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ABSTRACT Path tracing is a commonly used but computationally highly expensive stochastic ray tracing
method for rendering photorealistic visual content. Combined with a real-time constraint, for example in
stereoscopic virtual/augmented reality applications, it typically limits us to rendering at most a few samples
per pixel, yielding very noisy results. However, the spatial and temporal redundancies are commonly utilized
by reprojecting existing samples between different viewpoints and frames, thus cheaply improving the
quality. We provide new insights to the quality benefits of reprojection by systematically evaluating the
effective quality of spatiotemporally reprojected stereoscopic path traced data. We show that spatiotemporal
reprojection increases the quality of 1 sample per pixel (spp) data by almost a factor of 25 on average,
in terms of the effective spp count of the result. Since we are able to reproject 94-98% of the samples, only
the remaining 2—6% of the samples in the target frame need to be path traced. We also evaluate how the
quality improvement gained through spatiotemporal reprojection scales as the number of input samples per
pixel increases, showing that the highest gains are achieved at the lowest input spp counts. Finally, we show
how blending existing path traced data and stereoscopically reprojected data further improves the quality of

spatiotemporal reprojection, on average yielding a 47% higher effective spp than without blending.

INDEX TERMS Computer graphics, path tracing, ray tracing, real-time rendering, stereoscopic.

I. INTRODUCTION
Ray tracing is a rendering technique that simulates how light
travels and interacts with objects in the real world. In the
past decade, ray tracing has gained a major increase in main-
stream popularity, first driven by offline applications in the
motion picture industry, and then followed by the real-time
applications in the gaming industry and the domains of vir-
tual and augmented reality (VR/AR). This development has
been possible due to recent advances in both hardware and
rendering software, making it feasible to render photorealistic
scenes with reasonable computational resources, and within
a reasonable amount of time.

Nevertheless, modern flavours of ray tracing, most com-
monly path tracing, typically rely on stochastic procedures
to approximate the global illumination, in other words the
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integral rendering equation [1]. This approach implies a
tradeoff between rendering time and rendering quality. For
instance, path tracing typically requires tracing thousands of
samples per pixel (spp) in order to reduce the approxima-
tion error, i.e., the noise, to an imperceptible level; even at
1024 spp, there still tends to be a small amount of visible
noise [2]. Even with modern consumer hardware that pro-
vides hardware acceleration for ray tracing, in high-resolution
real-time applications we are limited to tracing only a few
samples per pixel. Hence, the rendered raw pixels are very
noisy and must go through a series of post-processing steps
in order to attain visually acceptable quality. Evaluating this
quality improvement in a rigorous manner is also an interest-
ing question on its own, and it is the focus of this paper.
VR/AR applications also commonly impose an additional
challenge: for a stereoscopic view, a separate viewpoint is
rendered for each eye, thus intuitively doubling the amount
of pixels to be rendered. By extension, even more data are
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needed for more complex multi-view applications. However,
these views are generally partially overlapping, which means
there is significant redundancy between the different view-
points. Moreover, in both synthetically created and naturally
captured imagery, such redundancy is commonly found even
within a single viewpoint (spatial self-similarity), and espe-
cially between successive frames as the camera or the objects
move (temporal coherence).

A common computationally inexpensive post-processing
step that takes advantage of this redundancy is known as
reprojection. It means we use already rendered samples and
reproject them into new locations based on the known camera
movement and possibly other auxiliary data, such as the depth
map and shading normals of the scene; in the case of a
synthetic scene, these are usually readily available and noise-
free. The reprojection can be done both spatially, i.e., from
one viewpoint to another at the same time instant, and tem-
porally, i.e., from previous frame(s) to the next. Reprojection
not only reduces the amount of data that need to be ray traced,
but it also acts as a simple denoising filter.

Even though reprojection is commonly used, and typically
justified through its computational savings, its quality bene-
fits are often overlooked and not rigorously quantified. Espe-
cially in real-time path tracing, where the data are very noisy,
it is important to understand how reprojection affects the
quality of the data. We provide a systematic quality evaluation
through the effective sample per pixel count of the reprojected
data. In other words, we evaluate how many samples per pixel
would need to be path traced so that the error is equal to
that of the reprojected frame. To the best of our knowledge,
no systematic quality evaluations have been conducted with
this metric before us.

This work is a continuation of our preliminary work on
evaluating the quality benefits of spatiotemporal reprojec-
tion [3] for path traced 1 spp input data. In this paper, we pro-
vide more comprehensive results, evaluate how the quality
of reprojected data scales with higher than 1 spp inputs, and
consider also stereoscopic blending of existing path traced
data and reprojected data.

The rest of the paper is organized as follows: Section II
introduces the basics of temporal reprojection and stereo
reprojection, and discusses related work. Section III focuses
on how reprojection improves the quality of noisy data, and
on how we measure the quality improvement objectively.
Section IV systematically evaluates the quality improvement
in various scenarios in terms of the effective spp of the
result, for stereo and temporal reprojection both separately
and combined. Finally, Section V presents our conclusions.

Il. BACKGROUND AND RELATED WORK

A. TEMPORAL REPROJECTION

The concept of temporal coherence, that the contents of
successive frames do not usually change significantly, can
be traced back to at least the early 1970s, when it was
discussed in conjunction with visibility determination [4].
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The following decade saw several breakthroughs in the field
of ray tracing, with seminal works about recursive ray trac-
ing [5], distributed effects such as motion blur and depth
of field [6], and Monte Carlo style stochastic ray tracing
(path tracing) that computes global illumination through the
rendering equation [1]. Soon after, an algorithm for using
temporal coherence to accelerate ray tracing for motion pic-
ture production was introduced in [7]. Specifically, it gathered
object space information from the previous frame and then
estimated where the objects would be in the current frame,
thus performing forward sample reprojection. This resulted
in having to trace less than 40% of the pixels in the current
frame. The forward reprojection approach was generalized
in [8], where it was reported to yield up to 92% savings in
rendering time.

In [9], a render cache was introduced, which enabled
interactive ray tracing for low resolutions (about 8 frames
per second for a 320 x 320 resolution). It builds an accel-
eration structure by caching previously rendered samples,
storing their colours and also the 3D data and shading infor-
mation. That allowed for various heuristics to be used when
reprojecting the samples onto the new frame, such as com-
paring the depth data and colour contrast for detecting holes,
disocclusions, and other artifacts [10]. Whereas the original
render cache still used forward reprojection, its concept of
storing the earlier data paved way for a backward reprojec-
tion cache (also known as reverse reprojection), introduced
independently in [11] and [12].

Backward reprojection works by starting from the current
frame to be rendered instead of an earlier frame, and for
each pixel in the current frame determining its location in the
earlier frame. If the pixel was visible in the earlier frame and
thus was stored in the cache, it can potentially be reprojected
onto the current frame. Various heuristics can also be used
here in deciding whether to ultimately reproject the found
pixel or not, for instance based on the depth values or surface
normals. Even though this backward mapping simplifies the
reprojection, it does bring additional requirements in terms of
storing and handling past data in memory.

Nowadays reprojection is used by modern real-time path
tracing reconstruction filters [13]-[16], in order to generate
a better quality input before the actual denoising or recon-
struction filter. Moreover, reprojection is used extensively
in rasterized game graphics. One of the most commonly
used reprojection methods is called Temporal Anti-Aliasing
(TAA) [17], which generates an anti-aliased image without
extra spatial samples. Instead, the temporal samples are repro-
jected and used for smoothing the edges in the image. With
TAA, the camera is typically sub-pixel jittered with a Halton
sequence for achieving the same smoothing effect even with
a static camera. For more details on TAA, we refer to the
recent survey [18]. However, note that TAA can introduce
an excessive amount of blur. This can be mitigated through,
e.g., a combination of reprojection and superresolution bit-
masks, achieving temporal stability while maintaining sharp
features [19].
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For further details and history about temporal coherence
and reprojection, as well as for reviewing a multitude of
other ways of accelerating ray tracing to an interactive/real-
time level, we refer the reader to [10] and [20]. Reconstruc-
tion algorithms for Monte Carlo rendering are also surveyed
in [21].

B. STEREO REPROJECTION

In stereo reprojection, we reproject samples from one spatial
viewpoint to another at the same time instant. In the standard
stereoscopic case, the eyes can be thought of as two distinct
cameras that are separated by approximately 6.5 centimeters
(the eye separation of an average human), and we reproject
samples from one camera’s viewpoint to the other.

There are two well-established methods for setting up
stereoscopic cameras: a parallel or sensor-shift camera setup,
where the two virtual cameras are translated only horizon-
tally, and a converged or toe-in camera setup, which addi-
tionally introduces a slight inward rotation for convergence.
Converged camera setups have been shown to produce visual
distortions such as keystoning [22], and thus parallel stereo-
scopic cameras are preferred for viewing comfort [23].

Stereo reprojection can be thought of as a special case
of temporal reprojection [24]. Specifically, if there is only
camera movement and the scene remains otherwise static,
there is no fundamental difference on whether the camera
movement is interpreted as a change in viewpoint spatially
or temporally.

An early example of stereo reprojection [25] built on the
work of [7] and combined it with a calculation of stereo
disparity information in order to do the reprojection. With
their method, between 20% and 50% of the pixels in the target
frame needed to be ray traced after reprojection. A more
optimized method [24] made a simplifying observation that
they could only reproject the x-coordinates of the samples,
based on an assumption that the observer’s eyes are level
(i.e., their head is not tilted). They obtain an estimate of 93%
reduction in the amount of rays that need to be traced for
the second eye, albeit they do not address all problems related
to the disparity between the two views [26].

A more general approach that does not assume horizontally
level eyes, introduced in [26], leveraged coherence in the
epipolar geometry of a stereo image pair, subdividing the
space with epipolar planes; their algorithm ran in 30-50% of
the time of their comparison algorithm.

Reprojection based methods can also support animated
rigid objects [27]. If there is a way to compute the screen
space motion vector for an animated object, it can be both
forward and backward reprojected. The motion vectors can
be computed for common rigid body animations such as
translation, rotation and scaling.

With the modern rise in popularity of 3D content, stereo-
scopic ray tracing and reprojection algorithms have also
evolved to cover more general multi-view rendering; see,
e.g., [28], [29] and the references therein. However, as even
monoscopic real-time ray tracing is only now becoming
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tractable, enabling high quality stereoscopic real-time ray
tracing remains a challenge for the near future. The recent
NVIDIA Turing architecture offers hardware acceleration for
rendering up to four views in a single render pass, allow-
ing discrepancy between the eyes also in the y-coordinate,
whereas the acceleration introduced in their earlier Pascal
architecture only supported two views (implying a narrower
field of view) and discrepancy only in the x-coordinate,
assuming horizontally level eyes [30]. However, its poten-
tial in combination with their ray tracing hardware is not
detailed.

As seen above, the advantage of sample reprojection is
typically expressed in terms of saved rendering time or the
amount of skipped rays. However, especially in path tracing
where the error is progressively reduced by aggregating noisy
samples, it is also important to understand how reprojection
affects the quality of the final result. Hence, this paper focuses
on systematically evaluating the advantages of reprojection in
terms of quality.

lIl. EVALUATING THE QUALITY BENEFITS OF
REPROJECTION

Sample reprojection is particularly relevant for real-time path
tracing because of the strict time budget available for render-
ing each frame. Applying reprojection and temporal accumu-
lation is roughly an order of magnitude faster than real-time
path tracing [13], [31], so it is a cheap way to increase the
quality of the rendered result without heavy computational
overhead.

Even though the overlap between adjacent viewpoints is
usually significant, not all pixels can necessarily be repro-
jected from one viewpoint to another. This is typically
due to occlusions, non-diffuse shading, and the general
non-bijective nature of the reprojection mapping (i.e., many
pixels may map onto a single pixel in another viewpoint,
and some pixels may not have any pixel mapped to them
from another viewpoint) [9]. The backward reprojection
approach can be used to mitigate the problems caused by non-
bijectivity.

As we observed in [3], it is useful to evaluate the quality in
terms of the effective sample per pixel count, i.e., how many
path traced samples would be needed in order to attain an
error equal to that of the reprojected frame. This approach is
rarely used, perhaps due to the fact that real-time path trac-
ing has only recently become practically feasible; in offline
scenarios, there is not such a stringent need to compromise
the quality in favour of speed, even if reprojection is used to
accelerate the rendering.

In practice, these errors can be computed for example
through the root mean square error (RMSE), or the structural
similarity index (SSIM) [32], between a noisy frame and the
corresponding noise-free reference frame path traced with
4096 spp. Other error metrics can also be used, assuming the
obtained error value decreases monotonically as the number
of input samples per pixel increases; otherwise, the definition
of the effective spp would be ambiguous.
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If reprojection is done from a path traced viewpoint onto a
target viewpoint with no existing samples (e.g., from the right
eye to the left), we need to path trace only the missing pixels
in the target viewpoint where reprojected data could not be
utilized. On the other hand, we may have path traced data in
both viewpoints, on top of which we blend reprojected data
with a chosen ratio. In the latter case, we can also simulta-
neously cross-reproject samples from each viewpoint to the
other without introducing excessive blur; in the former case,
first reprojecting one way and then re-reprojecting back to the
original viewpoint would apply two separate blurring kernels
on the same data. Note that the blurring occurs because the
reprojection generally results in fractional pixel locations,
so resampling is required. The resampling is typically done
via bilinear or bicubic filtering [18]. Nevertheless, a reason-
able amount of blur is still advantageous, as it acts as a simple
denoising filter and usually improves the quality of the result,
as we see in Section I'V.

In temporal reprojection, samples are commonly accumu-
lated for temporal stability. The accumulated samples are
reprojected onto the new frame, and then blended with new
samples according to some blending factor «. The common
approach of using a constant ¢« results in an exponential
smoothing filter, also known as exponential moving average,
assigning progressively lower weights to the older samples
that get less relevant [18].

IV. EXPERIMENTS AND RESULTS

A. EXPERIMENTAL SETUP

In our experiments, we consider both stereoscopic scenar-
ios outlined in Section III. Specifically, in Section IV-B,
we reproject n spp pixels spatially from a path traced right-eye
viewpoint into the empty left-eye viewpoint, hence no stereo
blending. In Section IV-C, we spatially cross-reproject n
spp path traced pixels between each eye’s viewpoint and
blend the reprojected data with the existing path traced n
spp data with a 50-50 ratio, i.e., the reprojected and path
traced data will be combined with equal weights.

In both cases, we also apply TAA-style temporal repro-
jection (without sub-pixel jittering), accumulating the pixels
using the exponential moving average with a constant blend-
ing factor « = 0.2, In other words, we weigh the existing
accumulated data with a factor of 0.8, and combine them
with the newest reprojected frame with a weight factor of 0.2.
We chose the value « = 0.2, as it has been shown to yield
good results in, e.g., [15] and [13].

Both spatial and temporal reprojection are done with the
backward reprojection approach explained in Section II,
using bilinear interpolation between the four samples closest
to the fractional reprojected pixel location; this is further
illustrated in Fig. 1. We discard the reprojected sample if
the difference in the depths, 3D world positions or shading
normal values between the source and the target location is
deemed too large, or if the reprojection location goes out
of the frame and data are thus not available. The limits of
acceptable differences are set manually based on the scale of
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Source view frame Target view frame

Camera
movement

FIGURE 1. Backward reprojection with bilinear interpolation. The camera
movement can be in space (stereo reprojection) or in time (temporal
reprojection).

each test scene. The samples missing due to the discarding
process are then finally path traced according to the input
spp 1.

The quality of the reprojected data is evaluated in terms of
the effective spp as explained in Section III, through the SSIM
error metric. For the error value obtained for each frame,
we find the purely path traced m and m + 1 spp compari-
son frames, between whose corresponding error values the
obtained error lies, and interpolate the effective spp based
on that. In particular, we compute the SSIM over the RGB
image as a 3D volume. SSIM can also be computed over
the luminance channel of the image, but with the latter we
observed nonmonotonic behaviour in certain cases, leading
to ambiguities in computing the effective spp, as explained in
Section III. In well-defined cases, the results obtained with
both flavours of SSIM are generally comparable.

We evaluate the effective spp in order to quantify the
improved quality gained through spatial reprojection, tem-
poral reprojection, and the combination of the two. More-
over, we investigate how this quality improvement scales
with respect to the quality of the original input. More
specifically, we conduct the experiments for path traced
input data having n = 1,2,4,8,16,32,...,512 spp in
the source viewpoint(s), with a particular focus on n =
1,2,4,8,16,32 spp. The latter range covers the input
spp counts that can be currently path traced in real
time for modern high-resolution applications, and also
anticipates what is likely to be achievable in the near
future with the next generations of real-time rendering
hardware.

Our test scenes are created using the Sponza, Living Room,
Classroom, and San Miguel scenes. We render versions of
them with all-diffuse materials, all-glossy materials, a mix-
ture of diffuse and reflective materials, and moving light
sources. Each rendered stereoscopic scene has 60 frames path
traced with a 1280 x 720 resolution for each eye, and a
moving observer (i.e., moving camera). Fig. 2 shows example
4096 spp reference frames of the test scenes.

Finally, we note that in path tracing each sample, we always
trace one primary ray, one secondary ray, and two shadow
rays; this is a realistic amount of data to be traced in real time.
Even when reprojecting into an empty viewpoint, we still
assume we have access to the G-buffers (depths, world posi-
tions, and shading normals) for both viewpoints, in order to
determine when reprojected data should be discarded. This
assumption is reasonable, as rendering these auxiliary buffers
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B

(b) Living Room

(f) Living Room (Glossy)

(e) Sponza (Glossy)

- 4 U

=la

(g) Classroom (Glossy) (h) Classroom (Mirror)

FIGURE 2. 4096 spp references of the scenes used in the experiments. Scenes (a) and (b) are also used as a base for Sponza (Moving Light) and Living
Room (Moving Light), respectively. In (h), the diffuse notice board of (c) has been replaced with a mirror.

is computationally inexpensive compared to actually path
tracing the samples.

B. REPROJECTION WITHOUT STEREO BLENDING

Here we consider the scenario where the source viewpoint
(right eye) is fully path traced, and the target viewpoint
(left eye) does not yet contain any data. Then we apply
backward sample reprojection for each pixel in the target
viewpoint.

When evaluating the combined effect of spatial and tem-
poral reprojection, we first apply temporal reprojection to
the right eye, after which the stereo reprojection is done from
the right eye to the left eye. Then, the missing samples in the
left eye are path traced, and the resulting left-eye quality is
evaluated. We assume temporal accumulation is also done for
the left-eye data.

1) EFFECTIVE SPP AND ITS SCALABILITY

Tables 1-3 present the effective reprojected spp counts for
n = 1,2,4,8,16,32 spp input data after stereo reprojec-
tion, temporal reprojection, and spatiotemporal reprojection,
respectively. Each average is taken over the last 50 frames in
the scene, and the standard deviation of the effective frame-
wise spp counts is also presented. In addition, the effective
spp averaged across all scenes is reported, along with its
standard deviation.

Note that the first 10 frames are omitted while computing
the averages and standard deviations, as they are not represen-
tative of the overall long-term quality. More specifically, with
the chosen temporal blending ratio, it takes about 5—10 frames
until enough data have been accumulated in order to stabilize
the quality; such initial frames can typically be hidden from
the user in practical applications. Fig. 3 demonstrates this
behaviour through an example of the framewise SSIM error
values, for the 1 spp input Classroom (Mirror) scene.

As can be seen from Table 1, stereo reprojecting 1 spp data
into an empty viewpoint yields an effective 1.69 spp quality
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~Stereo reprojection of 1 spp
~Temporal reprojection of 1 spp

0.9 ~Spatiotemporal reprojection of 1 spp
20 spp

0 10 20 30 40 50 60
Frame

FIGURE 3. Classroom (Mirror) scene: Framewise SSIM values of the
reprojected 1 spp frames (without stereo blending), and of comparison
data having 1 spp, 2 spp, 8 spp, 14 spp, and 20 spp.

in the target eye, averaged across all scenes. In other words,
the denoising happening through bilinear interpolation in
the reprojection increases the quality of the 1 spp data by
an additional 69%. Moreover, the quality is stable across
individual frames and across all scenes; the variations are
relatively minor.

As for higher-spp inputs, the average effective spp is
3.19 spp for 2 spp input, 6.19 spp for 4 spp input, 12.12 spp for
8 spp input, 23.71 spp for 16 spp input, and 46.03 spp for
32 spp input. Overall, the quality of the result scales almost
linearly over the 1-32 spp input range, as is further illus-
trated in Fig. 4. However, with the figure showing the full
1-512 spp input range, we also see that the gains for most of
the test scenes diminish as the input spp count increases to
the order of hundreds, sometimes even resulting in a worse
effective spp than the input spp. This can be explained by
the bilinear interpolation beginning to be a dominating factor
instead of the path tracing noise, causing excessive blur to the
already reasonably low-noise input image. These cases are
visible in the figure as data points below the ““equal quality”
line.
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TABLE 1. Effective spp after stereo reprojection only (without stereo blending), as measured by SSIM. The average spp for each scene is taken over

50 frames, with the respective standard deviation also shown.

TABLE 2. Effective spp after temporal reprojection only (without stereo blending), as measured by SSIM. The average spp for each scene is taken over
50 frames, with the respective standard deviation also shown.

1 spp 2 spp 4 spp 8 spp 16 spp 32 spp

Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std
Sponza 1.69 | 0.02 | 3.21 | 0.07 | 6.14 | 0.I5 1195 [ 036 | 23.38 | 0.85 | 45.19 | 1.90
Sponza (Glossy) 1.73 | 0.03 | 332 | 0.08 | 642 | 022 | 12.72 | 0.59 | 2522 | 1.26 | 49.54 | 2.55
Sponza (Moving Light) 1.68 | 0.03 | 3.20 | 0.11 6.17 | 026 | 12.09 | 0.54 | 23.71 | 1.22 | 46.17 | 3.07
Living Room 1.69 | 0.01 315 | 0.03 | 6.18 | 0.05 12.28 | 0.09 | 2442 | 0.18 | 48.51 | 0.39
Living Room (Glossy) 1.80 | 0.01 347 | 0.04 | 6.83 | 0.10 | 13.36 | 0.22 | 26.05 | 0.39 | 50.79 | 0.63
Living Room (Moving Light) | 1.68 | 0.02 | 3.15 | 0.04 | 621 | 0.07 | 12.33 | 0.10 | 24.49 | 0.19 | 48.59 | 0.40
Classroom 1.69 | 0.01 3.10 | 0.02 | 596 | 0.03 11.58 | 0.08 | 22.38 | 0.17 | 42.65 | 0.49
Classroom (Glossy) 1.72 | 0.01 3.20 | 0.03 6.17 | 0.07 11.99 | 0.12 23.24 | 0.21 44.75 | 0.40
Classroom (Mirror) 1.68 | 0.01 3.08 | 0.03 | 590 | 0.04 | 1140 | 0.10 | 21.87 | 0.28 | 41.16 | 0.67
San Miguel 1.53 | 0.01 298 | 0.03 | 587 | 0.06 | 11.49 | 0.14 | 22.32 | 0.32 | 4294 | 0.67

[ Scene Average & Std

[ 1.69+£007 J 319+£0.13 | 619+028 J 1212+£0.60 | 23.71£134 | 46.03+3.24

1 spp 2 spp 4 spp 8 spp 16 spp 32 spp
Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std
Sponza 1581 | 0.63 | 2743 | 122 | 4750 | 253 80.45 5.04 129.52 | 9.19 19445 | 14.92
Sponza (Glossy) 23.81 1.29 4552 | 2.62 84.90 5.02 154.58 10.08 268.58 17.65 453.03 30.78
Sponza (Moving Light) 14.98 | 0.66 | 2598 | 092 | 4495 | 1.94 75.91 4.60 122.19 | 10.24 | 184.62 | 21.23
Living Room 1641 | 0.37 | 3143 | 0.76 | 60.95 | 1.63 118.09 | 3.43 22596 | 6.97 42397 | 1443
Living Room (Glossy) 29.55 | 0.60 50.65 1.12 87.41 1.71 153.20 3.13 271.96 5.00 486.74 9.04
Living Room (Moving Light) | 15.70 | 0.73 | 29.78 | 0.93 | 57.40 | 1.28 110.52 1.92 210.35 | 3.35 390.62 6.82
Classroom 14.73 | 0.25 | 26.54 | 059 | 47.46 | 1.53 82.30 3.79 135.75 | 8.78 207.72 | 17.61
Classroom (Glossy) 18.63 | 0.76 | 32.64 | 143 56.94 | 2.64 97.67 4.90 161.86 8.92 253.49 14.87
Classroom (Mirror) 14.61 | 0.22 | 26.23 | 0.54 | 46.66 | 1.59 80.18 431 130.68 | 10.17 | 197.23 | 20.51
San Miguel 22.02 | 051 | 33.73 | 1.12 | 53.07 | 2.56 85.01 5.29 137.13 | 10.11 | 217.79 | 17.70

[ Scene Average £ Std |

18.62 £ 4.99 | 32.99£850 | 58.72 £ 1541 | 103.79 £29.82 | 179.40 £59.42 | 300.97 £+ 122.16 |

TABLE 3. Effective spp after spatiotemporal reprojection (without stereo blending), as measured by SSIM. The average spp for each scene is taken over

50 frames, with the respective standard deviation also shown.

1 spp 2 spp 4 spp 8 spp 16 spp 32 spp
Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std
Sponza 20.03 | 1.32 | 3419 | 262 57.32 5.35 92.08 10.16 138.72 | 17.11 193.27 | 25.89
Sponza (Glossy) 31.86 | 3.06 | 60.04 | 590 109.72 | 10.44 | 191.01 | 19.60 | 322.48 | 33.36 | 518.36 | 56.15
Sponza (Moving Light) 18.84 | 097 | 32.36 | 2.09 54.57 5.11 88.51 11.32 135.09 | 22.33 192.32 | 40.34
Living Room 23.21 | 0.64 | 4443 1.32 85.21 2.83 162.70 5.97 30491 | 12.23 | 557.14 | 23.40
Living Room (Glossy) 41.58 | 1.07 | 70.56 1.53 121.18 2.78 210.64 5.00 370.93 8.94 649.30 17.33
Living Room (Moving Light) | 22.20 | 0.94 | 42.17 1.28 80.36 1.92 152.51 3.40 283.68 6.58 512.80 12.11
Classroom 19.99 | 041 35.29 | 0.87 60.44 1.90 98.11 4.31 147.16 8.47 200.75 14.25
Classroom (Glossy) 2495 | 095 | 43.00 1.75 72.50 2.87 118.58 | 4.53 183.12 | 7.60 261.21 11.40
Classroom (Mirror) 19.43 | 0.51 33.90 1.26 57.04 3.03 90.53 7.09 132.48 | 13.83 176.28 | 22.59
San Miguel 26.30 | 0.66 | 40.66 1.26 63.93 2.71 101.12 5.65 157.96 | 10.46 | 236.47 17.54

Scene Average + Std I

24.84 £7.09 | 43.66 £ 1241 | 76.23 £23.21

| 13058 £4533 | 217.65 £ 92.19 J 349.79 £ 185.59

Table 2 shows that temporal reprojection and accumulation
is very effective in increasing the quality of the result, and
also that the amount of improvement depends substantially
on the complexity of the scene. Moreover, the minimum
effective spp is always equal to the input spp, because the
first frame does not have any temporal accumulation; the
quality then quickly increases and stabilizes, as discussed
above.

The results after combining both reprojection methods
into the final spatiotemporal reprojection are presented
in Table 3: for 1 spp input, the average effective spp is
between 18.8-41.6 spp, 32.4-70.6 spp for 2 spp input,
54.6-121.2 spp for 4 spp input, 88.5-210.6 spp for

VOLUME 8, 2020

8 spp input, 132.5-370.9 spp for 16 spp input, and
176.3-649.3 spp for 32 spp input. Thus, even in the worst
case, we get an almost 19-fold increase in quality for
1 spp input data, with significantly less computational effort
than it would take to path trace 19 samples per pixel; on
average, the improvement is almost 25-fold.

The scalability as a function of input spp is also shown
in Fig. 5 for the full 1-512 spp input range. Even though
especially the Living Room scenes still greatly benefit from
the reprojection even at a high input spp count, possibly due
to their lack of complex geometry and significant occlusions,
the general tendency is again that the improvements saturate
after a certain point. This illustrates that sample reprojection

133519



lE E E ACCGSS M. J. Mékitalo et al.: Systematic Evaluation of the Quality Benefits of Spatiotemporal Sample Reprojection

Stereo reprojection

700 |~e-Living Room (Glossy) 5
-e-Living Room

-e-Living Room (Moving Light)

600 *e-Sponza (Glossy)

-e-San Miguel

-a-Classroom (Glossy)

|'=Sponza (Moving Light) o\

-2 Sponza \ o

-e-Classroom

-e-Classroom (Mirror)

(S
o
o

SN
o
o

w

o

o
I

Effective reprojected spp
S
o
I

=

o

o
I

| | |
50 100 150 200 250 300 350 400 450 500
Input spp

_‘ | | | | |

FIGURE 4. Average effective spp counts after stereo reprojection (without stereo blending) as a function of input spp. The results for 1-32 spp are
also presented in Table 1.

Spatiotemporal reprojection
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FIGURE 5. Average effective spp counts after spatiotemporal reprojection (without stereo blending) as a function of input spp. The results for
1-32 spp are also presented in Table 3.
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(a) Stereo reprojected 1 spp data

#

(b) Temporally reprojected and accumulated 1 spp data

FIGURE 6. Pixels discarded by the reprojection algorithm in (a) stereoscopically reprojected and (b) temporally reprojected and accumulated path
traced images: bright yellow for discards based on world position or depth, bright green for discards based on shading normals, and purple for
discards based on pixels reprojected outside of the frame. Spatiotemporal reprojection combines the results of (a) and (b).

TABLE 4. Percentage of pixels discarded during stereo and temporal
reprojection, with discarding being done based on depth, world position
and shading normal differences. The average, minimum and maximum for
stereo (60 frames) and temporal (59 frames) discard percentages are
shown.

Stereo
Avg | Min Max
Sponza (All scenes) 194 | 1.19 2.89

Living Room (All scenes) | 2.47 | 2.30 2.67
Classroom (All scenes) 4.36 | 3.61 5.84

San Miguel 5.86 | 5.07 | 12.20
Temporal

Avg | Min Max

Sponza (All scenes) 396 | 3.57 4.47

Living Room (All scenes) | 1.49 | 0.71 2.28
Classroom (All scenes) 222 | 1.56 2.99
San Miguel 3.58 | 2.41 6.09

is typically the most beneficial for data with low spp
counts.

2) DISCARD PERCENTAGES

Table 4 presents the percentages of pixels discarded during
stereo reprojection and temporal reprojection, further corrob-
orating the amount of saved computational effort: on average,
only about 2-6% of the pixels could not be reprojected,
meaning only 2-6% of the pixels had to be path traced for
the target viewpoint. More specifically, the average discard
percentages are about 2—4% for all other scenes, except for
San Miguel it is close to 6% due to the detailed foliage and
other intricate geometry. Fig. 6 visualizes the discarded pixels
for an example frame of Sponza.

3) VISUAL QUALITY

Fig. 7 demonstrates the visual quality of the obtained results
for several scenes: The left column shows an example left-eye
frame with purely path traced n spp, n € {1, 2, 4, 8}. The mid-
dle column shows the same left-eye frame that was instead
obtained by spatiotemporally reprojecting the corresponding
n spp right-eye frame onto an empty left eye and path tracing
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only the missing samples, with temporal accumulation also
applied. Finally, the right column shows a purely path traced
comparison, with the spp count closely matching the effective
spp of the reprojected frame.

In general, we see that the quality of the reprojected frame
(middle column) matches the higher-spp comparison frame
(right column) reasonably well also visually, although it typ-
ically exhibits some artifacts. The most prevalent artifacts
are near the borders, which is due to the camera movement
revealing new noisy data that have not yet been visible for
long enough to have been smoothed out by the temporal
accumulation. The uneven noise pattern after reprojection
is also sometimes more noticeable (Fig. 7h) than the more
evenly distributed noise in the purely path traced comparison
(Fig. 71), but overall we found the SSIM-based effective
spp to describe the resulting visual quality more accurately
than using RMSE, which tends to underestimate the effective

Spp-

4) NON-DIFFUSE MATERIALS

For the Sponza, Living Room and Classroom scenes,
the effective spp of the reprojected glossy scene is, per-
haps unexpectedly, much higher than in the diffuse case.
In terms of visual quality, the fireflies are distributed more
sporadically in the reprojected frames than in the higher-
spp comparison frames, and the bilinear blur is visible in
the reprojected frames to some extent as expected; otherwise,
their quality is comparable. However, the scenes are overall
much darker compared to the diffuse scenes, consequently
smoothing out a lot of the texture and other fine details.
This likely explains the significantly better results in terms
of effective spp.

In the Classroom (Mirror) scene, the overall visual quality
does not suffer due to the presence of the mirror. However,
the reprojection (Fig. 7n) causes the objects in the mirror to
be shifted by several pixels to the right compared to the purely
path traced comparison (Fig. 70); in terms of the effective spp,
the quality drops from 60 spp to 57 spp. This happens because
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(d) 1 spp (f) 32 spp comparison

R

(h) 2 spp rep

(m) 4 spp (n) 4 spp reprojected (effective 57.04 spp) (0) 57 spp comparison

FIGURE 7. Frame comparison for the results in Section IV-B. Left column: left-eye frame with purely path traced n spp. Middle column: same left-eye
frame obtained by spatiotemporally reprojecting the corresponding n spp right-eye frame onto an empty left eye and path tracing only the missing
samples. Right column: purely path traced comparison frame with the spp count closely matching the effective spp of the reprojected frame.

for simplicity, our reprojection algorithm does not explic- depth, world position, and shading normals. However, there
itly consider non-diffuse materials; reprojected samples are are several sophisticated approaches for utilizing reprojection
deemed valid or invalid based only on the differences in for reflections and even refractions, e.g., [33]-[35].
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(s) 8 spp

(t) 8 spp reprojected (effective 101.12 spp)

(u) 101 spp comparison

FIGURE 7. (Continued:) Frame comparison for the results in Section IV-B. Left column: left-eye frame with purely path traced n spp. Middle column:
same left-eye frame obtained by spatiotemporally reprojecting the corresponding n spp right-eye frame onto an empty left eye and path tracing only
the missing samples. Right column: purely path traced comparison frame with the spp count closely matching the effective spp of the reprojected

frame.

TABLE 5. Effective spp after stereo reprojection only (with stereo blending), as measured by SSIM. The average spp for each scene is taken over

50 frames, with the respective standard deviation also shown.

1 spp 2 spp 4 spp 8 spp 16 spp 32 spp

Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std

Sponza 2.57 | 0.03 | 492 | 0.05 962 [ 0.14 | 19.04 | 037 | 3756 | 0.90 | 73.96 | 2.15
Sponza (Glossy) 2.61 | 0.04 5.03 | 0.09 991 0.21 19.84 | 0.57 39.57 1.13 78.16 | 2.24
Sponza (Moving Light) 2.57 | 0.06 | 495 | 0.15 973 | 029 | 1925 | 0.58 | 38.10 | 1.36 | 75.09 | 3.26
Living Room 2.49 | 0.02 | 4.78 | 0.02 947 | 0.04 | 18.89 | 0.08 | 37.70 | 0.13 | 75.34 | 0.32
Living Room (Glossy) 2.62 | 0.02 | 5.07 | 0.05 10.08 | 0.11 19.88 | 0.20 § 39.17 | 0.27 | 77.42 | 0.50
Living Room (Moving Light) | 2.47 | 0.02 | 4.79 | 0.04 951 | 0.05 | 1894 | 0.08 | 37.80 | 0.11 | 7543 | 0.33
Classroom 2.48 | 0.01 | 4.70 | 0.02 921 | 0.07 | 1822 | 0.10 | 3598 | 0.27 | 70.53 | 0.62
Classroom (Glossy) 2.51 | 0.02 | 4.81 | 0.03 945 | 0.07 | 18.68 | 0.12 | 36.89 | 0.26 | 7241 | 0.53
Classroom (Mirror) 247 | 0.01 | 4.69 | 0.02 9.17 | 0.05 | 18.10 | 0.09 | 35.65 | 0.21 | 69.53 | 0.50
San Miguel 240 | 0.02 | 4.71 | 0.04 930 | 0.08 | 18.32 | 0.14 | 3599 | 0.29 | 70.28 | 0.64
[ Scene Average + Std [ 252+£007 | 485+£0.14 | 954+£029 [ 1892+0.62 J 3744+ 133 | 73.81 £3.02

TABLE 6. Effective spp after spatiotemporal reprojection (with stereo blending), as measured by SSIM. The average spp for each scene is taken over
50 frames, with the respective standard deviation also shown.

1 spp 2 spp 4 spp 8 spp 16 spp 32 spp
Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std
Sponza 30.00 | 1.87 50.79 3.66 83.52 7.39 130.05 | 13.45 189.04 | 21.88 253.50 | 31.68
Sponza (Glossy) 50.98 | 3.98 94.04 7.70 | 168.11 | 13.78 | 289.09 | 26.00 | 477.92 | 45.05 760.22 | 72.86
Sponza (Moving Light) 28.45 1.40 48.45 3.38 80.01 7.99 12534 | 16.59 | 184.31 | 31.31 251.78 | 53.72
Living Room 36.07 | 0.94 69.45 1.93 13348 | 4.23 252.86 8.97 466.70 | 18.27 832.76 | 34.68
Living Room (Glossy) 58.55 1.23 100.65 | 1.81 175.84 3.55 310.65 6.48 547.06 10.49 94391 | 20.94
Living Room (Moving Light) | 34.26 1.06 65.51 1.45 125.27 2.38 235.77 | 4.25 430.98 8.60 756.19 17.66
Classroom 29.10 | 0.71 51.18 1.65 86.88 3.99 138.82 8.52 203.94 | 15.69 27144 | 24.26
Classroom (Glossy) 36.22 1.51 62.48 2.82 | 104.97 5.15 169.65 8.53 255.95 13.64 356.31 | 20.34
Classroom (Mirror) 28.50 | 0.74 49.69 2.01 83.30 4.95 13092 | 11.10 | 188.86 | 20.72 247.11 | 32.35
San Miguel 36.36 | 1.15 56.80 247 90.19 5.03 142.82 9.72 220.64 | 17.22 322.70 | 27.19

Scene Average + Std

36.85 £ 10.14 | 64.90 £ 18.59 J 113.16 £36.00 | 192.60 £ 72.17 | 316.54 £ 145.46 J 499.59 £ 285.15

C. REPROJECTION WITH STEREO BLENDING

In Section IV-B we used reprojection for synthesizing another
spatial viewpoint with path traced data from one viewpoint.

VOLUME 8, 2020

Here, we instead assume that both viewpoints have already

been path traced with n spp, but we leverage their redundancy
by spatially cross-reprojecting between each viewpoint and
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Spatiotemporal reprojection (50-50 stereo blend)

4000 -

3500

w

o

o

o
[

2500

Effective reprojected spp
S
3
I

-e-Living Room (Glossy)
-e-Living Room
Living Room (Moving Light)
-&-Sponza (Glossy)
-e-San Miguel
-8-Classroom (Glossy)
-8-Sponza (Moving Light)
Sponza
-a-Classroom
-8-Classroom (Mirror)

/ . .
500+ /ff BT
d il & i
0 e ‘ “equal qual}ty | | | | | |
50 100 150 200 250 300 350 400 450 500

Input spp

FIGURE 8. Average effective spp counts after spatiotemporal reprojection (with stereo blending) as a function of input spp. The results for

1-32 spp are also presented in Table 6.

then blending the reprojected pixels with the path traced
pixels. As both viewpoints have an equal input quality of n
spp, the blending is done with a 50-50 ratio.

The effective spp counts are evaluated as in
Section I'V-B, and the contributions are again separated into
stereo reprojection, temporal reprojection, and the com-
bined spatiotemporal reprojection. The temporal reprojection
results are not affected by the stereo blending, hence they
are equal to the results of Table 2; the results for stereo
reprojection and spatiotemporal reprojection (for the left-eye
target viewpoint) are presented in Table 5 and Table 6,
respectively.

As we now reproject 1 spp data and also blend it with
1 spp data, the bilinear filtering improves the expected
2 spp quality after stereo reprojection to an effective
2.52 spp on average. Further, we get an average of 4.85 spp for
2 spp input, 9.54 spp for 4 spp input, 18.92 spp for 8 spp input,
37.44 spp for 16 spp input, and 73.81 spp for 32 spp input.
As in the stereo reprojection done in Section IV-B, the results
scale almost linearly over this range.

For the combined spatiotemporal reprojection with the
50-50 stereo blending, the average effective spp results
are between 28.4-58.5 spp for 1 spp input, 48.4-100.7
spp for 2 spp input, 80.0-175.8 spp for 4 spp input,
125.3-310.6 spp for 8 spp input, 184.3-547.1 spp for
16 spp input, and 247.1-943.9 spp for 32 spp input. In other
words, even the minimum improvement for 1 spp input is now
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28-fold, as opposed to the 19-fold minimum improvement
without stereo blending. On average, the effective spp is 47%
higher than without stereo blending. This comes at the cost of
path tracing n spp data for both viewpoints instead of doing
it for only one of them. The scalability for higher-spp inputs
is illustrated in Fig. 8; the behaviour is again similar to that
observed in Fig. 5.

V. CONCLUSIONS

We presented a systematic evaluation of how the quality of
noisy stereoscopic path traced data improves through spa-
tiotemporal sample reprojection and temporal accumulation.
We focused mainly on low-spp input data (1-32 spp), which
is either currently possible to path trace in real time, or is
expected to become feasible in the near future with more
efficient hardware and software.

The results were presented in terms of the effective
spp of the reprojected frames, demonstrating quality gains
of an order of magnitude, while also saving 94-98% of the
path tracing computations. We also showed that the qual-
ity improvement gained through stereo reprojection scales
almost linearly on the 1-32 spp range, whereas for tem-
poral reprojection the scaling is more sublinear. However,
as the input spp count increases to the order of hundreds,
the gains obtained through reprojection typically diminish
quickly. Finally, we demonstrated how to achieve additional
gains through stereo blending existing path traced data with
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reprojected data, on average yielding a 47% higher effective
spp than without blending.

Our evaluation focused on stereoscopic path traced data,
but reprojection is also applicable in many other scenar-
i0s. For instance, various multi-view scenarios contain even
more redundancy between the viewpoints, thus presenting an
interesting context within which to further explore reprojec-
tion and its effectiveness. On the other hand, in fast-paced
VR/AR applications, or in gaming in general, the movement
within the scene can be highly unpredictable. Such appli-
cations call for robust reprojection methods that are able
to quickly react and adapt to the rapidly changing envi-
ronments; systematically evaluating the visual quality can
also serve as an important tool in the development of such
methods.

Finally, as the practically feasible real-time input spp count
increases, it is interesting to consider the combination of
reprojection and denoising filters, and at which point repro-
jection alone produces such accurate results that the following
denoising filter can be significantly simplified or even com-
pletely omitted. Overall, our results can be used to analyze the
effect of sample reprojection on image quality in denoising
and anti-aliasing frameworks that take advantage of spatial
or temporal coherence.
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