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ABSTRACT Blind Source Separation (BSS) application is a delinquent issue in a complex reverberant envi-
ronment with changing room geometric dimensions and an increasing number of speech sources. The BSS
application issue is determined by the independent component analysis that usually manipulates higher-order
statistical approaches. However, the permutation between desired speech sources remains a challenging issue
for BSS applications. The permutation problem is been rectified by Independent Vector Analysis (IVA)
for BSS applications in the frequency domain. The performance dependency of the IVA approach solely
relies on the selection of appropriate source-prior to preserve the inter-frequency dependencies between
the same speech source amongst different frequency bins. Therefore, a hybrid model for the IVA method
is presented, which comprises of multivariate generalized Gaussian and super-Gaussian distribution source
priors to model low as well as high amplitudes speech signals. The weights of the hybrid model between
multivariate Gaussian and generalized Gaussian are assigned in accordance to the energy of the observed
non-stationary speech mixture signal. In the simulations, different speech mixtures are generated from
various speech sources by simulated room model. The proposed approach evaluates the blind separation
performance in terms of signal-to-distortion ratio (SDR) and is compared with well-known BSS methods.
The results show an improvement of the proposed methodology for non-stationary speech signals over the
state-of-the-art IVA models having a fixed source prior.

INDEX TERMS Blind source separation (BSS), convolutive speech mixture, independent vector analysis.

I. INTRODUCTION
Human listeners show the ability to separate the desired
speech signal from complex auditory speech mixture, i.e.
cocktail party environment [1]. However, humans with hear-
ing loss suffer significant intelligibility of desired speech
signal in a noisy reverberant environment. Amplifying the
receiving speechmixture cannot solve the intelligibility of the
desired speech signal as it amplifies the targeted as well as the
interfering speech signals. Therefore, separation of the target
speech signal from a complex speech mixture is a challenge
for speech processing machines [2]. The separation, and to
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preserve the intelligibility of the desired speech becomemore
challenging in a noisy reverberant environment [3], [4]. The
cocktail party problem is reviewed for years and distinctive
solutions are provided by the researchers to mitigate the
problem [5]–[7]. Despite the current solution provided, still
cocktail party problem remain a scientific challenge for the
researchers and demand further scientific research efforts.
The solutions to this problem will have a vast impact on
speech processing applications such as digital hearing aids,
audio speech sensors, automatic speech recognition (ASR),
hands-free communication devices, binaural telephone head-
sets, and acoustic surveillance systems [8]–[11].

Blind Source Separation (BSS) framework is the state-of-
the-art method for the separation of target speech from a
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mixture of speech signals. In BSS applications, the desired
targeted speech signal is separated from the speech mix-
ture without prior knowledge of the speech signal and the
mixing process. The popular tool used in BSS is indepen-
dent component analysis (ICA) [12]–[14]. ICA approach
uses higher-order statistical models for separating the sources
from the mixed speech signals with the assumption of statis-
tically independent speech source signals. In real-time envi-
ronment, the performance of ICA model is enhanced for
convolutive reverberant speech mixture by combining multi-
stage approaches with ICA. It is combined with Binary mask
to increase the separation gain [15]. Furthermore, cepstral
smoothing is combined with ICA and Binary masking to
reduce the musical noise caused by time-frequency masking
[16]. The ICA method is also used to combine antenna array
to sense different sources remotely [17].

In the time domain, the convolutive reverberant mix-
ture becomes computationally complex and time-consuming
which results in performance degradation of speech pro-
cessing systems. The computational cost of ICA algorithm
is reduced by online recursive ICA model [18]. Further-
more, this problem is overcome by transforming time-domain
(TD) into frequency domain (FD) using short-time Fourier
transform (STFT) approach [16], [19], [20]. However, the
main problem of permutation exists across different fre-
quency blocks [8]. Different proposals such as consistency
of filter coefficients, consistency of spectrum and varia-
tional Bayesian are provided to resolve the issue [21], [22].
However, the solutions provided require pre and post pro-
cessing, increasing the computational processing of ICA
approach. Therefore, permutation problem is a challenging
issue. This problem is rectified in the frequency domain by
an approach known as Independent Vector Analysis (IVA).
It avoids the permutation problem in the learning process
without pre or post-processing [8]. IVA approach preserves
the inter-frequency dependency of the same source among
different frequency bins. The frequency components are
assumed to be independent from different speech sources
across the frequency bins [8].

The separation performance of IVA algorithm strongly
depends on the selection of source prior, which accommo-
dates the inter-frequency dependency amongst different fre-
quency blocks of a source speech signals. The fundamental
IVA algorithm uses multivariate Laplace distributions (MLD)
as a source prior to couple higher-order dependencies [8].
In [23], the multivariate Gaussian distribution (MGD) source
prior is utilized for recovering the desired speech signal
from the mixture. However, both [8], [23] exploits only
second-order statistics, and are unable to resolve high-order
statistics.

The Performance of IVA is a further improved by using
IVA algorithm with conjunction of ideal binary mask-
ing (IBM) and post processing by cepstral domain [24], [25].
In [26], a new family of multivariate distribution known as
Kotz distribution is introduced, which is more flexible distri-
bution to be used for source prior. This source prior has the

capability of exploiting second order as well as higher order
statistics. The high amplitudes in a voice mixture be better
modeled by Student’s T source prior for the IVA [27]–[29].
The heavy tailed nature of Student’s T distribution enhances
the separation performance significantly [30]. Mixed source
prior such as, MGD and multivariate Student’s T distribution
are introduced to model the non-stationary nature of the
observed mixture signal. The source priors switch between
MGD and Student’s T in accordance to the energy in each
frequency bins of the observed speech mixture [31].

The state-of-the-art IVAmethod use only fixed source prior
distribution models in the separation process of the BSS
applications. This cannot better model the non-stationary
nature of the observed speech mixture, resulting in the
degradation of separation performance of the BSS applica-
tion in real-time environment. Therefore, in this research
work, a hybrid energy-based source prior is proposed, which
enhances the robustness of the speech processing appli-
cations by adopting the IVA algorithm in accordance to
the non-stationary nature of observed speech mixture. The
proposed hybrid model comprises multivariate generalized
Gaussian and super-Gaussian distributions for the IVA algo-
rithm. The generalized Gaussian distribution with heav-
ier tails will better model the higher amplitude of the
source signals in the speech mixture, while the multivariate
super-Gaussian distributionwill extract other important infor-
mation. Theweights of the distributions in hybrid source prior
are adapted based on the energy in each frequency bin of
the observed mixture speech signal. More weight is given to
generalize Gaussian source prior distribution if the frequency
block of the observed speech mixture has high energy and
vice versa. The proposed IVA model is simulated on stimu-
lated Room Impulse Response (RIR). The simulation results
show improvement in the IVA algorithm by the proposed
methodology.

The organization of the paper comprises the following
sections. Section II describes the independent vector analysis.
Section III explains the multivariate source prior. Section IV
describes the proposed hybrid source model. Results and
discussion are provided in detail in Section V. The proposed
model for source separation is investigated and its perfor-
mance is evaluated in Section VI. Finally, conclusions are
provided in Section VI, followed by future work.

II. INDEPENDENT VECTOR ANALYSIS
A cocktail party environment having M microphones and N
number of speech sources. The observed mixture speech at
each microphone can be mathematically expressed by the
linear convolutive model as,

xi(t) =
N∑
j=1

T−1∑
τ=0

hij(τ )sj(t − τ ); i = 1, 2, . . . ,M (1)

in (1), the term hij(τ ) depicts the impulse response of the
room, that varies from j-th source toward i-th mixed signal.
It should be noted that the mixed-signal i-th is having a
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length of T , where the term sj(t) is the j-th source speech
signal at time t . The computation outlay is further reduced
by short-time Fourier transform (STFT) in converting the
time-domain convolutional signal into multiplication in the
frequency domain (FD). The time-domain speech signal is
represented in FD compact form as,

X (K ) = H (K )S(K ) (2)

Ŝ(K ) = W (K )X (K ) (3)

where, X (K ) = [x1(k), x2(k), . . . , xM (k)]T is the
observed mixture of speech signals, and Ŝ(K ) =

ŝ1(k), ŝ2(k), . . . , ŝN (k)]T is the estimated vector for speech
signal. The vector for speech signal is expressed in frequency
domain, where (.)T represents vector transpose. The terms
W (K ) and H (K ) are the respective un-mixing and mixing
matrices. Further, the index k depict the k-th frequency bin
of FD-BSS model. In the proposed research, the number of
receiving microphones and speech sources are considered
equal i.e. M = N = 2.

The separation of multivariate speech sources from
the observed multivariate mixture signal, a cost func-
tion will be defined for multivariate variables. Therefore,
Kullback-Leibler (KL) divergence is used for the measure-
ment of relative dependencies between the two functions, one
having exact joint probability density function and the other
having product of individual probability density function.
It can be expressed as,

C = KL(P(ŝ1, . . . , ŝN )||
N∏
i=1

q(ŝi))

= const−
K∑
k=1

log |det(W (k))| −
N∑
i=1

E log q(ŝi) (4)

The dependencies between various speech sources are
removed by minimizing the cost function preserved by each
source vector. Therefore, for minimization of such depen-
dencies, the gradient descent method is utilized to the cost
function with respect to the un-mixing matrix wij(k) [32].

1wij(k) = −
∂C

∂wij(k)

=

N∑
l=1

(Iil − Eϕk (ŝ
(1)
i , . . . , ŝ

(K )
i )ŝ(k)l )w(k)

lj (5)

where I and ϕ(k)(.) are the respective identity matrix and
non-linear score function. The score function is expressed by,

ϕk
(
ŝ(1)i , . . . , ŝ

(K )
i

)
= −

∂ log q(ŝ(1)i , . . . , ŝ
(K )
i )

∂ ŝki
(6)

Generally, online updates or batch update rules are used to
update coefficients of the un-mixingmatrix. The batch update
rule is mathematically expressed as,

wnewij (k) = woldij (k)+ η1wij(k) (7)

where η is known as the rate of learning. By neglecting the
expectation operation from (5) and updated at every sample
time to achieve online update.

III. MULTIVARIATE SOURCE PRIORS
The speech signal dependencies in different frequency bins
can be modeled by the probability density function (pdf). The
IVA approach uses a super-Gaussian source prior. Mathemat-
ically, it is expressed as [8],

q(si) ∝ exp

−
√√√√ K∑

k=1

∣∣∣∣ ŝi(k)σi(k)

∣∣∣∣2
 (8)

in (8), σi(k) represents variance of the i-th speech source at
k-th frequency bin. From (6) the score function (non-linear)
for the source is expressed as [8],

ϕ(k)
(
ŝi(1), . . . , ŝi(K )

)
=

ŝi(k)√∑K
k=1 |ŝi(k)|2

(9)

The IVA algorithm separation performance strongly relies
on the score function, which is deduced from the source prior.
The score function accommodates inter-frequency depen-
dency. IVA approach performance is enhanced by selecting
the appropriate source prior. In [8], each source of the covari-
ance matrix is assumed as the identity matrix. Therefore, the
second-order correlation is mitigated in different frequency
bins. However, the multivariate Gaussian source prior intro-
duced second-order correlation [23]. Though higher-order
correlation is still missing amongst various frequency bins.

Furthermore, a multivariate generalized Gaussian distribu-
tion source prior is utilized to exploit a higher correlation in
the frequency bins. Its heavier tails can model higher ampli-
tudes and more robust to outliers. Moreover, the performance
is further enhanced by introducing energy correlation for
the source vector [33]. Therefore, extracting more dependent
information between the frequency bins helps to improve
the separation process. The multivariate generalize Gaussian
distribution can be written as [33],

q(si) ∝ exp

−( (si − µi)†
∑
−1
i (si − µi)
α

)β (10)

in (10), (.)† is the Hermitian transpose, where the terms µi
and

∑
i are the respective mean and covariance of i-th source.

β represents the shape parameter and α denotes the scaling
factor. Assuming α = 1, µi = 0, then (10) becomes,

q(si) ∝ exp

−( K∑
k=1

|si(k)|2
)β (11)

using (6) the non-linear score function of multivariate gener-
alize Gaussian source prior will become

ϕ(k)(ŝi(1), . . . , ŝi(K )) =
2β ŝi(k)

((
∑K

k=1 |si(k)|2)2)
1−β
2

(12)
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β is obtained by satisfying the following condition [33],

1− β
2
=

1
2I + 1

(13)

β =
2I − 1
2I + 1

(14)

where I represent positive integer and equal to 1. β should
be considered less than 1

2 to make the generalize Gaussian
source robust to outliner. Therefore, (10) can be rewritten as,

q(si) ∝ exp
(
−

3
√
(si − µi)†6

−1
i (si − µi)

)
(15)

by applying (6) to (15), and by considering mean equal to
zero and covariance matrix equal to identity matrix for (15),
the score function becomes,

ϕ(k)
(
ŝi(1), . . . , ŝi(K )

)
=

2ŝi(k)

3 3
√
(
∑K

k=1 |ŝi(k)|2)2
(16)

In the presented research work, the performance of BSS
is improved by a hybrid energy-driven model having mul-
tivariate generalized Gaussian and the original multivariate
super-Gaussian source priors instead of identical source prior.

IV. PROPOSED HYBRID SOURCE PRIOR MODEL
In the proposed methodology, a multivariate generalized
Gaussian source prior with heavy-tailed nature is used
to exploit higher-order correlational information and other
information is modeled by super-Gaussian source prior from
the speech mixture. Therefore, the hybrid source prior model
is mathematically written as,

q(si) = φfGGD + (1− φ)fSGD (17)

where fGGD and fSGD are the multivariate generalized
Gaussian and multivariate super-Gaussian source priors
respectively. φ ∈ [0, 1] is the weighting parameter, which
determines weights of each source prior in the proposed
hybrid model. Therefore, the multivariate hybrid score func-
tion is mathematically expressed as,

ϕ(k)
(
ŝi(1), . . . , ŝi(K )

)
= φ

 2ŝi(k)

3 3
√
(
∑K

k=1 |ŝi(k)|2)2


+(1− φ)

 ŝi(k)√∑K
k=1 |ŝi(k)|2

 (18)

The multivariate score function in (18) during the learn-
ing process preserves inter-frequency dependency in all fre-
quency bins. The value of φ is frequency-dependent i.e., each
frequency block has its weighting parameter φ(k). In this
research work, the weighting parameter of each source prior
distribution in the proposed hybrid model is adopted by
the energy measure in the observed speech mixture. It is
calculated as the normalized energy of the observed speech

mixture for each frequency bin. The normalized energy of
each frequency block is obtained by

Eb =
1
Etot

 lb∑
k=fb

||Xp(k)||2

 (19)

where fb and lb is the first and last indices of the frequency
block, respectively. Xp(k) is the received mixture in the given
frequency domain. Eb represents the energy of a particular
frequency bin, and Etot is the total received energy in the
mixture. ||.|| gives the respective Euclidean norm.

In this research work, more weight is given to generalizing
Gaussian source prior than super-Gaussian prior if the fre-
quency bin has high energy and vice versa. Therefore, it will
better model the non-stationarity of the speech signal from
the mixture.

The conventional IVAmethods use only fixed source priors
which can only either exploits second order statistics or high
order statistics [8], [30], [33]. However, the proposed model
can better exploit the statistical characteristics depending
upon the received mixed speech signal. Therefore, the hybrid
model enhances the performance of IVA algorithm and is
more robust to the non-stationary environment.

V. RESULTS AND DISCUSSION
The performance evaluation of the proposed work is car-
ried out based on proposed hybrid model using Matlab as a
simulation tool. The algorithm is applied to the artificially
generated mixture using a simulated room model.

A. OBJECTIVE EVALUATION
Apool of 10 speech signals are selected fromTIMIT database
comprising of 5 male and 5 female speakers [34]. Three
different mixtures scenarios are evaluated for the proposed
hybrid model and [8], [30], [33] i.e. male-male, male-female,
and female-female speech mixtures. In each scenario, the
results obtained from 5 speech mixtures for each window
length, Fast Fourier Transform (FFT) frame length, and room
reverberation (RT) parameter value is respectively averaged.
Thus, a total of 15 speech mixtures with varying window
length, 15 mixtures with FFT frames from 512 to 2048 frame
length with fixed RT = 100ms, and 45 different mixed
speech signals for different RT ranging from 40 to 200ms
are used. These mixture signals are generated by simulated
room model with room dimension 10 × 10×10m3 [35].
The artificially generated mixture speech signals are fed
into the proposed algorithm. The results are evaluated based
on the obtained results from the proposed hybrid model
and BSS methods [8], [30], and [33]. The RT is explicitly
defined, whereas the speech signal sampling rate is consid-
ered to be 8 KHz. The BSS separation performance evalua-
tion is based on signal to distortion ratio (SDR) in dB and
1SDR is defined as the difference between desired SDR and
speech mixture SDR. i.e. 1SDR = SDRdesired - SDRmixture.
The robustness of the proposed methodology is evaluated
by varying different parameters used in these experiments
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TABLE 1. Average results of different window length for male-male speech mixture.

TABLE 2. Average results of different FFT frame length for male-male speech mixture.

TABLE 3. Average results of different RT for male-male speech mixture.

such as, FFT frame length, window length and RT. During
the experiment procedure, one parameter will be changed
while the remaining parameters as describe above will remain
unchanged. The convolutive mixed speech signal is com-
prised of two speech source signals. Three sets of exper-
iments will be performed for male-male, male-female and
female-female speech mixtures. Each set of experiment will
be comprised of window length, FFT frame length and RT.

In the first set of experiments, 5 male speech source
signals are obtained from the TIMIT database [34]. Dif-
ferent artificially mixed speech signals each containing
two male source signals are generated by simulated room
model having RT = 100ms [35]. The window length is varied
from 256 window length to 1024 window length having a
75% overlap between adjacent windows. The FFT frame
length is considered to be 1024. The remaining parame-
ters are set as previously described. The results obtained
from different speech mixtures are averaged and provided
in Table 1. It shows that the highest SDR is achieved
at 512 window length for the proposed hybrid model,

[8] and [33] methodologies. Therefore, 512 window length
is considered for the remaining set of experiments. The FFT
frame length parameter is tested for better performance by
varying it from 512 FFT frame length to 2048 frame length.
Table 2 shows some improvement at 1024 FFT frame length
than 512 and 2048 frame length for [8], [33] and proposed
hybrid model. Thus, 1024 FFT frame length is assigned to
the remaining experiments. In the last experiment of the set,
different speech mixtures are generated from the male-male
source speech signals by varying RT to access the perfor-
mance of the proposed approach. The speech mixtures are
generated by the simulated room model. It is observed in
Table 3, that BSS performance of the proposed hybrid model,
[8] and [33] methodologies in terms of SDR is comparable
for male-male speech sources. However, the performance of
[8], [33] and proposed hybrid model approach is better than
Student’s T source prior [30].

In the second set of experiments, 5 male and 5 female
speech source signals are selected from TIMIT database [34].
Different speech mixture signals are generated by the same

VOLUME 8, 2020 132875



J. B. Khan et al.: Hybrid Source Prior Based IVA for Blind Separation of Speech Signals

TABLE 4. Average results of different window length for male-female speech mixture.

TABLE 5. Average results of different FFT frame length for male-female speech mixture.

TABLE 6. Average results of different RT for male-female speech mixture.

procedure for RT = 100ms. The window length is varied
from 256 to 1024 sample length with 75% overlapping with
neighboring windows. The FFT frame length is considered
to be 1024 frame length. The trend in Table 4 shows mag-
nificent improvement with 512 window length for the men-
tioned methodologies and the reason for its consideration for
succeeding set of experiments. The FFT frame parameter is
varied from 512 to 2048 frames for better performance assess-
ment. Table 5 shows optimum performance at 1024 frame
length for the proposed hybrid source prior model. So, 1024
frame length is fixed for the remaining experiment of the sec-
ond set. In the last experiment of the set, speech mixtures are
generated for different RT. The proposed hybrid source prior
model provides improved system performance as compared
to the multivariate Gaussian source prior [8], Multivariate
Generalize Gaussian source prior [33]. However, Student’s T
source prior shows better performance for estimated S1 than
[8], [33] and proposed hybrid model, but the separation
performance of [8], [33] and hybrid source prior shows

better performance for estimated S2. The results reflected
in Table 6 shows that performance improvement reduces
gradually by increasing RT, which is expected for high room
reverberation.

We have selected 5 female speech signals from the TIMIT
database for the last set of experiments. Different mix-
tures signal are generated by simulated room model for
RT = 100ms. The window length is varied from 256 to 1024
samples. FFT frame length is considered to be 1024. Also, the
results in Table 7 show improvement at 512 window length.
As a result, 512 window length is fixed for the following
experiments. The FFT frame is varied from 512 to 2048. The
performance at 1024 shows improvement as shown in Table 8.
Thus, it is considered for the remaining experiment. RT is var-
ied having window length 512 and FFT frame 1024. Table 9
shows improvement for the proposed hybrid approach. The
performance degrades slowly with the increment in RT but
still shows enhancement as compared to multivariate Gaus-
sian approach [8], [30], [33].
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TABLE 7. Average results of different window length for female-female speech mixture.

TABLE 8. Average results of different FFT frame length for female-female speech mixture.

TABLE 9. Average results of different RT for female-female speech mixture.

B. SUBJECTIVE LISTENING TESTS
The results of objective performance evaluation are cross
verified by subjective listening tests. The subjective listening
tests are conducted by 5 participants (3 male and 2 female)
with normal hearing. Every listener is asked to mark a score
ranging from integer 1(enhanced speech signal not audi-
ble) to 5 (enhanced speech signal clearly audible) for the
estimated source signals separated from the mixture. Each
participant is asked to listen to the original source signals
and estimated speech signals. Note that, the participants have
no prior knowledge of the BSS algorithms used to obtain the
estimated speech signal.

The experiments are performed for male-male, male-
female, and female-female scenarios. In these experiments,
the speech mixtures used in the objective analysis are also
used for the subjective listening tests. In the first experiment
for male-male speech signals, the window length and FFT
frame length are set to 512 and 1024 respectively. Different

mixture signals are generated by the simulated room model
for RT equal to 40, 80, 140, and 200ms. The score provided
by the listening participants based on how clean the esti-
mated speech signals are extracted from the mixtures. The
estimated speech signals with less mixing signals have given
the highest mean opinion score (MOS) and vice versa. The
average results of MOS for male-male speech signals are
reflected in Table 10. It is observed that the MOS score of
the proposed hybrid model are comparable with multivariate
Gaussian [8] as RT is increased. However, the results of the
proposed model show improvement from Student’s T [30]
and Generalize Gaussian source prior models [33].

In the second experiment for the male-female scenario,
previous values for window length and FFT frame length are
considered. RT is considered to be 40, 80, 140, and 200ms.
TheMOS score results are shown in Table 11. This shows that
the proposed hybrid model has improvedMOS in comparison
with [8] and [33], but Student’s T source prior [29] shows
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TABLE 10. Average MOS results obtained from subjective listening test with different RT for male-male speech mixture.

TABLE 11. Average MOS results obtained from subjective listening test with different RT for male-female speech mixture.

TABLE 12. Average MOS results obtained from subjective listening test with different RT for female-female speech mixture.

improvement for RT equal to 40 and 80ms. However, as RT
increases its results degrades significantly than the proposed
hybrid model.

In the last experiment, the above-mentioned procedure
is followed for female-female speech signals. The window
length and FFT are considered to be the same as in previous
listening testing experiments. Different mixture signals are
generated for RT varying from 40 to 200ms. The average
MOS results in Table 12 reflect an improvement of the pro-
posed hybrid model in comparison with [8], [30] and [33].

C. TESTING IN THE PRESENCE OF NOISE
The experiments are also performed in noisy environment
considering Additive White Gaussian Noise (AWGN). The
parameters such as window length, FFT frame length, and
RT are considered to be 512, 1024, and 100ms respectively.
The results are obtained from 25 different speech mixtures
randomly selected from the same pool of speech signals
previously used. It is observed from Figure 1 and Figure 2
that the proposed source prior model shows improvement in
the noisy environment from Gaussian source prior [8] for the
estimated Source-1 and Source-2, respectively.

FIGURE 1. Gain in SNR for Source-1.

VI. PERFORMANCE EVALUATION
The proposed hybrid model separation performance is
compared with a multivariate Gaussian source prior [8],
Student’s T source prior [30], and generalize Gaussian source
prior [33]. In [8], the estimated source signals are extracted
from the mixture signal by exploiting second-order statistics
in the frequency domain. It is observed that the voice signals
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FIGURE 2. Gain in SNR for Source-2.

are non-stationary in nature and it contains low as well as high
energy frequency components. Therefore, tracking of these
non-stationary signals, multivariate Student’s T [30], and
generalize Gaussian distributions can be used as source prior
[33]. These source priors can better model the non-stationary
of the speech signals due to its heavy-tailed nature. In the
proposed model, it proposed a BSS method which can model
the low energy frequency components as well as high energy
components. Therefore, a combination of two source priors is
used to extract the low and high energy components from the
mixture depending upon the energies in the frequency bins.
Multivariate Gaussian source prior is used for a frequency
bin with low energy components and multivariate generalize
Gaussian source prior distribution is used for high energy
components in a frequency bin.

The separation performance of the proposed approach is
evaluated for three different mixtures scenarios i.e. male-
male, male-female, and female-female speech mixtures.
In each scenario, the results obtained from 5 speech mixtures
for each window length, FFT, and RT parameter value is
respectively averaged. Thus, a total of 15 speech mixtures
with varying window length, 15 mixtures with FFT frames
from 512 to 2048 frame length with fixed RT = 100ms,
and 45 different mixed speech signals for different RT rang-
ing from 40 to 200ms are used for the objective analysis
using simulated roommodel. The same procedure is followed
for [8], [30], [33].

In the first scenario, the proposed technique is com-
pared with [8] for the male-male speech signal mixture.
Table 1 and 2 show the average results in terms of SDR in
dBs to select the window length and FFT frame length. It is
reflected in Table 1 and 2 that the separation performance of
window length and FFT frame length is better at 512 and 1024
respectively with fixed RT= 100ms. Therefore, these param-
eter values are considered for the remaining experiment for
male-male speech mixtures. Table 3 represents the average
results of varying RT from 40 to 200ms. It is observed in
Table 3 that, the proposed hybrid source prior model achieved
0.06dB and 0.1dB enhancement for estimated source S1 and
S2 in comparison with [8]. The proposed hybrid model is

also evaluated with Student’s T source prior distribution [30].
From Table 1 and 2 the window length and FFT frame length
parameters are considered to be 512 and 1024 respectively.
It can be seen in Table 3 that the proposed hybrid model
shows a significant performance gain of 3.5dB for Ŝ1 and
5.8dB for Ŝ2 for different speech mixtures with RT varied
from 40 to 200ms. The objective evaluation of the pro-
posed methodology is also analyzed with [33]. The window
length and FFT frames are considered as 512 and 1024 from
Table 1 and 2. The evaluation of varying RT is displayed
in Table 3, which shows an optimum gain 0.3dB for both
estimated speech signals as compared to [33].

In the male-female scenario, the average results in terms
of SDR are presented in Table 4, 5, and 6. The previous pro-
cedure is adopted in the male-male scenario is followed for
male-female speech mixtures. The separation performance
of the proposed hybrid model is evaluated with [8]. Both
methodologies show enhancement at window length = 512
and FFT= 1024. Therefore, these parameters are considered
for the succeeding RT experiment. The results of different
RT varying from 40 to 200ms are demonstrated in Table 6.
It is observed from Table 6 that, the proposed hybrid source
prior improves its performance by 0.2dB for estimated Ŝ1
and 0.3dB for estimated Ŝ2 in comparison with [8]. In the
comparison of the proposed model with [30] for male-female
speechmixture signals. The parameters of window length and
FFT are set to previous values as indicated in Table 4 and 5.
Table 6 shows 1.7dB improvement of [30] for Ŝ1 from the
proposed hybrid model. While for Ŝ2, the proposed approach
outperforms [30] by 0.8dB. The comparison of proposed
hybrid model with [33] is reflected in Table 4, 5 and 6. The
window length and FFT frame length is set in accordancewith
Table 4 and 5. The average results are presented in Table 6
which indicates an overall improvement of in terms of SDR
of 0.2dB and 0.5dB for Ŝ1 and Ŝ2 respectively as compared
to [33].

The objective analysis for both female speech mixture
results are presented in Table 7, 8, and 9. The window
length and FFT frame length parameters are considered in
accordance to Table 7 and 8, respectively. The number of
speech mixtures are considered the same as in male-male and
male-female scenarios. Table 9 shows the average results of
different RT values from 40 to 200ms. The performance of
proposed hybrid source prior is increased up to 0.2dB and
0.3dB for estimated source Ŝ1 and Ŝ2 respectively. With [30],
the results are reflected in Table 7, 8, and 9. The parameters
are set from Table 7 and 8. The RT results displayed in
Table 9 shows magnificent improvement for the proposed
model of 6dB for Ŝ1 and Ŝ2 from [30]. For the female-female
speech mixture, the results of the proposed hybrid model are
also compared with [33]. The parameters are adjusted from
Table 7 and 8. The improvement of proposed methodology
from [33] for different RT values is 0.2dB for both estimated
speech signals.

A subjective listening testing performance evaluation tool
is used for male-male, male-female, and female-female
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speech mixture scenarios. The window length and FFT frame
length parameters are considered as 512 and 1024 respec-
tively. Also, 5 participants are selected to mark the score of
estimated source signals. Each participant is asked to listen to
the estimated speech signal obtained from the proposed and
other BSS methods [8], [30], [33] for the above mentioned
scenarios. The MOS score of the five participants is aver-
aged for each RT value. The average MOS core presented in
Table 10 shows an overall gain of the proposed hybrid model
is 0.07dB for estimated Ŝ1 and 0.2dB for Ŝ2 comparable
to [8]. Which indicates comparable gain for Ŝ1 and optimum
gain for Ŝ2. In comparison with [30], the same procedu-
ral steps are taken for different mixtures with RT ranging
from 40 to 200ms. The results in Table 10 show an enhance-
ment of 0.9dB and 1.2dB for the hybrid model than [30]
for the estimated source signals. The results of the proposed
hybrid model are also compared with [33] for male-male
speech mixtures. The overall average gain of the proposed
method for Ŝ1 and Ŝ2 is 0.3dB and 0.4dB, respectively.

The subjective analysis for the male-female scenario is
performed for [8] and the proposed method as shown in
Table 11. It is observed that the proposed hybrid model
performance is enhanced up to 0.1dB for Ŝ1 and 0.2dB for Ŝ2.
The subjective listening test performs for [33] results are
reflected in Table 11. The MOS results show a separation
performance of 0.1dB for estimated Ŝ1 and 0.5dB for Ŝ2 for
the hybrid model than [33].

The hybrid model is compared with [8], [30] and [33] for
listening tests for female-female speech mixtures. It can be
seen from Table 12 that the proposed hybrid source prior
model improves its separation performance in terms of MOS
up-to 0.3dB and 0.2dB for estimated Ŝ1 and Ŝ2 respectively
from [8]. In comparison with [30], the average MOS results
enhanced up to 1.2dB for Ŝ1 and 2dB for Ŝ2. The proposed
model also shows improvement from [33] of 0.2dB for both
estimated speech signals.

The comparative analysis reflects that the proposed
hybrid model shows improvement for male-female and
female-female scenarios than [8], [30] and [33]. In the case
of male-male speech signals, the performance of [8] and
the proposed model are comparable. While its separation
performance is enhanced from [30] and [33].

The separation performance of the proposed model is com-
pared with [8] in terms of computational complexity in time.
The specifications of the computing system used to perform
the experiments is intel(R) Core(TM) i3-4030U CPU with
1.90GHz processor and 8GB memory. It is observed that [8]
method requires 1 minute and 7s to perform a single exper-
iment while the proposed model performs the same exper-
iment in 1 minute and 53s. the proposed method requires
a little more time due to the energy calculation for every
frequency bin.

VII. CONCLUSION AND FUTURE WORK
In this research work, a hybrid source prior is proposed which
comprises multivariate Gaussian and generalized Gaussian

source priors for blind separation of speech signals. The
appropriate weights are being assigned between source pri-
ors in the hybrid model according to the underlying energy
of the mixture speech signal. It effectively preserves the
inter-frequency dependencies among different frequency bins
as compared to the fixed source priors in [8], [30], [33].
The observed speech mixture contains both low as well as
high energy components due to the randomness of speech
mixture. The proposed hybrid model can adjust its weights
of the source priors following the speech mixture energy in
each frequency block to improve the separation process of the
IVA approach. The simulation results clearly show significant
improvement for speech mixture containing both low as well
as high energy components from the conventional IVAmodel.
In the future, the proposed approach can be extended for more
complex scenarios such as reverberant speech mixture with
a noisy environment. Furthermore, the hybrid model can be
enhanced for the noisy reverberant environment to improve
its robustness.
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