rotation matrix Mr ,
the influence of the transition matrix Mt needs to be
eliminated. New point setsA′ andB′ were generated, and
the covariancematrix H between themwas calculated by
the following formula:

A′i = PiA − µA, B′i = PiB − µB (3)

The covariance matrix H is:

H =
3∑
i=1

(PiA − µA)(P
i
B − µB)

T (4)

U, S, andV of thematrix Hwere obtained by the singular
value decomposition (SVD) method:

[U , S,V ] = SVD(H ) (5)

the rotation matrix was obtained by U and V:

Mr = VUT (6)

• Calculate the translation matrix Mt .

Mt = −Mr × µA + µB (7)

The dimension of matrix Mr is [3 × 3], while Mt is [3 × 1].
Matrix Mr is a representation of the angle γ , while Mt is
a representation of distance. Since standard amino acids are
uniform, the matrix of amino acids can be used to calculate
the relative distance and angle between them. The last two
parts of the object state had a total length of 12. Therefore,
the total length of an object state was 74.

B. FEATURE EXTRACTION AND CLASSIFICATION BASED
ON SRN
In this section, we introduce our framework as shown
in Fig. 2 for predicting enzyme functions from the relation
network, using relations of amino acids as features. The input
of a protein is a set of ‘‘objects’’, O = {o1, o2 . . . , on} , oi ∈
R74. Then, the relation of each pair of amino acid objects can
be described by the function g as:

gθ (oi, oj, rij) (8)

The relation information rij such as the relative distance and
relative angle are clearly contained in the input data. The role
of gθ is to infer the ways in which two objects are related, and
its output is a ‘‘relation’’. The relation of all amino acid pairs
constitutes a representation of enzyme function.

In Fig. 2, the framework describes three processes:
(1) objects are matched in pairs, and their relation rij is
calculated; (2) the function gθ of all object pairs is calculated;
and (3) the fused results are input to an MLP classifier.

First, common options for the network were used.
We designed a set of more common MLP structures depend-
ing on experience and other research [36] that verified the
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FIGURE 2. Framework of the SRN.

effectiveness of MLP as an RN network structure. Then,
we used cross-validation to select the best parameters. rτ , fφ
and gθ are MLPs with parameters τ , φ and θ , respectively.
rτ is a three-layer MLP consisting of 24, 48, and 132 units.
gθ is a four-layer MLP consisting of 256, 256, 512, 256 units
with ReLU nonlinearities. fφ is a three-layer MLP consisting
of 256, 256, 128, 64 units with ReLU nonlinearities. The final
layer was a linear layer that produced logits for a softmax to
predict the probability distribution over categories. The soft-
max output was optimized with a softmax loss function (i.e.,
the softmax operator followed by the logistic loss) using the
Adam optimizer with a learning rate of 0.001. Fifty samples
per batch were used for the model, which takes all channels as
input. The parameters are learnable synaptic weights, making
the model end-to-end differentiable. The model considers
all implicit relations and can learn to infer relations; it is
not related to the input order of amino acid objects. This
independence guarantees that the model can handle amino
acid sequences of different lengths.

In the model training process, proteins generally have
hundreds of amino acids, so tens of thousands of amino
acid pairs need to be processed to update the model weight
once. When constructing object pairs, a function P can be
introduced to reduce the number of pairs. The main function
of P is to measure whether to pair two amino acid objects.
The simplest strategy of P is that if the distance between two
amino acids exceeds a preset threshold, do not treat them as a
pair. The starting point of the strategy is that amino acids have
considerably less mutual influence. Similarly, the function P
can directly process the object sequence of the state matrix
without the need for models such as RNN and LSTM.

We use TensorFlow as our machine learning framework
and deploy the program on a device with a 2.4 GHz i7 with
16 GB memory and two Nvidia GeForce GTX 980Ti (6 GB
memory card). The training sets were used to train the param-
eters of the network, including word embedding of amino
acid names. After a week of training, this trained classifier

could determine the likelihood of belonging to each class for
final prediction.

III. RESULTS
The enzyme committee divides enzymes into 6 primary cat-
egories: oxidoreductases (EC1), transferases (EC2), hydro-
lases (EC3), lyases (EC4), isomerases (EC5), and ligases
(EC6). We collected 42,699 enzymes performing a sin-
gle function from the PDB database (http://www.rcsb.org/),
excluding enzymes performing multiple reactions and asso-
ciated with multiple enzymatic functions. The first digit of
the enzyme commission (EC) code is used as a single label
for protein function prediction. The number of samples per
class is shown in Table 1.

TABLE 1. The numbers various single-labeled enzymes used in the
experiment.

The dataset was split into five folds. Four folds were used
as the training set and one as the test set. Then, 3 folds of
the training set were used for training and one for validation.
Cross-validation was used to tune the model parameters.
After the model parameters were selected, the test perfor-
mance was measured.

Evangelia’s AD-CNN [21] is the most representative
method using amino acid structure information and CNN.
It has two features XA, XD and two architectures (Architecture
1 andArchitecture 2), amongwhich the performance of archi-
tecture 2 is better. In this experiment, we compared the pro-
posed model with Evangelia’s architecture 2. Both methods
used the same test and training sets. Due to the number of test
samples and the need for comparative experiments, we tested
the entire dataset for comparison, as shown in Table 2. The red
figures in Table 2 are the true positive rate (TPR), showing the

VOLUME 8, 2020 132363



M. Liang, J. Nie: Prediction of Enzyme Function Based on a SRN

TABLE 2. TPR and accuracy (in percentage) in predicting main enzymatic
function by two models.

proportion of each enzyme that was successfully predicted.
The accuracies of Evangelia’s method and SRN were 90.83
% and 92.08 %, respectively.

Based on Table 2, the analytic distribution of samples
in each class is shown in the form of confusion matrices
in Table 3. In the longitudinal comparison of Table 3, the pre-
diction accuracy of each enzyme in SRN was higher than that
in AD-CNN. However, the prediction accuracies of EC2 and
EC3 were lower than those of the other classes. As shown
in Table 3, the enzyme of EC1 was more likely to be misclas-
sified as EC6. The prediction accuracy of EC3 was not high
because the model easily confused EC1 and EC6.

TABLE 3. Confusion matrices for each method.

During the training process, one iteration of each batch of
training data updates the model parameters and can obtain
the training accuracy at this time. At the end of each training
epoch, the test set was only used to evaluate test accuracy
without participating in training model parameters. With
the increase in the number of training epochs, the training
accuracy and test accuracy gradually converged, as shown
in Fig. 3. Therefore, model training of 300 epochs was

FIGURE 3. The change in two precisions for different numbers of epochs.

sufficient. The test accuracy representing the generalization
ability of the model was always lower than the training
accuracy.

In Fig. 3, the red line shows the variation in iteration times
and training accuracy. The blue line indicates the number of
iterations and the change in training accuracy of the exper-
iment in this paper. The corresponding parameters can only
be determined after the data are trained. Then, the accuracy
is obtained from the test set. In the training process, the itera-
tion process affected the determination of parameters, which
affected the test results. Therefore, the variation in prediction
accuracy with the number of iterations is shown in Fig. 3.

Themodel performance can bemeasured by a loss function
that assigns a penalty to classification errors. The test loss
value corresponding to each epoch is shown in Fig. 4.

FIGURE 4. Test loss vs epochs.

Receiver operating characteristic (ROC) curves were
derived from the results of cross-validation and used to further
evaluate the performance of the SRN model. Fig. 5 shows
the ROC curves and area under the curve (AUC) value for
each type of enzyme. The ordinate represents the true positive
rate (TPR), and the abscissa represents the false positive rate
(FPR). An AUC value greater than 0.5 indicated that the SRN
model has a certain predictive value.

IV. DISCUSSION
The method in this paper used the primary EC number as a
label to predict the function of the protein and finally reached
an accuracy of 92.08%, which is a considerable improvement
over the previous work (90.83% in Evangelia I). More specif-
ically, for EC1, 5, and 6, the models performed better in terms
of precision, but the prediction accuracies of the three other
enzymeswere lower, whichwas due to the insufficient sample
size for EC2, 3, and 4 in the dataset. If the number of training
samples increased, the reliability of the predictions improved.

In addition to the display of experimental precision results,
we also invited biological researchers to use our model and
propose interactive experiences. They thought the machine
learning model plays an important role in understanding
proteins with unknown functions, and our deep learning
reasoning model using amino acid relationships is an inno-
vative method for future research using protein structural
information.
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FIGURE 5. ROC curves for each enzymatic class for SRN.

Our current work shows that structural relationship infor-
mation of amino acids and the relationship inference model
can achieve good results in protein functional classifica-
tion. Nevertheless, SRN still faces some restrictions. First,
the model is currently only for single-label classification
rather thanmultilabel classification and only predicts proteins
approximately into 6 major classes without further subdivi-
sion. Second, the training of the model required considerable
time during the entire experiment, so further optimization is
necessary to improve performance.

V. CONCLUSIONS
In this paper, a method was presented that extracts sequence
features and structural features that are introduced into a
structure relation network for enzymatic function prediction.

The experimental results showed that the uncompressed
use of relation information leads to more accurate enzyme
class prediction. Overall, the presented approach can pro-
vide a rapid and accurate enzyme function prediction, and
research-based not only on structural relations but also on
inference models for function prediction provides more com-
prehensive ideas for the biological field. Although machine
learning is a black-box model and cannot directly express
the one-to-one correspondence between protein structure and
function, if a protein with a new fold has similar structural

characteristics to proteins in the dataset, its functional pre-
diction will have a higher score on a certain class.

In future work, we will attempt to combine the model with
more high-performance computing technology to improve
the model’s ability to face various complex tasks. We will
also explore the relationship between the local structure and
function of the protein. The prediction of protein binding sites
based on the subgraph matching problem in inference models
is also worth exploring.
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