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ABSTRACT Recently, variational and partial differential equation (PDE)-based algorithms have become
very important for image restoration. In this study, we propose a new second order hyperbolic PDE model
based on directional diffusion for image restoration. This hyperbolic PDE restoration model can simply
diffuse along the edge’s tangential direction in the observed image, thereby removing noise while preserving
the image edges and fine details, which avoids the staircase effect in the restored image. An effective
numerical scheme is proposed for handling the computation of our approach using the finite difference
method. Successful image restoration experiments demonstrated that the proposed second order hyperbolic
PDE-based model obtains superior performance compared with other models at preserving edges and it
avoids the staircase effect.

INDEX TERMS Hyperbolic partial differential equation, direction diffusion, image restoration.

I. INTRODUCTION
This Digital images are inevitably corrupted by noise during
image acquisition, compression, transmission, and other pro-
cesses, and thus image denoising is an important research area
in image processing and computer vision [1], where the aim
is to restore a noisy or blurred image while preserving the
features of the original image.

PDE-based and variational algorithms have become very
important tools for image restoration, where many algo-
rithms have been developed and applied in computer vision
applications. The two most influential algorithms are the
anisotropic diffusion model (PM) proposed by Perona and
Malik [2], and the total variation (TV)-based model proposed
by Rudin et al. [3]. The PM model was designed with the
explicit goal of achieving a good trade-off between noise
removal and edge preservation. Since the pioneering study
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by Perona and Malik, many variance-based models have
been proposed, including the anisotropic diffusion model
proposed by Weickert [4], Weickert and Schnörr [5], struc-
ture tensor diffusion [6], the manifold diffusion method [7],
adaptive anisotropic diffusion based on a structure tensor [8],
anisotropic diffusion based on band pass signals [9], a mod-
ified PM model based on directional Laplacian [10], and
automatic parameter selection anisotropic diffusion [11].
The TV model has been studied extensively, thereby
demonstrating that it is efficient for removing noise
and preserving edges [12], [13]. Many improved mod-
els and optimization methods have also been proposed
and applied, such as adaptive TV denoising [13], [14],
the anisotropic higher degree TV regularizer [15], fixed point
iteration [16], [17], primal-dual methods [18], [19], and split
Bregman method [20]–[23].

However, nonlinear anisotropic partial differential equa-
tions (PDEs) and TV-based denoising often cause staircase
effects [24]. Thus, to alleviate these staircase effects, high
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order PDEs have been considered in recent years [25]–[28],
such as the LLT (Lysaker M., Lundervold A., Tai X.C.)
model [25], YK (YouY., KavehM.) model [26], and the adap-
tive fourth-order model [28], but high order PDEs inevitably
corrupt the high-frequency details in the restored images,
i.e., high order PDEs will over-smooth the images and affect
the preservation of weak edges.

Recently, Barbu transformed the parabolic second-order
and fourth-order PDEs into more effective hyperbolic
diffusion models, and proposed second-order hyperbolic
PDE (SOHPDE) [29] and fourth-order hyperbolic PDE
(FOHPDE) [30] models for image restoration, which help
to avoid the staircase effect as well as preserving the edges
and features. Inspired by these newmethods and the direction
diffusion [31], in this study, we propose a new second-order
nonlinear hyperbolic PDE model based on spatial direc-
tional diffusion (HPDEDD) for image restoration. Compared
with other models, the proposed HPDEDD model has three
advantages. First, the proposed HPDEDD model consid-
ers the structure of the observed image, where diffusion
only occurs along the edges to preserve fine features. Sec-
ond, hyperbolic diffusion helps to avoid the staircase effect.
Third, the added edge detector facilitates selective smooth-
ing to avoid blurred edges. Experimental comparisons with
other PDE-based methods demonstrated that the proposed
HPDEDD algorithm performs more effectively at high level
noisy image restoration while also preserving the edges and
avoiding the staircase effect.

The remainder of this paper is organized as follows.
In Section 2, we define the directional diffusion operator.
In Section 3, we propose the HPDEDD model and analyze
the diffusion direction. We explain the efficient numerical
implementation scheme for the proposed model in Section 4.
In Section 5, we consider the selection of the parameters.
In Section 6, we present the results of numerical experiments
and comparisons with several existing methods in order
to demonstrate the effectiveness of the HPDEDD model.
Finally, we give our conclusions in the final section.

II. DIRECTIONAL DIFFUSION
The basic aim of image restoration is to recover an image
f (x) from an observed image g(x). First, we present the
definition of directional diffusion [10], [31]. Let us assume
that an image region � ⊂ R2, and H(x) = ∇>∇f (x) is a
Hessian matrix of f (x), where x = (x, y) ∈ � and > denotes
the transposition. EnH(x)En> is the second order directional
derivative of f (x) along the direction En, where En is a unit
vector. Now, we define the directional diffusion 8(∇f (x)):

8(∇f (x)) = EnH(x)En> = En∇>∇f (x)En>. (1)

We incorporate an edge detector 0(|∇Gσ g|) for the observed
image g(x) into Eq. (1) in the following manner:

8(∇f (x)) = En∇>(0(|∇Gσ g|)∇f (x))En
>, (2)

where

0(|∇Gσ g|) = 1/(1+ |∇Gσ g|),

|∇Gσ g| = k1|∇Gσ ∗ g|2 + k2|∇2Gσ ∗ g|2, (3)

k1 and k2 are positive constants, and Gσ is a Gaussian kernel
with the standard deviation σ . In the edge detector, the term
|∇

2 Gσ ∗ g|2 is added so the edge detector is better at
identifying theweak edges or textures. |∇2 Gσ ∗g|2 is larger in
the regions corresponding to the high frequency components
than the low frequency components (smooth regions), so the
proposed detector can identify strong edges or textures as
well as weak edges or textures. Near the edges and textures
where |∇Gσ g| is large, 0(|∇Gσ g|) is close to zero, and thus
the diffusion is weak. In the smooth regions |∇Gσ g| is small,
so 0(|∇Gσ g|) is close to one and the diffusion is strong. Thus,
the proposed model can smooth selectively during image
restoration. In summary, the edge detector improves the per-
formance of the proposed model at preserving the edges and
textures.

III. PROPOSED HPDEDD MODEL
1) HPDEDD RESTORATION MODEL
In the section, we present a nonlinear second-order
PDE-based image restoration model based on the second-
order hyperbolic diffusion equation, which is called the
HPDEDDmodel, for effectively restoring noisy images while
avoiding the staircase effect as well as preserving the edges
and fine details. Using the directional diffusion operator
defined in the previous section, the novel proposed HPDEDD
model is the following second-order nonlinear hyperbolic
initial boundary problem:

α
∂2 f
∂t2
+ β

∂f
∂t
−8(∇f (x))+ λ(f (x)− g(x)) = 0,

x ∈ �, t > 0, (4)

with the initial condition:{
f (0, x) = g(x), x ∈ �,
∂f
∂t (0, x) = 0, x ∈ �,

(5)

and the boundary conditions:

∂f

∂ EN
(t, x) = 0, x ∈ ∂�, (6)

where 8(∇f (x)) is defined in Eq. (2), the parameters
α, β, λ are positive constants, and EN is the normal direction
on ∂�.

2) ANALYSIS OF THE DIFFUSION DIRECTION En
The directional diffusion operator 8(∇f (x)) in direction En
can be rewritten as:

8(∇f (x))

= 0(|∇Gσ g|)En∇
>
∇f (x)En> + En∇>0(|∇Gσ g|)∇f (x)En

>

= 0(|∇Gσ g|)En∇
>
∇f (x)En> + (∇0(|∇Gσ g|) · En))(∇f (x) · En).

(7)

The direction En is very important for the diffusion opera-
tor and there are two influential directions, i.e., the edge’s
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gradient direction En1 =
∇f
|∇f | =

(fx ,fy)
|∇f | and the edge’s tan-

gential direction En2 =
(∇f )⊥

|∇f | =
(−fy,fx )
|∇f | .

a) If En = En1 =
∇f
|∇f | , then 8(∇f ) should be:

8(∇f (x))

= 0(|∇Gσ g|)En∇
>
∇f (x)En> + (∇0(|∇Gσ g|) · En))(∇f (x) · En)

= (0(|∇Gσ g|)+ |∇f (x)|0
′(|∇Gσ g|))fNN , (8)

where fNN =
fxx f 2x +fyyf

2
y +2fx fyfxy

f 2x +f 2y
is the second order derivative

of the image f (x) along the gradient direction. In this case,
the PDE model (4) tends to diffuse along the gradient direc-
tion, which leads to blurring of the edges in the image f (x).
b) If En = En2 =

(∇f )⊥

|∇f | =
(−fy,fx )
|∇f | , then 8(∇f (x)) should be:

8(∇f (x))

= 0(|∇Gσ g|)En∇
>
∇f (x)En> + (∇0(|∇Gσ g|) · En))(∇f (x) · En)

= 0(|∇Gσ g|)fTT , (9)

where fTT =
fxx f 2y +fyyf

2
x −2fx fyfxy

f 2x +f 2y
is the second order derivative

of image f (x) along the edge’s tangential direction in the
image f (x). In this case, Eq. (4) tends to smooth along the
edge’s tangential direction to preserve the edges of the image
f (x). In fact, by diffusing along the edge’s tangential direction
in the image f (x, y), it can preserve the edges but it may pro-
duce the staircase effect. Based on the analysis given above,
it seems that choosing any of the aforementioned options
for En may not be adequate. Thus, in this study, we employ
En = (∇g)⊥

|∇g| =
(−gy,gx )
|∇g| , so

8(∇f (x))

= En∇>(0(|∇Gσ g|)∇f (x))En
>

= 0(|∇Gσ g|)fgTT (x)+ (∇0(|∇Gσ g|) · En)(∇f (x) · En), (10)

where fgTT =
fxxg2y+fyyg

2
x−2gxgyfxy

g2x+g2y
is the second order derivative

of image f (x) along the edge’s tangential direction in the
observed image g(x). To alleviate the effect of noise when
estimating En = (∇g)⊥

|∇g| , the original image g(x) is prepro-
cessed with a Gaussian kernel with the standard deviation σ ,
i.e., ∇g = ∇Gσ ∗ g. To further remove any noise, we add
a smoothing term ν0(|∇Gσ g|)1f (x), so the directional diffu-
sion 8(∇f (x)) is finally written as:

8(∇f (x)) = En∇>(0(|∇Gσ g|)∇f (x))En
>

+ν0(|∇Gσ g|)1f (x), (11)

where ν is a small constant.

FIGURE 1. Effects of α and β on the image restoration results with noise
variance: 30 and 100. Lena image: SSIM values for different α and β.

In summary, the proposed HPDEDD model considers the
structure of the observed image and diffusion only occurs
alone the edges to preserve fine features, while the hyperbolic
diffusion helps to avoid the staircase effect, and the added
edge detector facilitates selective smoothing to avoid blurred
edges.

IV. NUMERICAL SCHEME
In this section, we explain the numerical implementation
method for the proposed HPDEDDmodel (4–6) using a finite
differences scheme. We perform the PDE discretization by
considering a space grid with a size of h and a time step 1t .
If the size of the original image isM ×N , then the space and
time coordinates are quantized as:

x = ih, y = jh, ∀i ∈ {0, 1, 2, . . . ,M},

∀j ∈ {0, 1, 2, . . . ,N }. (12)

P2 = (Enx , Eny)
(
(0(|∇Gσ g|)f

n
x )x (0(|∇Gσ g|)f

n
y )x

(0(|∇Gσ g|)f
n
x )y (0(|∇Gσ g|)f

n
y )y

)(
Enx
Eny

)
+ ν0(|∇Gσ g|)1f

n

= [(0(|∇Gσ g|)f
n
x )x En

2
x + (0(|∇Gσ g|)f

n
y )yEn

2
y]+ [(0(|∇Gσ g|)f

n
y )x + (0(|∇Gσ g|)f

n
x )y]Enx Eny + ν0(|∇Gσ g|)1f

n

= [D+x (0(|∇Gσ g|)D
−
x f

n)En2x + D
+
y (0(|∇Gσ g|)D

−
y f

n)En2y]+ [D+x (0(|∇Gσ g|)D
c
yf
n)+ D+y (0(|∇Gσ g|)D

c
x f
n)]Enx Eny

+ν0(|∇Gσ g|)
f n(i+ h, j)+ f n(i− h, j)+ f n(i, j+ h)+ f n(i, j− h)− 4f n(i, j)

h2
, (14)
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FIGURE 2. Restoration results obtained using the different methods. The results in the second to fifth rows were obtained using the
TV model [20], SOHPDE model [29], FOHPDE model [30], and the proposed model, respectively.

The approximations used in the finite differences scheme are
explained as follows. Eq. (4) comprises three parts. The first
part, P1 = α

∂2 f
∂t2
+ β

∂f
∂t , is approximated by using finite

differences:

P1 = α
∂2f
∂t2
+ β

∂f
∂t

= α
f n+1t (i, j)+ f n−1t (i, j)− 2f n(i, j)

1t2

+β
f n+1t (i, j)+ f n−1t (i, j)

21t

=
2α + β1t

21t2
f n+1t (i, j)+

2α − β1t
21t2

f n−1t (i, j)

−
2f n(i, j)
1t2

. (13)

The second part, P2 = En∇>(0(|∇Gσ g|)∇f )En
>
+

ν0(|∇Gσ g|)1f , can be rewritten as shown in Eq.(14),
as shown at the bottom of the previous page, where
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FIGURE 3. Restoration results obtained using the different methods. The results in the second to fifth rows were obtained using the TV
model [20], SOHPDE model [29], FOHPDE model [30], and the proposed HPDEDD model, respectively.

En = (Enx , Eny), Enx =
−gy
|∇g| , Eny =

gx
|∇g| , and these differential

operator D±x ,D
±
y ,D

c
x ,D

c
y are defined as

D±x s
n(i, j) = ±

sn(i± h, j)− sn(i, j)
h

,

D±y s
n(i, j) = ±

sn(i, j± h)− sn(i, j)
h

,

Dcxs
n(i, j) =

sn(i+ h, j)− sn(i− h, j)
2h

,

Dcys
n(i, j) =

sn(i, j+ h)− sn(i, j− h)
2h

.

Therefore, we can obtain the numerical approximation of
the HPDEDD by P1 − P2 + λ(f n − g) = 0. If we take
h = 1 and 1t = 1, then we have the following explicit
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FIGURE 4. Restoration results obtained using the different methods. The results in the second to fifth rows were obtained using the TV
model [20], SOHPDE model [29], FOHPDE model [30], and the proposed HPDEDD model, respectively.

numerical implementation scheme for the hyperbolic PDE
model:

f n+1(i, j) =
4

2α + β
f n(i, j)−

2α − β
2α + β

f n−1(i, j)

+
2

2α + β
P2 −

2λ
2α + β

(f n(i, j)− g(i, j)). (15)

The iterative algorithm begins with the original noisy image
g and iterates until the steady state using Eq. (15) for n =
1, 2, 3, . . ..

V. PARAMETER SELECTION
In this section, we explain themethod for selecting the param-
eters used in our experiments. In the edge detector, k1 and
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FIGURE 5. Restoration results obtained using the different methods. The results in the second to fifth rows were obtained using the TV
model [20], SOHPDE model [29], FOHPDE model [30], and the proposed HPDEDD model, respectively.

k2 are used to control the effect of the edge detector, and
λ controls the fidelity term, but the denoising results would
not adequate if they are excessively small or large. Based

on many edge detection experiment, we found that k1 =
0.001, k2 = 0.01, and a Gaussian kernel Gσ with zero mean
and variance σ = 1.5were highly appropriate values.We also
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TABLE 1. Quantitative analysis of the four methods with different noise levels.

TABLE 2. Average values with different noise levels corresponding to the results in Table 1.

TABLE 3. Average values for each image with all noise levels corresponding to the results in Table 1.

fixed ν = 0.5, λ = 0.01 because these settings obtained
the best results based on many experimental proofs. There
are two very important parameters in the hyperbolic PDE,
i.e., α and β, which are the coefficients of the second order
and first order derivatives in the time variable t . We tested
different values of α, β to obtain the restored image with the
highest structural similarity (SSIM) [32] value, and found that
α ∈ [0.8, 2.0], β ∈ [0.7, 1.5] were the best for image restora-
tion. We experimentally determined the optimal parameters
α, β in the following manner: α ranging from 0.8 to 2.0 and
β ranging from 0.7 to 1.5 with a step size of 0.2 based on
the Lena image, as shown in Fig. 1(a) (low level noise vari-
ance 30) and Fig. 1(b) (high level noise variance 100), where
the noisy image was created by adding Gaussian noise using
the Matlab function Lena + randn(size(Lena)) × variance.
Thus, we selected α = 1.6, β = 1.3 for image restoration in
the following experiments because they obtained the largest
SSIM value.

VI. NUMERICAL EXPERIMENTS
We tested the efficiency and feasibility of the proposed
model, and the results are presented in this section.
We compared the restoration results obtained by the

proposed HPDEDD model with those produced by the TV
using split Bregman [20], SOHPDE [29], and FOHPDE [30]
models. To objectively measure the image restoration quality,
we employed the signal to noise ratio (SNR) in decibels (dB),
mean squared error (MSE), and SSIM [32], which are defined
as:

SNR = 10 log10
‖u− ū‖22
‖u− u∗‖22

, (16)

MSE =
‖u− u∗‖22
|�|

, (17)

SSIM =
(2ūū∗ + C1)(2σuu∗ + C2)

(ū2 + ū∗2 + C1)(σu + σu∗ + C2)
, (18)

where u∗ and u are the inpainting image and true image,
respectively; ū and ū∗ are the mean values of u and u∗;
σu and σu∗ represent the variances of u and u∗; σuu∗ is the
covariance of u and u∗; and C1 and C2 are constants selected
by considering the human visual system perception and to
ensure the numerical stability of the division. The SNR,MSE,
and SSIMhave been usedwidely to test the quality of restored
images, where the quality of the restored image is better when
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FIGURE 6. Restoration results obtained using the different methods. The results in the second to fifth rows were obtained using the TV
model [20], SOHPDE model [29], FOHPDE model [30], and the proposed HPDEDD model, respectively.

the values of SNR and SSIM are higher, and the value ofMSE
is lower.

In our experiments, the restoration results for TV
using split Bregman [20] were obtained from the source
code available from: http://dx.doi.org/10.5201/ipol.2012.g-
tvi. The parameters for TV, SOHPDE, and FOHPDE

were recommended in previous studies [20], [29], [30].
The parameters selected for the models were discussed in the
previous section and they obtained the best results according
to many experimental proofs. It should be noted that the
stopping condition for each algorithm was that producing the
best SSIM values.
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First, we tested the denoising performance of the proposed
method with five popular images at four different noise
levels, where some of the noisy images tested are shown
in the first rows of Figs. 2–5. The noisy images were cre-
ated by adding Gaussian noise using the Matlab function
Image+randn(size(Image))×variance, with variances of 25,
50, 75, and 100. The experimental results in terms of the SNR,
MSE, and SSIM are shown in Table 1. According to Table 1,
the proposed model obtained better values for SNR, MSE,
and SSIM in most of the denoising results compared with the
other models, especially the denoising results with high level
noise (such as the SSIM values for Boat and Panda).

To further compare the performance of the different algo-
rithms, we also present the corresponding average SNR,
MSE, and SSIM values with four different noise levels
in Table 2, and the corresponding average SNR, MSE, and
SSIM values for each image in Table 3. Table 2 shows
that the proposed model obtained the best average values
for SNR, MSE, and SSIM, except with the low noise level
(variance = 25), and the next best performance was with the
TV model using the split-Bregman method, followed by the
SOHPDE and FOHPDE models. For example, the proposed
model obtained higher average SSIM values than the TV
with split-Bregman method, SOHPDE model, and FOHPDE
model, thereby demonstrating that the proposed model per-
formed better than the other models under different noise
levels. Table 3 shows that the proposed model obtained
the highest average SNR, MSE, and SSIM values, except
with the Cameraman image (because the values obtained
using the proposed model were less than the values with the
TV model for the Cameraman image when the noise level
was low, e.g., variances of 25 and 50). Therefore, the pro-
posed model is suitable for different types of images. Thus,
we consider that the average image restoration performance
of the proposed model is better than that of the other three
models.

Second, we performed visual comparisons of the restored
images. The denoising results obtained for the four noisy
images with noise levels varying from 25 to 100 are shown
in Figs. 2–6. According to the image restoration results
in Figs. 2–6, the proposed model could remove various levels
of noise while preserving the details and sharp edges, as well
as avoiding the staircase effect. The TV model was affected
severely by the staircase effect with high noise. The SOHPDE
model was better at the preserving the edges and for avoiding
the staircase effect than the TVmodel, but it performed worse
when the noise level was very high. The FOHPDEmodel was
not affected by the staircase effect, but it failed to remove the
noise well and it blurred the sharp edges. Thus, the proposed
model obtained better visual resolution than the other three
models.

VII. CONCLUSION
In this study, we proposed a new second order hyperbolic
PDE for image restoration based on directional diffusion in
order to preserve the edges and fine details in images, as well

as avoiding the staircase effect. The proposed PDE model
can diffuse along the tangential direction of the edges in the
observed image, thereby preserving the features in the image
and the staircase effect never appears in the restored image.
Numerous experiments using images with different noise
levels demonstrated the effectiveness of the proposed second
order hyperbolic PDE model. In particular, the experiments
showed that the proposedmodel performed better than several
existing methods, i.e., TV-based smoothing, the SOHPDE
model, and the FOHPDE model.
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