
Received June 16, 2020, accepted July 5, 2020, date of publication July 20, 2020, date of current version July 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3010314

Multi-Label Attribute Reduction Based
on Variable Precision Fuzzy
Neighborhood Rough Set
PANPAN CHEN 1,2, MENGLEI LIN 1,2, AND JINGHUA LIU 2,3
1School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, China
2Institute of Meteorological Big Data-Digital Fujian, Minnan Normal University, Zhangzhou 363000, China
3College of Computer Science and Technology, Huaqiao University, Xiamen 361000, China

Corresponding authors: Menglei Lin (menglei36@126.com) and Jinghua Liu (zzliujinghua@163.com)

This work was supported in part by the National Youth Science Foundation of China under Grant 61603173, in part by the Natural
Science Foundation of Fujian Province under Grant 2018J01422, and in part by the Institute of Meteorological Big Data-Digital
Fujian and the Fujian Key Laboratory of Data Science and Statistics, Minnan Normal University, under Grant 42010701.

ABSTRACT Multi-label attribute reduction as a common dimensionality reduction technique has obtained
widely research in recent years. Most existing multi-label attribute reduction methods adopt discretization
to deal with mixed data and have strict requirements on the condition of sample classification. However,
the process of discretization may lead to information loss, moreover, strict conditions will increase the
possibility of a sample classified into a wrong class. Based on this, we construct a multi-label attribute
reduction method based on variable precision fuzzy neighborhood rough set. The main motivation is that the
variable precision fuzzy neighborhood rough set can process multiple types of data without discretization
and tolerate noisy data. Specifically, we first use the parameterized fuzzy neighborhood granule to define the
fuzzy decision and decision class of each sample under different labels. Then, the fuzzy decision and decision
classes under different labels are fused into the entire multi-label learning space. Finally, a multi-label
attribute reduction algorithm is designed according to the defined maximum attribute significance criterion.
Our experiments are conducted on a series of multi-label datasets, and the experimental results verify that
the proposed algorithm achieves better classification performance than other state-of-the-art comparison
algorithms.

INDEX TERMS Attribute reduction, multi-label learning, rough set model, fuzzy neighborhood, variable
precision.

I. INTRODUCTION
Multi-label learning is ubiquitous in multiple real-world
applications, such as image automatic annotation [32], [40],
text categorization [12], [29], and functional genomics [4],
[44]. For instance, an image may have multiple seman-
tics, including lakes, forest, and landscape; a document may
belong to economy, politics, and sport.

As we know, multi-label data in reality always contains
a large amount of attributes [7], [11], [37], [38], [41],
[50], and some attributes may be irrelevant and/or redun-
dant, which will severely interfere with the classification
performance of multi-label classifier. Attribute reduction,
as an important means for data pre-processing, can effec-
tively solve the curse of dimensionality. Generally, there are
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three main methods in multi-label attribute reduction, that
is embedded, wrapper, and filter [26]–[28]. The embedded
method combines a specific learning algorithm to conduct
attribute reduction in the training process, such as Correlated
Multi-Label Feature Selection (CMLFS) [8], Multi-Label
Feature Selection (MLFS) [8], and Correlated Label Rank
SVM (CLaRank SVM) [8]. The wrapper method uses a
predetermined multi-label classifier to evaluate attribute sub-
sets and representative algorithms including feature selection
for Multi-Label Naive Bayes (MLNB) [47], Binary Rele-
vance Random Forest (BRRF) [9], and Random Forest Label
Power-set (RFLP) [9]. The filter method chooses attributes by
using attribute evaluation criteria, including dependency [16],
[45], [46], distance metric [24], [25], information metric [13],
[14], [17], [39], and rough set [18], [20], [30], [42].

Rough set theory, proposed by Pawlak [23], has been
proved to be an effective attribute reduction tool due to
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its understandability and high approximate ability. Attribute
reduction based on rough set can be roughly classified as
the attribute reduction algorithm based on the positive region
[15], the attribute reduction algorithm based on discernibility
matrix and its improvement [49], and the attribute reduction
algorithm based on heuristic information entropy [22], [35].
However, the classical rough set theory has one main defect,
that is, this model is defined on the stringent equivalence
relation, so it can not work effectively on the hybrid attributes
in classification learning. Therefore, many extensive mod-
els of rough set have been proposed [6], [10], [21], [34],
[36], which provide an important theoretical tool for attribute
reduction. For instance, Lin [19] proposed a hypothesis that
samples with the similar attribute values should be classified
into the same class or neighborhood class. Based on this
hypothesis, Hu et al. [10] extended the equivalent relation
into neighborhood relation, and then presented a neighbor-
hood rough set (NRS). Unfortunately, this model be unable
to characterize the samples’ fuzziness in fuzzy conditions.
Then, Dubois and Prade [3] used fuzzy similarity relation to
construct a fuzzy rough set model (FRS), which combines
rough set and fuzzy set. But fuzzy rough set is sensitive to
noise. These noisy data will affect the computation of fuzzy
lower approximation and astrict their practical utilization.
To solve the above problems, Wang et al. [33] defined the
fuzzy decision and decision class of samples by combining
the neighborhood rough set and fuzzy rough set, and then
constructed a fuzzy neighborhood rough set model (FNRS),
which overcomes the shortcoming of fuzzy rough set model.
Meanwhile, the fuzzy neighborhood rough set model can
better describe the sample decisions by using fuzzy informa-
tion granules, thereby reducing the classification error rate.
Due to the fuzzy neighborhood rough set is too strict to
tolerate the noisy data, they also proposed a variable precision
fuzzy neighborhood rough set to overcome this drawback.
These models are more effective to deal with the uncertainty
of numerical data and noise data, but they cannot be used
to multi-label learning directly. Different from single-label
learning, each sample may be related to multiple labels in
multi-label learning, and the label space is a closely related
whole. In case of the integrity of label space, it is a severe
challenge to construct fuzzy decision and decision class.

Inspired by this, we generalize variable precision fuzzy
neighborhood rough set in single-label learning to fit
multi-label learning, and introduce a novel multi-label
attribute reduction model based on variable precision fuzzy
neighborhood rough set. The proposed method uses fuzzy
relations to estimate the similarity among samples under
different labels, and evaluates the quality of attributes on
multi-label data. Meanwhile, this method can reduce the
interference of noise data and avoid the incorrect classifica-
tion of samples caused by the strictness of reduction model.
In order to exactly calculate the lower and upper approxima-
tion operators of multi-label variable precision neighborhood
rough set, we first take a large function and small function
to define the fuzzy decision of a sample in a multi-label

fuzzy neighborhood decision system, and define the deci-
sion classes in the whole label space. Then, we employ the
threshold to construct the multi-label approximation space.
In addition, we present an optimization objective function,
which can be use to evaluate the quality of the candidate
attributes. Finally, extensive experimental results display that
the proposed multi-label attribute reduction algorithm can
reduce the dimension of attribute space, and highly improve
the classification performance of a multi-label classifier. The
major contributions of this study are summarized below:
• A multi-label variable precision fuzzy neighborhood
rough set model is proposed, which can process
high-dimensional multi-label data and solve the
restriction problem of data type.

• The proposed model considers the integrity of label
space.

• FNRS-ML achieves highly classification performance
than some other state-of-the-art multi-label attribute
reduction algorithms in our experiments.

The remaining of this paper is formed as follows.
In Section II, we introduce multi-label learning and vari-
able precision fuzzy neighborhood rough set. In Section III,
we redefine fuzzy decision and decision classes for
multi-label learning in variable precision fuzzy neighborhood
rough and give our multi-label attribute reduction algorithm.
Then, we show the experimental results on several multi-label
datasets in Section IV, and at last SectionV is our conclusions.

II. PRELIMINARIES
A. MULTI-LABEL LEARNING
Suppose X = Rn×d be the input space of n samples,
xi = [xi1, xi2, . . . , xid ] ∈ X is a d-dimensional attribute
vector, and L = {l1, l2, . . . lm} is a set of m labels. Each
sample xi is related to a subset of L, and the subset can be
represented as a m dimensional vector yi = [y1i , y

2
i , . . . , y

m
i ],

where yji = 1 only if xi is labeled with label lj, otherwise
yji = 0.

Currently, several popular evaluation metrics are designed
from different evaluation perspectives in multi-label learning.
In our experiment, we choose Average precision, Ranking
Loss, Hamming Loss, and One-error as evaluation metrics
[43], [47]. Let T = {(xi,Yi)|1 ≤ i ≤ N } is a testing set,
where Yi ⊆ L is a correct label set and Y ′i ⊆ L is expressed
as a binary predicted label vector. In the following, the four
evaluation metrics are introduced.

(1)Average Precision evaluates the average probability of
predictive labels ordered before a true relevant label y ∈ Yi
that do belong to Yi.

avgPre(f ) =
1
N

N∑
i=1

1
|Yi|

·

∑
y∈Yi

|{y′ ∈ Yi : rank(xi, y′) ≤ rank(xi, y)}|
rank(xi, y)

. (1)

(2) Ranking Loss evaluates the average probability of
label pairs that are not sorted correctly for one sample,
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which is expressed as

rLoss(f ) =
1
N

N∑
i=1

1

|Yi||Yi|
|{(y1, y2)|f (xi, y1)

≥ f (xi, y2), (y1, y2) ∈ Yi × Yi}|, (2)

where Yi indicates the complementary set of Yi.
(3) Hamming Loss evaluates the times of misclassified

sample-label pairs.

hLoss(h) =
1
N

N∑
i=1

|Y ′i ⊕ yi|

M
, (3)

where ⊕ denotes the XOR operation.
(4) One-error evaluates the proportion of test samples

whose first ranked label is not in a set of relevant labels.

oneError(f ) =
1
N

N∑
i=1

[[[argmax
y∈L

f (xi, y)] /∈ Y ′i ]], (4)

where for any predicate π holds, then [[π]] equals 1;
Otherwise 0.

For these evaluation metrics, Hamming Loss concerns
with the label set prediction, and the other three evaluation
metricsmore focus on the label ranking. Note that for Average
Precision, bigger value indicates the better the method’s
performance, and the best value is 1. While for Ranking Loss,
Hamming Loss, andOne-error, smallervaluedemonstrates the
better the method’s performance, and the optimal value is 0.

B. VARIABLE PRECISION FUZZY NEIGHBORHOOD
ROUGH SET
Given a fuzzy neighborhood decision system, which denoted
by NDT = 〈U ,C,D〉. U = {x1, x2, . . . , xn} is a nonempty
set of samples,C is an attribute set of real-valued to character-
ize samples,D is a decision attribute. Suppose the universe be
divided into r equivalence classes by D, which is expressed
as U/D = {D1,D2, . . . ,Dr }.
Definition 1 [33]: Assume that NDT = 〈U ,C,D〉, B ⊆

C , and B can induce a fuzzy binary relation RB, then RB(x, y)
is a fuzzy similarity relation if:

(1) Reflectivity : RB(x, x) = 1,∀x ∈ U ;
(2) Symmetry : RB(x, y) = RB(y, x),∀x, y ∈ U .
Suppose Ra is a fuzzy similarity relation for any a ∈ B,

then we can express RB =
⋂

a∈B Ra. The fuzzy neighborhood
granule for any x ∈ U is defined as

[x]δB(y) =

{
0, RB(x, y) < δ;

RB(x, y), RB(x, y) ≥ δ.
(5)

The parameter δ is the fuzzy neighborhood radius of sam-
ples, and it satisfies 0 < δ ≤ 1. Obviously, the membership
degree of fuzzy neighborhood granule is determined by the
two factors δ and B.
Definition 2 [33]: Given a fuzzy neighborhood decision

system NDT = 〈U ,C,D〉, U/D = {D1,D2, . . . ,Dr }, and
RC is a fuzzy similarity relation generated by C . For ∀x ∈ U ,
the fuzzy decision of sample x is defined as

D̃i(x) =
|[x]C ∩ Di|
|[x]C |

, i = 1, 2 . . . r, (6)

where D̃i denotes the membership degree of each sample x
to Di, and it is a fuzzy set. {D̃1, D̃2, . . . , D̃r } is the set of
fuzzy decision of samples, which is generated by decision
attribute D.
Definition 3 [33]: Assume A and B are two fuzzy sets,

the inclusion degree between the two fuzzy sets can be
defined as

I (A,B) =
|A ⊆ B|
|U |

, (7)

where I (A,B) represents the inclusion degree of A in B, and
|A ⊆ B| indicates the number of samples whose membership
degrees to the fuzzy set A are not greater than those to the
fuzzy set B.
Definition 4 [33]: Given a fuzzy neighborhood deci-

sion system NDT = 〈U ,C,D〉, B ⊆ C , U/D =

{D1,D2, . . . ,Dr }, RB is the fuzzy similarity relation on
U induced by B, {D̃1, D̃2, . . . , D̃r } are the fuzzy decisions
induced by D, the variable precision fuzzy neighborhood
approximation space of decision attribute D with respect to
B is defined as

Rδ,αB (D) = {Rδ,αB (D̃1),R
δ,α
B (D̃2) . . .R

δ,α
B (D̃r )}, (8)

R
δ,β

B (D) = {R
δ,β

B (D̃1),R
δ,β

B (D̃2) . . .R
δ,β

B (D̃r )}, (9)

where

Rδ,αB (D̃i) = {xi ∈ Di|I ([xi]δB, D̃i) ≥ α}, 0.5 ≤ α ≤ 1, (10)

R
δ,β

B (D̃i) = {xi ∈ Di|I ([xi]δB, D̃i) > β}, 0 ≤ β < 0.5. (11)

The lower approximation of the decision system is
defined as the union of the lower approximation of each
decision class, expressed as, Rδ,αB (D) = ∪

r
i=1R

δ,α
B (D̃i).

Similarly, R
δ,β

B (D) = ∪ri=1R
δ,β

B (D̃i). R
δ,α
B (D) is also called

the variable precision fuzzy positive region, denoted by
POSδ,αB (D). Concretely, POSδ,αB (D) is a set of samples that
satisfy the threshold of inclusion degree and consistent with
classification.
Definition 5 [33]: Given a fuzzy neighborhood decision

system NDT = 〈U ,C,D〉, B ⊆ C , the variable precision
fuzzy dependency of D toconditionalattributesetB isdefined
as

γ
δ,α
B (D) =

|POSδ,αB (D)|
|U |

, (12)

γ
δ,α
B (D) reflects the proportion of samples in the

universe that can be classified accurately. Apparently, 0 ≤
γ
δ,α
B (D) ≤ 1. The larger the positive region is, the stronger

the ability of condition attributes B to describe D is.
Lemma 1 [33]: For a fuzzy neighborhood decision system

NDT = 〈U ,C,D〉, with two parameters of δ and α, if B1 ⊆
B2 ⊆ C , then we have

(1) POSδ,αB1 (D) ⊆ POSδ,αB2 (D);
(2) γ

δ,α
B1

(D) ≤ γ δ,αB2
(D).

Definition 6 [33]: Given NDT = 〈U ,C,D〉 and a fuzzy
neighborhood radius δ, B ⊆ C , if attribute subset B satisfies:

(1) γ
δ,α
B (D) = γ δ,αC (D);

(2) ∀a ∈ B, γ δ,αB−a(D) < γ
δ,α
B (D).
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Specially, we can say that B is a variable precision fuzzy
reduct.

III. VARIABLE PRECISION FUZZY NEIGHBORHOOD
ROUGH SET IN MULTI-LABEL LEARNING
A. FUZZY DECISION AND DECISION CLASSES
Variable precision fuzzy neighborhood rough set model, pro-
posed by Wang et al. [33], can describe the fuzziness of
samples under fuzzy background, and reduce the influence of
noisy data on the classification model. Although the model
can effective to deal with the uncertainty of numerical and
noise data. However, it only be used to single-label learning.
Recently, manymulti-label attribute reduction methods based
on fuzzy rough set have been presented and discussed, but
their common characteristic is that these algorithms han-
dle multi-label data by transforming multi-label data set
into single-label data set, which ignore the integrality of
label space and loses some important information. Moreover,
the calculation of fuzzy decision and decision class for
multi-label learning are somewhat complicated as each object
is related to multiple class labels simultaneously. Therefore,
considering the whole information of label space, we present
a multi-label variable precision fuzzy neighborhood rough set
method by using the large and small function to fuse the fuzzy
decision and decision class of samples inmulti-label learning.
Definition 7: Given a non-empty set of samples U =

{x1, x2, . . . , xn}, an attribute set is C , label set is L =
{l1, l2, . . . , lm}, C can induce a fuzzy similarity relation R,
and we then call MNDT =< U ,R,L > as a multi-label
fuzzy neighborhood decision system, which usually recorded
as MNDT =< U ,C ∪ L >.
Definition 8: The fuzzy similarity degree rij between

multi-label samples xi and xj relative to an attribute a can be
calculated by

rij =

{
1− |xi − xj|, |xi − xj| ≤ 1− δ,
0, |xi − xj| > 1− δ.

Here, when rij = rji and 0 ≤ rij < 1, the matrix Rδa = (rij)n×n
is a fuzzy similarity relation.
Definition 9: Given MNDT =< U ,C ∪ L >, L =
{l1, l2, . . . , lm} is label set, {L

lj
1 ,L

lj
2 , . . . ,L

lj
r } is a set of mutu-

ally exclusive decision classes generated by lj, and RC is a
fuzzy similarity relation. For ∀x ∈ U , the fuzzy decision of
sample x in decision system can be defined as

L̃i(x) = ∨mj=1
|[x]C ∩ L

lj
i |

|[x]C |
, i = 1. (13)

L̃i(x) = ∧mj=1
|[x]C ∩ L

lj
i |

|[x]C |
, i = 2, 3, . . . r . (14)

where, [x]C is obtained by RC , RC is a fuzzy similarity
matrix, and the values of rij in the matrix is calculated
by Definition 3.2. For multi-label learning, the membership
degree of each sample under different labels to each deci-
sion class is different, namely, the fuzzy decision of each
sample is also different under each label. Therefore, we take

TABLE 1. Example of multi-label data.

Eqs. (13)-(14) to fuse the fuzzy decision of samples under
each label in the decision system. Considering the integrity
of the label space, we need to redefine the decision classes of
the decision system.
Definition 10: Given MNDT =< U ,C ∪ L >, L =
{l1, l2, . . . , lm} is label set, lj generates the decision classes
{L

lj
1 ,L

lj
2 , . . . ,L

lj
r }, then the decision classes in multi-label

decision system are obtained:

Li =
m
∪
j=1

L
lj
i −Li−1 − Li−2 − · · · − L1, i = 1, 2, . . . , r . (15)

The right side of (15) expresses the difference operation
of the set from left to right according to the subtraction
operation rule, where the symbol of minus represents the
relative complement set between two sets. Such as, A − B
denotes a collection of all elements belonging to set A but
not to B, that is, the set of elements in A that are left after
removing all the elements that belong to set B. Meanwhile,
Li is a partition of the universe. We describe the process by
Example 3.1 to show the definition of fuzzy decision and
decision classes more clearly and specifically.
Example 1: Given a multi-label data in TABLE 1. There

are three labels l1, l2 and l3, B = {a1, a2, a3, a4}, and B
induces the fuzzy similarity relationRB. Here δ = 0.4, we can
obtain

RB =


1 0.55 0.45 0.77 0.46

0.55 1 0.83 0.51 0
0.45 0.83 1 0.46 0
0.77 0.51 0.46 1 0.60
0.46 0 0 0.60 1


Accordingly, the fuzzy decision and decision classes under

the labels l1, l2 and l3 are as follows:

L l11 = {x2, x3}, L l12 = {x1, x4, x5}.

L̃ l11 =
0.31
x1
+

0.63
x2
+

0.67
x3
+

0.30
x4
+

0
x5
,

L̃ l12 =
0.69
x1
+

0.37
x2
+

0.33
x3
+

0.70
x4
+

1
x5
.

L l21 = {x1}, L l22 = {x2, x3, x4, x5}.

L̃ l21 =
0.31
x1
+

0.19
x2
+

0.17
x3
+

0.23
x4
+

0.22
x5

,

L̃ l22 =
0.69
x1
+

0.81
x2
+

0.83
x3
+

0.77
x4
+

0.78
x5

.

L l31 = {x2}, L l32 = {x1, x3, x4, x5}.

L̃ l31 =
0.17
x1
+

0.35
x2
+

0.30
x3
+

0.15
x4
+

0
x5
,

L̃ l32 =
0.83
x1
+

0.65
x2
+

0.70
x3
+

0.85
x4
+

1
x5
.
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Then, that’s from (13)-(14), the fuzzy decision of the entire
label space can be given as follows:

L̃1 = L̃ l11 ∨ L̃
l2
1 ∨ L̃

l3
1 =

0.31
x1
+
0.63
x2
+
0.67
x3
+
0.30
x4
+
0.22
x5

,

L̃2 = L̃ l12 ∧ L̃
l2
2 ∧ L̃

l3
2 =

0.69
x1
+
0.37
x2
+
0.33
x3
+
0.70
x4
+
0.78
x5

.

By above knowable, ∀x ∈ U , L̃1(x) + L̃2(x) = 1, then,
{̃L1, L̃2} is a fuzzy partition on U .
From the matrix, we can get the decision classes of

multi-label decision system:

L1 =
3
∪
j=1

L
lj
1 = L l11 ∪ L

l2
1 ∪ L

l3
1 = {x1, x2, x3},

L2 =
3
∪
j=1

L
lj
2 − L1 = L l12 ∪ L

l2
2 ∪ L

l3
2 − L1 = {x4, x5}.

B. MULTI-LABEL VARIABLE PRECISION FUZZY
NEIGHBORHOOD ROUGH SET MODEL
According to the above definition of fuzzy decision and
decision classes, we can construct the multi-label variable
precision fuzzy neighborhood rough set model, and we define
its approximation space as follows.
Definition 11: Given a multi–label fuzzy neighborhood

decision system MNDT =< U ,C ∪ L >, the label set is
L = {l1, l2, . . . , lm}, and the radius of fuzzy neighborhood is
δ, B ⊆ C , RB is a fuzzy similarity relation on U induced by
B. Then the lower and upper approximations are defined as

Rδ,αB (L) = {Rδ,αB (L̃1),R
δ,α
B (L̃2) . . .R

δ,α
B (L̃r )}, (16)

R
δ,β

B (L) = {R
δ,β

B (L̃1),R
δ,β

B (L̃2) . . .R
δ,β

B (L̃r )}, (17)

where

Rδ,αB (L̃i) = {xi ∈ Li|I ([xi]δB, L̃i) ≥ α}, 0.5 ≤ α ≤ 1, (18)

R
δ,β

B (L̃i) = {xi ∈ Li|I ([xi]δB, L̃i) > β}, 0 ≤ β < 0.5. (19)

According toDefinition 11, we can define the corresponding
multi-label fuzzy positive region.

POSδ,αB (L) = Rδ,αB (L) =
r
∪
i=1

Rδ,αB (L̃i). (20)

POSδ,αB (L) is the subset of samples whose fuzzy decision
satisfying inclusion degree threshold. The greater the positive
region is, the greater the characterizing power of attribute has.
For classification learning, we always try to find a minimal
attributes subset which makes the classification algorithm
have the highest performance. Based on (20), the dependency
function is computed as

γ
δ,α
B (L) =

|POSδ,αB (L)|
|U |

. (21)

Eq. (21) indicates that the dependency degree of L with
respect to B is a positive real number, that is, γ δ,αB (L) ∈ [0, 1],
and γ δ,αB (L) characterizes the approximation power of B to L.
If γ δ,αB (L) = 1, label set L is completely dependent on B;

Otherwise, label set L depends on γ δ,αB (L), that is, partial
samples can be classified consistently.
Theorem 1: Given MNDT =< U ,C ∪ L >, for two

parameters of δ and α, if B1 ⊆ B2 ⊆ C , then
(1) POSδ,αB1 (L) ⊆ POSδ,αB2 (L);
(2) γ

δ,α
B1

(L) ≤ γ δ,αB2
(L).

Proof: Since B1 ⊆ B2, according to definition 1,
we have ∀x, y ∈ U , RB2 (x, y) ≤ RB1 (x, y). As the defini-
tion of the fuzzy neighborhood granule, we have ∀x ∈ U ,
[x]δB2 ⊆ [x]δB1 . Based on Eq.(18), Rδ,αB1 (L̃i) ⊆ Rδ,αB2 (L̃i) holds.
Then, POSδ,αB1 (L) ⊆ POSδ,αB2 (L). Obviously, according to
Theorem 3.1 (1) and Eq. (21), formula (2) holds.

Theorem 1 indicates that the multi-label fuzzy positive
region and fuzzy dependency function are consistent with the
monotonicity of attributes subset size. This property is par-
ticularly important for constructing a forward reduction algo-
rithm since it can ensure that adding any candidate attribute
to an existing attribute subset that does not reduce the fuzzy
dependency of a new subset. Then, the definition of variable
precision multi-label fuzzy reduct can be given.
Definition 12: Given MNDT =< U ,C ∪ L > and the

neighborhood radius δ, B ⊆ C , we can say attribute subset B
is variable precision multi-label fuzzy reduct if

(1) γ
δ,α
B (L) = γ δ,αC (L);

(2) ∀a ∈ B, γ δ,αB−a(L) < γ
δ,α
B (L).

The definition indicates that the reduction set has the same
or similar approximate ability as the whole attribute set. From
definition 12, we can present the following definition of
attribute significance.
Definition 13: Given MNDT =< U ,C ∪ L >, the label

set is L = {l1, l2, . . . , lm}, for any a ∈ C−B, the significance
of attribute a with respect to L can be given by

sig(a,B,L) = γ δ,αB∪a(L)− γ
δ,α
B (L). (22)

Eq. (22) shows the importance of an attribute awith respect
to conditional attributes B, and it can be measured by the
dependency change caused by adding a to B. If an attribute a
is added to attributes subset B, the dependency of decision
attribute on B does not change, that is, sig(a,B,L) = 0,
it means that a can be removed from B, (i.e., attribute a is
redundant).

C. MULTI-LABEL ATTRIBUTE REDUCTION ALGORITHM
According to formulas (13)-(22), we can construct a heuristic
algorithm for multi-label attribute reduction, which is called
multi-label attribute reduction algorithm based on variable
precision fuzzy neighborhood rough set. The greedy search
strategy is adopted in the algorithm of FNRS-ML, which
starts with an empty set and one attribute is added to each
step to maximize the discrimination ability until the degree
of dependency is invariant.

In Algorithm 1, the algorithm terminates when any remain-
ing attributes are added to the existing attribute set without
increasing the multi-label fuzzy dependency γ δred∪ai (L). The
time complexity for calculating a fuzzy similarity relation

VOLUME 8, 2020 133569



P. Chen et al.: Multi-Label Attribute Reduction Based on Variable Precision FNRS

Algorithm 1 Multi-Label Attributes Reduction
Algorithm Based on Variable Precision Fuzzy Neighborhood
Rough Set(FNRS-ML)
Input: U : sample set; C : attribute set; L: label space; δ: the
neighborhood radius; α: the parameter of inclusion degree.
Output: one reduct.

1: red ←− ∅
2: for each ai ∈ C − red do
3: compute the fuzzy similarity relation Rδred∪ai;
4: for each l ∈ L do
5: compute the fuzzy decision L̃i and decision classes

L1,L2, . . . ,Lr ;
6: end for
7: compute γ δ,αred∪ai (L);
8: compute sig(ai,B,L) = γ

δ,α
red∪ai (L)− γ

δ,α
red (L);

9: end for
10: find attribute ak with maximum values sig(ak ,B,L);
11: if sig(ak ,B,L) > 0 then
12: red ← red ∪ ak ;
13: else
14: return red ;
15: end if
16: return red ;

is O( 12 |U |
2), and the worst time complexity for searching a

reduct is O(|C|2). Overall, the computational complexity of
Algorithm 1 is O( 12 |U |

2
× |C| × |L| + |C|2).

IV. EXPERIMENTS
A. DATASETS
We select nine benchmark multi-label datasets as our testbeds
to test the proposed method FNRS-ML, and all datasets
are from different application fields [1], [31]. Among these
datasets, Arts, Recreation, Society, Entertainment and Sci-
ence are extensively used to Web page text categorization.
Cal500 is a content-based music annotation and retrieval
research data, which consists of 500 Western popular music
tracks. Flags is a image processing and classification data,
including 194 image instances and 7 labels. Emotions is
a benchmark for music, containing 593 music objects and
each of which belongs to at least one of 6 labels. Yeast is
applied to predict gene functional classes, which contains
2417 instances where each instance indicates a yeast gene and
14 feasible labels. TABLE 2 shows the detailed presentation
information of these datasets.

B. EXPERIMENT SETTINGS
In this subsection, we compare the experimental results with
six advanced multi-label attribute reduction methods, includ-
ing MDDMspc [45], MDDMproj [45], RF-ML [25], PMU
[13], MLNB [47], and RMFRS [21]. For MDDMspc and
MDDMproj, µ is set as 0.5 as recommended in the literature
[45]. For PMU, we use an equal-width strategy to discretize
continuous attributes to two bins, while categorical attributes

TABLE 2. Description of multi-label datasets.

maintained unchanged, as suggested in [13]. For MLNB,
the threshold parameters smooth and ratio are set as 1 and
0.3 [47]. For RMFRS, the weight parameter β andµ are set as
0.9 and 0.1 [21]. For our proposed FNRS-ML, there are two
important thresholds δ and α. The parameter δ is regarded
as the fuzzy neighborhood radius, and α is the threshold of
inclusion degree. In this paper, we set δ = 0.1, the threshold
α is set to 0.7, 0.8, 0.85, and 0.95 for the datasets from differ-
ent fields containing Web page categorization, Gene, Image
processing, and Music, respectively. The inclusion degree of
upper approximation satisfies 0 ≤ β < 0.5. Meanwhile,
ML-KNN (K = 10) [48] is used to evaluate the classi-
fication performance of all multi-label attribute reduction
methods. Ultimately, we choose Average Precision, Ranking
Loss,Hamming Loss andOne-error to estimate the predictive
performance of these multi-label attribute reduction methods.
As we know, the four criteria make the performance compar-
ison from different aspects, and normally a few of algorithms
are superior to other algorithms on all these criteria.

C. EXPERIMENTAL RESULTS
1) EVALUATION OF PREDICTIVE PERFORMANCE
We compare FNRS-ML with MDDMspc, MDDMproj,
RF-ML, PMU, MLNB, and RMFRS in terms of predic-
tive classification performance to testify its effectiveness.
In which, MDDMspc, MDDMproj, RF-ML, PMU, and
RMFRS can obtain the attribute ranking, while MLNB and
FNRS-ML get the attribute subset directly. In this algorithm,
we choose the same number of attributes with the quantity
determined by FNRS-ML as the final attribute subset for
the comparability of the results. TABLES 3-6 list the exper-
imental results of seven attribute reduction algorithms on
four evaluation criteria. For given evaluation criteria, ‘‘ ↓′′

means that ‘‘the smaller the better’’ and ‘‘ ↑′′ means that
‘‘the larger the better’’. In these results, bold font indicates
the best classification performance for each dataset, and italic
represents the average classification performance of every
algorithm.

As the experimental results are exhibited in TABLES 3-6,
it can be found that: (1) FNRS-ML achieves superior per-
formance with Average Precision on seven datasets. (2) For
Ranking Loss and Hamming Loss, FNRS-ML outperforms
all comparing algorithms at least on six datasets, and there
is not great difference between FNRS-ML and the optimum
value on the other datasets. (3) For One-error, FNRS-ML
obtains the best classification performance on all datasets
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TABLE 3. Performance comparison of different algorithms on Average precision (↑).

TABLE 4. Performance comparison of different algorithms on Ranking Loss (↓).

TABLE 5. Performance comparison of different algorithms on Hamming Loss (↓).

TABLE 6. Performance comparison of different algorithms on one-error (↓).

except for Arts on RMFRS. (4) In addition, FNRS-ML
acquires better than these comparison algorithms over all
evaluation metrics with respect to average classification per-
formance. In short, the experimental results of performance
comparison demonstrate that FNRS-ML tends to work better
than other baselines.

To sufficiently testify the authenticity and reliability of the
predictive performance of those seven multi-label attribute
reduction algorithms, we carry out several experiments to
illustrate the change tendency of predictive classification
performance with different number of selected attributes.

In this study, we select three multi-label datasets, i.e., Society,
Entertainment, and Science to show the change tendency on
four evaluation metrics as shown in FIGS. 1-3. In which,
the horizontal axis denotes the number of selected attributes,
and the vertical axis represents the predictive classification
performance of different metrics. Additionally, seven lines in
each figure stand for seven comparison algorithms.

From FIGS. 1-3, we can observe that: (1) The lines in each
figure are not monotonous. (2) Regardless of the trend of the
curve, FNRS-ML can get the best classification performance
as the number of selected attributes increases. It should be
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FIGURE 1. Society.

FIGURE 2. Entertainment.

noted that FNRS-ML will achieve better classification per-
formance with a certain number of attributes, and it accords
with the actual situation.

2) STATISTICAL TEST
To systematically discuss the comparative algorithms in
statistical sense, we carry out a nonparametric Friedman test
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FIGURE 3. Science.

TABLE 7. Sum up the Friedman statistics FF (k = 7,N = 9) on the basis of
different metrics and the critical value.

[5] and use it to compare multiple datasets. Suppose there
are k comparison algorithms and N datasets. The average
rank of the j-th algorithm among all multi-label datasets is
expressed as Ri = 1

N

∑N
i=1 r

j
i , where rij be the rank of the j-th

algorithm on i-th dataset. The Friedman statistic FF follows
the F-distribution with (k − 1) and (k − 1)(N − 1) degrees of
freedom under the null-hypothesis, and it is defined as:

FF =
(N − 1)χ2

F

N (k − 1)− χ2
F

, (23)

where

χ2
F =

12N
k(k + 1)

(
k∑
i=1

R2i −
k(k + 1)2

4
).

The Friedman statistic FF and the corresponding critical
value are summed up in TABLE 7.Moreover, the null hypoth-
esis is that all algorithms are executed equally, is explicitly
rejected at the significance level α = 0.10. As we mainly
aim at the performance difference between the proposed
FNRS-ML algorithm with the other seven comparison algo-
rithms, we use Bonferroni-Dunn test [2] to set FNRS-ML

as the control algorithm. It is considered that there is a sig-
nificant difference if the average rank between the control
algorithm and one comparison algorithms is greater than the
critical value (CD):

CDα = qα

√
k(k + 1)

6N
. (24)

Here, for the Bonferroni-Dunn test, we have qα = 2.394
at significance level α = 0.10, and thus CD = 2.4379
(k = 7,N = 9).
To display the relative performance of FNRS-ML and other

comparison algorithms more intuitively, FIG. 4 illustrates
the CD diagrams on different evaluation metrics. In every
subfigure, the average rank of each comparison algorithm is
drawn along the axis from high to low, and the rightmost
algorithm is considered as the best one. The thick lines of
connection between the control algorithm and the comparison
algorithm indicates that the two algorithms have not apparent
difference.

According to the results shown in FIG. 4, we can
come to conclusion: (1) FNRS-ML is significantly better
than MDDMspc, MDDMproj, and PMU over all evalua-
tion metrics. (2) FNRS-ML performs comparable perfor-
mance against MLNB in Average Precision, Hamming Loss,
and One-error. (3) FNRS-ML remarkably outperforms other
four algorithms in terms of Ranking Loss and Hamming
Loss. To summarize, FNRS-ML achieves highly competitive
performance comparing to the other several state-of-the-art
multi-label attribute reduction algorithms.
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FIGURE 4. Performance comparison on terms of four evaluation criteria.

FIGURE 5. The classification accuracy varying with δ and α of Flags.

FIGURE 6. The classification accuracy varying with δ and α of Emotions.

3) THE INFLUENCE OF PARAMETER α AND δ

To observe the influence of parameter α and δ on
classification performance, we display the figures about

classification accuracy varying with parameter α and δ of the
datasets in FIGS. 5-6. From FIGS. 5-6, different color areas
represent different classification accuracy.We can see that the
two datasets obtain higher accuracy in a large area, especially
when δ is 0.1. That is, when δ is 0.1, the α of these two
datasets is 0.85 and 0.95 respectively, the classification per-
formance reaches the highest value. Thus, FNRS-MLmethod
is of stability and feasibility.

V. CONCLUSION AND FUTURE WORKS
In this paper, we have proposed a multi-label attribute
reduction algorithm based on variable precision fuzzy neigh-
borhood rough set. The algorithm effectively removes redun-
dant attributes, and solves the restriction problem of data
type in general multi-label attribute reduction. Meanwhile,
the variable precision model averts the influence of the strict-
ness of fuzzy neighborhood rough set on the calculation of
upper and lower approximations. The experiment has shown
that, FNRS-ML obtains highly classification performance
comparing with other state-of-the-art multi-label algorithms.
In the future, our works will research on how to design other
multi-label attribute reduction methods based on variable
precision model by considering the label correlations and
how to automatically set the neighborhood size for each
dataset.
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