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ABSTRACT Tool wear prediction is essential to ensure part quality and machining efficiency. Tool wear is
affected by factors such as the material, structure, process, and processing time of the parts. Tool wear under
the variable working conditions and the above factors show a complex coupling and timing correlation, which
makes it challenging to predict tool wear under variable working conditions. This article aims to resolve this
issue. First, we establish a unified representation of working condition factors. The stacked autoencoder
(SAE) model adaptively extracts tool wear features from the machining signal. The extracted wear features
and respectiveworking conditions then combine into aworking condition feature sequence for predicting tool
wear. Finally, the advantages of the long short-term memory (LSTM) model to solve memory accumulation
effects learn the regular wear pattern of the working condition feature sequence to realize the prediction of
the tool wear. An experiment illustrates the effectiveness of the proposed method.

INDEX TERMS Variable working conditions, tool wear prediction, long short-term memory, stacked
auto-encoder.

I. INTRODUCTION
The tool is a direct executor of machining operation, and its
wear prediction is of great significance for ensuring the qual-
ity of parts, improving efficiency, and reducing costs. With
the multi-variety and small batch production requirements,
tools aid in different processing techniques, parts materials,
and processing forms. The variable mentioned above, work-
ing conditions, make it challenging to monitor tool wear. It is
difficult to estimate the available tool time under variable
working conditions. An early tool replacement increases cost
because limited device utilization, while overly frequent tool
change increases processing time. If the replacement of the
tool is not timely, the quality of the components will be
affected. The machine tool will shatter or even damage the
machine tool. About 20 % of the machine tool downtime
stems from tool breakage. The cost of the instrument and
the device changed accounts for 3 % to 12 % of the total
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cost [1], [2]. Therefore, it is necessary to study tool wear
under variable working conditions.

The tool wear features are extracted from these signals
to determine the tool wear status indirectly. Developments
in sensing allow the collection of sensor signals related to
tool wear during processing. The collection includes cut-
ting force signal, vibration signal, acoustic emission signal,
current signal [3], [4]. It has become an effective method
for real-time monitoring of tool wear during machining [5].
Existing tool wear prediction methods [6], [7] mostly assume
fixed working conditions, but the processing objects and
processing techniques are often changeable when using the
tool. The following difficulties exist with achieving tool wear
prediction under variable operating conditions:

(1) Tool wear is affected by the coupling of various work-
ing conditions, and the effect mechanism is complicated
and unclear. In the single-piece and small-batch production
mode, the tool is used under the terms of changing process-
ing objects and processing techniques. There is a coupling
relationship between tool wear, working condition factors
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(parts materials, parts structure, processing technology, pro-
cessing time), and machining signals (force signal, vibration
signal). Because the above factors change dynamically, it is
difficult to establish a precise mathematical model to analyze
the complicated relationship between tool wear and these
factors.

(2) Tool wear shows a cumulative effect on the time series,
and the cutting time of the tool is not fixed every time. It is
difficult for general prediction models to meet this variable
time series forecasting requirement. In the actual cutting
scene, the tool wear is not only related to the current work-
ing conditions but also related to the historical processing
information of the tool, that is, the tool wear has a time-
series correlation. At the same time, the different processing
time will have different effects on tool wear. The established
prediction model needs to have the ability of ‘‘memory’’ and
to adapt to tool wear prediction under different time series
flexibly.

Given the above difficulties, we propose a method for
predicting tool wear under variable working conditions based
on deep learning. Thoroughly consider the factors that affect
the tool wear, study the complicated relationship between
the working condition factors and the milling tool wear,
and use the LSTM [8] network to establish the milling tool
wear prediction, model. LSTM network cells have a unique
‘‘gate’’ structure, which can remember information for a long
time. This structure can memorize the historical processing
information of the tool during the milling process, to solve
the problem of the cumulative effects of tool wear over time.
Since LSTM hidden layer cells are connected orderly, the
number of connected input nodes is determined according to
the characteristics of the problem to be solved. LSTM has
superior performance in solving variable sequence problems.
Therefore, we attempt to use LSTM to deal with the complex
relationship between working conditions and tool wear.

In summary, we propose a unique method to solve the
problem of tool wear prediction under variable operating
conditions. First, the factors of the working condition of
different types are expressed in a unifiedway. Then, the signal
features related to wear are extracted from different machin-
ing signals, and they are fused at the feature layer to obtain
the tool wear features. Finally, the wear feature and the corre-
sponding working conditions information merge to derive the
working condition feature sequence, and the input establishes
the LSTM model. Thus, the tool wear rule under variable
working conditions is obtained.

II. RELATED WORK
A. PATTERN RECOGNITION OF TOOL WEAR STATE
Traditional machine learning methods include support
vector machines, decision trees, clustering, artificial neural
networks. These procedures are data-driven and based on
statistical theory. The cutting process provides relevant data.
Factors related to tool wear establish the regression or infer-
ence model. Scholars at home and abroad emphasize the

traditional machine learning methods to predict tool wear.
Rizal et al. [9] proposed a signal statistical method I-Kaz
and combined with the adaptive network fuzzy reasoning
system to establish the prediction model of the turning tool.
McParland et al. [10] proposed a method to develop a tool
wear prediction model using Bayesian hierarchical Gaussian
process. Wu et al. [11] proposed a tool wear prediction
method based on random forest, and the effectiveness of
the plan was verified by using the open milling tool wear
data set. Wu et al. [12] used an acoustic emission sensor
to collect data and extract characteristic parameters to estab-
lish a real-time monitoring system for the wear state of the
boring cutter. Liu [13] used time-domain, frequency-domain,
wavelet packet analysis, and other methods to extract fea-
tures of machining signals. They constructed an autoregres-
sive moving average model and three-layer backpropagation
neural network combination model respectively to predict
tool wear. Xie et al. [14] used principal component analysis
to extract the characteristics of current and power signals
and established the c-support vector machine tool wear state
recognition model. Bustillo et al. [15] used five regression
methods to predict tool wear, including decision tree-based
regressors, ensemble regressors, artificial neural networks,
support vector regression, and k-nearest neighbor regressor.
By comparing the results of each model, they concluded that
themost accuratemodel was the rotation forest with unpruned
REPTree as its base regressors.

Traditional machine learning methods have made signifi-
cant progress in tool wear prediction. The network of con-
ventional machine learning methods usually adopts a shallow
structure. Modeling the relationship between working condi-
tions and tool wear in high-dimensional space is challenging
and limits the complex nonlinear relationship between tool
wear and cutting signal feature information, and the estab-
lishment of the model depends on the selection of feature
information. Therefore, how to extract the features of the
massive cutting data in the cutting process and accurately
predict the tool wear has become an urgent problem to be
solved.

Deep learning is a kind of deep-seated neural network
which simulates the structure of the human brain under the
driving of data. It has a better ability to feature learning
and nonlinear function approximation and can find complex
feature information in high-dimensional data independently.
At present, deep learning has made a lot of progress in
the field of image processing [16], speech recognition [17],
natural language processing [18] and text retrieval [19].
In recent years, deep learning aids in tool wear prediction.
Zhao et al. [20] first proposed the empirical evaluation of
LSTM based machine health monitoring system, which veri-
fied the feasibility of using the raw sensor data to predict the
actual tool wear. Sun et al. [21] proposed a deep transmission
learning network based on a sparse automatic encoder and
established a prediction model of the remaining tool life.
Feng [22] proposed a self-service fault detection algorithm
for aircraft. By building a fault detection model based on the
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deep constrained Boltzmann machine, the current fault state
can be conclusively determined. Zhang et al. [23] obtained
the energy spectrum by wavelet transform of the vibration
signal and constructed the tool wear state classificationmodel
based on the convolutional neural network (CNN).

The above literature points out the research status of
deep learning in the field of tool wear prediction. The deep
learning method can realize multiple and multi-dimensional
transformations of high-dimensional and non-stationary data,
and solve the shortcomings of traditional machine learning
methods. Current research fixes the cutting process scenario
of the tool and uses a single kind of processing signal to
establish the wear prediction model. The timing correlation
of tool wear is ignored, and the time segment corresponding
to the input of the model is relatively fixed. This problem
makes the accuracy of the model prediction results low, and
the application of the model is limited. Therefore, the tool
wear under different working conditions needs further study.

The research group proposed to use the unique advantages
of the LSTM model to solve the problem of complex cor-
relation and memory accumulation effect, and established
the prediction model of remaining tool life under variable
working conditions [24]. Limited by the situation at that
time, the model only studies the tool wear prediction under a
single kind of monitoring signal. Due to the complexity of the
machining process of a single small batch of structural parts,
it is difficult to capture the overall information of the tool state
by an individual monitoring signal. In this paper, the tool wear
prediction based on multi-source parameter fusion is studied.
Secondly, the Hilbert Huang transform (HHT) is selected for
feature extraction, which takes a long time and does not have
the characteristics of migration. In this paper, an adaptive
wear feature extraction method is proposed, and a tool wear
prediction model based on multi-source parameter fusion is
established.

B. RESEARCH ON SIGNAL FEATURE
EXTRACTION METHOD
Feature extraction of monitoring signal is the premise of
tool wear prediction. Commonly used signal feature extrac-
tion methods include statistical methods [12], [25], Fourier
transform [26], wavelet transform [27], Hilbert Huang trans-
form [28], etc. The methods mentioned above of manually
acquired signal features have the following shortcomings:
(1) they rely on advanced signal processing technology
and have a general extraction effect; (2) feature selection
is time-consuming and labor-consuming and greatly influ-
enced by human subjective factors. In recent years, deep
learning method has become an effective means to extract
non-stationary and dynamic change data. Zhao et al. [29]
proposed a general fault feature extraction and diagnosis
method based on a deep belief network (DBN). Fu et al. [30]
establish the feature space of cutting condition monitoring
based on DBN. Compared with the Mel frequency cepstrum
coefficient and wavelet method, the results show that DBN

has a better ability to characterizing cutting state monitoring
signals.

Deep learning has the potential to adaptively and objec-
tively learn the representative features of the original data.
Therefore, this method has gradually become an important
method for high-dimensional, nonlinear, and non-stationary
data feature extraction. Thismethod can reduce or even get rid
of the feature extraction dependence on artificial experience.

C. LSTM NETWORK APPLICATIONS
In recent years, with the help of the advantages of the LSTM
network model in solving sequence problems, scholars at
home and abroad have devoted themselves to the research
of the LSTM network application and made some progress.
Cho et al. [31] take advantage of the recurrent neural network
(RNN) to solve the sequence problem and improve the per-
formance of the machine translation system by enhancing the
RNN encoder-decoder network model. Liu et al. [32] regards
the issue of spectrum feature extraction as a sequence learning
problem and proposes an automatic spectrum feature learning
method based on the bidirectional convolution long-term and
short-term memory network. On the other hand, the LSTM
model is also emerging in solving the problems of time cor-
relation and historical information memory. Wang et al. [33]
uses the LSTM network to predict the fault time sequence
based on the historical fault data of the complex system.
Zhao et al. [34] makes use of CNN’s advantages in image
information processing and RNN’s advantages in dealing
with time sequence correlation, and finally, realize the pre-
diction of part deformation.

From the above research, it can be seen that The LSTM
network has unique advantages in solving the sequence prob-
lem with complex time correlation and long-term memory
of historical information. Therefore, this paper attempts to
establish the LSTM model for tool wear prediction, to solve
the problem of tool wear related to the historical data of tool
use and time sequence correlation.

III. PRINCIPLE EXPLANATION
A. MAIN PROCESS
The milling tool wears prediction method under variable
working conditions we propose is based on the SAE net-
work and LSTM network. The schematic diagram is shown
in Figure 1.

The entire process of tool wear prediction in this paper is
viewed in two stages: training and application.

1) TRAINING PROCESS
Step 1: The data collected during processing is divided into
working condition factorsCon andmilling cutter wear values.
The working condition factors are expressed uniformly. For
example, operating condition factors include process param-
eters, workpiece information, tool information, monitoring
signals, etc. Machining signals include cutting force signals,
vibration signals, etc.
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FIGURE 1. The Diagram of the milling tool wears a prediction method.

Step 2: For each processing step of the k-th machining
signal Sk , the fixed time window length is win_t , and the
working condition factors Con and the machining signal Sk
are sequentially divided into L data fragments in time series,
that is

Con={Con1,Con2, . . . ,ConL}, Sk={Sk1, Sk2, . . . , SkL}.

Step 3: For each machining signal Ski, SAE is established
to extract the signal features Fki, and these signal features are
fused in the feature layer to obtain the tool wear features Fi.
Step 4: Combine the working condition factor fragments

Coni and the corresponding tool wear features Fi into a
working condition feature sequence. Take this sequence as
input, and use the maximum value W of the milling cutter
flank wear after this process as the output to train the LSTM
network.

2) APPLICATION PROCESS
Step 1: Take out the working condition segment Cont and the
machining signal segment St in the new processing process
with time segment length t .

Step 2: The machining signal fragments St can be pro-
cessed by the SAE network to obtain the characteristic param-
eters Ft sensitive to tool wear.

Step 3: The working condition fragments Cont and the
corresponding tool wear features Ft are fused into a working
condition feature sequence, which is input into the trained
LSTM model, and finally, the tool wear amount wear is
predicted.

B. UNIFIED EXPRESSION OF WORKING
CONDITION FACTORS
In the actual milling process, there are various factors
(machine tool, workpiece information, process parameters,
etc.) that affect the milling cutter wear, which makes the

tool wear prediction process extremely complicated. Since
this article ignores the influence of machine tool information,
we represent the condition factor under variable conditions in
the form of a working condition vector. The working condi-
tion information includes process parameter sub-conditions
P, workpiece information sub-conditionsW , tool information
sub-conditions TL and process monitoring sub-conditionsM
(tool processing time). Then the working condition vector
Con can be expressed as:

Con = [P W TL M ] (1)

1) PROCESS PARAMETER SUB-CONDITIONS
When other processing conditions are the same, selecting
different process parameters will produce different process-
ing effects, which will affect the tool wear state. During
the milling process, the changed process parameters mainly
include cutting speed (spindle speed), cutting depth, cutting
width, and feed rate. The process parameter sub-vector P is
expressed as:

P = [ n ap we f ] (2)

where n represents the spindle speed, ap represents the cutting
depth, we represents the cutting width, and f represents the
feed speed.

2) WORKPIECE INFORMATION SUB-CONDITIONS
In the actual milling process, the workpiece information is
a critical factor that affects the machining process, and it is
also an essential factor that influences the tool wear state. The
workpiece information sub-vector W is expressed as [19]:

W =
[
K µs E Rm τ HRA e Ak C

]
(3)

where K represents the thermal conductivity, µs represents
the friction coefficient, E represents the positive elastic mod-
ulus, Rm represents the tensile strength, τ represents the shear
strength, HRA represents Rockwell hardness, e represents
elongation, Ak represents impact toughness, andC represents
clamping strength.

3) TOOL INFORMATION SUB-CONDITIONS
This article studies the same type of milling tool. Thematerial
and geometric information of the device is the same. There-
fore, the tool information can be defined as the initial state of
the tool TL.

4) PROCESS MONITORING SUB-CONDITIONS
Themonitoring signalM of the machining process can reflect
the tool wear after the actual machining starts. Standard pro-
cess monitoring signals include cutting force signals, vibra-
tion signals, acoustic emission signals, current signals, etc.,
which are time-varying and critical elements for tool wear
monitoring. Therefore, it is listed separately in this article.
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C. TOOL WEAR FEATURE EXTRACTION
Machining monitoring signals, including force, vibration sig-
nals, and acoustic emission, can indirectly reflect the actual
milling tool wear in the process of machining, so the feature
parameters sensitive to tool wear can be obtained by feature
extraction of the monitoring signals.

The machining process monitoring signal has the char-
acteristics of high dimension, non-stationary and dynamic.
Traditional feature extraction methods in the time domain,
frequency domain, and time-frequency domain are challeng-
ing to capture representative, comprehensive, and valid data
features. This paper takes advantage of the combination of
unsupervised learning and supervised learning possessed by
the SAE network to continuously perform the nonlinear trans-
formation on the monitoring signal to obtain the features that
are sensitive to tool wear.

FIGURE 2. The construction process of an SAE model with three hidden
layers.

The construction process of an SAE model with three
hidden layers is shown in Figure 2. First, the original data
X is used as input, and the first AE (AE-1) model is pre-
trained using unsupervised learning to obtain hidden layer
features h1. Then, the hidden layer feature h1 is used as the
input of the next AE (AE-2) model, and the new hidden layer
feature h2 is obtained by unsupervised learning. By analogy,
the hidden layer feature data h3 of the next AE (AE-3) model
is finally achieved. On this basis, supervised fine-tuning of
the entire network can get better feature expression.

Given the machining process monitoring signal S =
{S1, S2, . . . , Sn}, Among them, Sk (1 ≤ k ≤ n) is any kind
of monitoring signal, such as cutting force signal, vibration
signal, acoustic emission signal, etc., n (n ≥ 1) is the number
of types of monitoring signal. For any kind of monitoring sig-
nal Sk , there is Sk = {Sk1, Sk2, . . . , SkL}, and L = [t/win_t],
Where, Ski (1 ≤ i ≤ L) is any segment signal that sequentially
divides the signal Sk into L segments according to the time
window win_t .
For each monitoring signal Ski, the extraction process of

wear characteristics can be expressed as:

Fki = g(Ski) (4)

where g(·) represents the feature extraction process through
the SAE network, and Fki is the feature parameters sensitive
to tool wear extracted.

D. ESTABLISHMENT OF TOOL WEAR PREDICTION MODEL
Tool wear under variable working conditions has a complex
coupling correlation. In this paper, the advantages of LSTM
in solving the variable sequence problem and time correlation
problem are used to solve the problem of tool wear prediction.
The multi-sequence input and single-output LSTM network
structure, as shown in the figure, is constructed. Among them,
the input of the model is a characteristic sequence composed
of the typical segment of the working condition factor and the
tool wear feature segment, and the output of the model is the
tool wear value corresponding to this period. In the network
structure, the output of the next time segment network is
determined by the current input, the cell output state of the
previous time segment, and the state of the hidden layer cell.
This feature solves the problem of the cumulative effects of
tool wear over time. Also, the LSTM quiescent layer cells are
connected in an orderly manner. During training, the number
of input nodes is determined by the time window of signal
division. When using the trained LSTM network to make
predictions, the number of input nodes is determined by
the length of the signal segment under different processing
time lengths. This feature can solve the requirement of the
variable length of input sequence nodes in the application
process.

The fixed time window is win_t (t1, t2, . . . , tL = win_t).
Divide the data in the milling process into L segments, and
the input of the model after segmentation is:

X = {X1,X2, . . . ,XL} (5)

Set the initial time of the time window as tinitial , and the
working condition feature of i-th is Xi:

Xi = [Coni F1i F2i . . . Fni ] (6)

In the formula, Coni (tinitial ≤ t ≤ tinitial+win_t ) represents
the working condition factors corresponding to the i-th data
segment, Fki is the tool wear feature extracted from the
k-th monitoring signal in the i-th data segment.

In this paper, the flank wear of each tooth of the milling
tool is used as the calibration wear. Milling tools are multi-
tooth cutters, and the amount of wear is closely related to
the wear of each cutter tooth. The milling tool is a kind of
multi-tooth tool, and its wear is closely related to the wear of
each tooth. Excessive wear on any tooth will cause the tool to
be unusable. Therefore, this paper uses the maximum flank
wear value of the multi-tooth milling tool to characterize the
tool wear. The theoretical output corresponding to the LSTM
model is W :

W = max{W1,W2, . . . ,Wn} (7)

Among them, Wi represents the flank wear value corre-
sponding to the i-th tooth.
Then, input X the LSTM hidden layer. As can be seen from

Figure 3, the hidden layer of the LSTM network contains L
LSTM cells connected by time series. The output through the
hidden layer is P:

P = LSTM (X ,C,H ) (8)
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FIGURE 3. LSTM model structure.

where C and H respectively represent the state and output
of each LSTM cell, and LSTM is the forward propagation
algorithm of LSTM cells. The mean square error (MSE) is
selected as the error calculation formula, so the loss function
in the process of network training is:

loss =
∑N

i=1
(Pi −Wi)2/N (9)

With the minimum loss function as the optimization
objective, the network weight was updated continuously by
Adam’s optimization algorithm. Finally, the LSTM hidden
layer network revealed itself.

IV. EXAMPLE VERIFICATION
A. INTRODUCTION OF EXPERIMENTAL DATA
In this paper, the method proposed was verified by using
the public data set [30] of the American PHM Association
in the 2010 tool health prediction contest. The experimen-
tal platform is the Röders-TechRFM760 high-speed CNC
millingmachine; the innovative tool is a three-edged ball head
milling cutter made of tungsten carbide. The cutting material
is stainless steel(HRC 52).

In the experiment, several sensors collected the data of the
milling process, including force sensors, acceleration sensors,
and acoustic emission sensors. The milling method is end
milling. Each time 108mm is cut along the X direction,
recorded as a cutting stroke. The cutting tests used a total
of 3 tools, marked as C1, C4, and C6, respectively. Each tool
contained 315 cutting strokes, a total of 945 cutting strokes,
that is, 945 samples. After each cut, record the wear value of
the flank of each cutting edge of the milling tool. Table 1 lists
the milling parameters.

TABLE 1. Milling parameters.

Whenever the wear of any edge of the milling cutter
exceeds a certain threshold when machining, the quality of
the workpiece will be severely affected, therefore, in our
study, we used the maximumwear of each cutting edge as the
measurement standard. The wear curve of tool C1 is shown
in Figure 4. According to the value of wear and the changing

FIGURE 4. Tool wear curve (C1).

trend of the curve, the initial wear stage, normal wear stage,
and sharp wear stage of tool wear correspond to A, B, and C
in the figure.

B. RESULTS AND DISCUSSION
The milling tool is a sample every milling, and the data of
the stable machining stage is divided into 82ms (4096 data
points) as the time window to obtain the milling force signal
segment and the vibration signal segment corresponding to
the time window. There are ten segments in total, corre-
sponding to tool wear. The sample with tool number C1,
milling times 13 (C1-13), and section 1 (the first 328ms
data) are used as an example to illustrate the construction
process of the input condition feature sequence of the training
model.

1) WORKING CONDITION FACTORS OF
SAMPLE C1-13 (SEGMENT 1)
The working condition factors of sample C1-13 include four
elements: spindle speed n, feed speed vf , radial cutting depth
aw and axial depth of cut ap. Then the working condition
factor Con of sample C1-13 can be expressed as:

Con = [ 10400 1555 0.125 0.2 ]

2) SAMPLE C1-13 (SEGMENT 1) MONITORING SIGNAL
WEAR FEATURE EXTRACTION
In the network that extracts tool wear features, the number
of hidden layer nodes is set to 4096-2048-1024-512-128-60.
Input force signal (4096 ∗ 3 dimension) and vibration signal
(4096 ∗ 3 dimension) into the SAE network, you can get
the force signal feature vector (60 dimensions) and vibration
signal feature vector (60 dimensions) sensitive to tool wear.
Then the force signal feature vector x f1×60 and vibration
signal feature vector xv1×60 extracted from the sample are:

xf1×60 = [ 14.802 5.6861 . . . 7.8767 ]

xv1×60 = [ 0.408 0.1067 . . . 3.1449 ]

3) CONSTRUCTION OF INPUT SEQUENCE
By doing the same for fragments 2∼9, the LSTM network
input condition sequence of sample c1-13 one obtains F .
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The output wear of this sample LSTM network is
76.0616µm, and F is:

F = {F1,F2, . . . ,F10}

F1 =
[
Con xf1×60 xv1×60

]
= [104001555 . . . 2.8767]

F2 =
[
Con xf1×60 xv1×60

]
= [104001555 . . . 2.5358]

. . .

F10=
[
Con xf1×60 xv1×60

]
= [104001555 . . . 3.01022]

In this paper, the cross-validation method is used to verify
the accuracy of the wear prediction model for the three tools
C1, C4, and C6. In the three experiments, two groups are the
training set, and one group is the verification set. The cross-
validation scheme is shown in Table 2.

TABLE 2. Cross-validation scheme.

The prediction model based on the wear of the tool is a
multi-sequence input and single output LSTM model. The
number of LSTM hidden layer nodes is 129, the learning
rate is 0.0001, the optimization method is Adam, the weight
L2 regularization coefficient is 0.003, the input batch size is
21, and the number of iterations is 3000. After 3000 iterations,
the loss curve converges, and the training time on GeForce
RTX 206 is 1.3 hours.

The No. 1 verification scheme illustrates that the data
samples in C1 and C4 are used as the training set, and the
data samples in C6 is the verification set. The change curve
of the loss function (MSE) of the LSTM network with the
training process presents in Figure 5.

FIGURE 5. Loss function curve of the LSTM model.

In Figure 4, the abscissa represents the number of
iterations, and the ordinate represents the loss function.

TABLE 3. Loss function convergence values.

FIGURE 6. Tool wear prediction curve (C6).

FIGURE 7. Tool wear prediction curve (C4).

FIGURE 8. Tool wear prediction curve (C1).

Figure 4 shows: as the training process progresses, the loss
function curve shows a downward trend and eventually
reaches convergence. The loss function of the training set
finally converges to 0.0178, and the loss function of the
verification set finally converges to 0.0473.
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TABLE 4. Results of statistical indicators.

TABLE 5. Test case design table under variable operating conditions.

The above analysis is also performed on the verification
schemes 2 and 3 in Table 2, and the loss function conver-
gence value of the training set can be obtained. As shown
in Table 3 below, it can be seen from the table that each
scheme of cross-validation has a good convergence effect.

Verify all the verification schemes in Table 2, and get the
C6, C4, C1 tool wear prediction curve. As shown in Figure 6,
Figure 6, and Figure 8, the abscissa is the number of milling
times, and the ordinate is the maximum wear of each tooth of
the tool.

We used three statistical indicators, namely mean absolute
percentage error (MAPE), coefficient of variation (Cv), and
square correlation coefficient (R2), as evaluation criteria for
model accuracy. Ten repetitions of the model derived the

average value of each index to eliminate the influence of
contingency factors. The results follow in Table 4.

It can be seen from Table 4 and Figure5-7 that the predicted
values of the three tools can reflect the measured values
well, and the prediction results of the model are accurate.
The generalization is excellent, which can indicate the wear
process of the tool.

Further, the design of the test case of the model under vari-
able working conditions mainly reflects the variable working
conditions from the initial state of the tool, the processing
time of the instrument, and the continuous change of the
process monitoring signal. The specific test case design is as
follows: From the tools C1, C4, and C6, randomly select two
samples with the different initial state of the tool and set the
processing time of each sample to have two changes, so there
are 3 ∗ 2 ∗ 2 = 12 change test scenarios in total. We tested
the proposed model for milling tool wear prediction. Select a
suitable sample design test scenario and its actual maximum
wear amount, as shown in Table 5 below:

Our method predicts the test samples noted in the above
table, while the following table shows the results.

TABLE 6. Comparison of actual and predicted wear.

The prediction results in Table 6 above show that the
SAE-LSTM milling wear model can realize the prediction
of tool wear when the initial state of the tool changes and
the processing time changes. The maximum relative error
is 0.0581. However, due to space limitations, other changing
factors, such as changes in processing objects, have not been
verified. Subsequent research will carry out model verifica-
tion work on different variable scenarios.

V. CONCLUSION
Our innovative method based on deep learning uses engi-
neering requirements of the tool wear prediction to deal
with the complicated relationship between working condition
factors and tool wear; this method extracts working condition
characteristics. It takes the long short-term memory network
as the core. First, we established a unified representation of
operating condition factors. Then, the stacked autoencoder
network model is designed to realize the adaptive extraction
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of wear features under variable operating conditions. The fea-
ture extraction results of different kinds of machining signals
are fused, and the fused wear features and working conditions
are constructed into feature sequence vectors. Next, the long
short-term memory model is established, and its advantages
of solving sequence problems and time correlation problems
are used to realize the prediction of milling tool wear under
variable operating conditions. Finally, an example verifies
the effectiveness of this method. The experimental results
show that the proposed method can accurately and efficiently
predict the tool wear under the current working conditions,
providing a reliable reference for tool replacement and tool
compensation optimization in real-time.
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