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ABSTRACT Recently, variational and partial differential equation (PDE)-based algorithms have become
very important for image restoration. In this study, we propose a new second order hyperbolic PDE model
based on directional diffusion for image restoration. This hyperbolic PDE restoration model can simply
diffuse along the edge’s tangential direction in the observed image, thereby removing noise while preserving
the image edges and fine details, which avoids the staircase effect in the restored image. An effective
numerical scheme is proposed for handling the computation of our approach using the finite difference
method. Successful image restoration experiments demonstrated that the proposed second order hyperbolic
PDE-based model obtains superior performance compared with other models at preserving edges and it

avoids the staircase effect.

INDEX TERMS Hyperbolic partial differential equation, direction diffusion, image restoration.

I. INTRODUCTION

This Digital images are inevitably corrupted by noise during
image acquisition, compression, transmission, and other pro-
cesses, and thus image denoising is an important research area
in image processing and computer vision [1], where the aim
is to restore a noisy or blurred image while preserving the
features of the original image.

PDE-based and variational algorithms have become very
important tools for image restoration, where many algo-
rithms have been developed and applied in computer vision
applications. The two most influential algorithms are the
anisotropic diffusion model (PM) proposed by Perona and
Malik [2], and the total variation (TV)-based model proposed
by Rudin et al. [3]. The PM model was designed with the
explicit goal of achieving a good trade-off between noise
removal and edge preservation. Since the pioneering study
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by Perona and Malik, many variance-based models have
been proposed, including the anisotropic diffusion model
proposed by Weickert [4], Weickert and Schnorr [5], struc-
ture tensor diffusion [6], the manifold diffusion method [7],
adaptive anisotropic diffusion based on a structure tensor [8],
anisotropic diffusion based on band pass signals [9], a mod-
ified PM model based on directional Laplacian [10], and
automatic parameter selection anisotropic diffusion [11].
The TV model has been studied extensively, thereby
demonstrating that it is efficient for removing noise
and preserving edges [12], [13]. Many improved mod-
els and optimization methods have also been proposed
and applied, such as adaptive TV denoising [13], [14],
the anisotropic higher degree TV regularizer [15], fixed point
iteration [16], [17], primal-dual methods [18], [19], and split
Bregman method [20]-[23].

However, nonlinear anisotropic partial differential equa-
tions (PDEs) and TV-based denoising often cause staircase
effects [24]. Thus, to alleviate these staircase effects, high
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order PDEs have been considered in recent years [25]-[28],
such as the LLT (Lysaker M., Lundervold A., Tai X.C.)
model [25], YK (You Y., Kaveh M.) model [26], and the adap-
tive fourth-order model [28], but high order PDEs inevitably
corrupt the high-frequency details in the restored images,
i.e., high order PDEs will over-smooth the images and affect
the preservation of weak edges.

Recently, Barbu transformed the parabolic second-order
and fourth-order PDEs into more effective hyperbolic
diffusion models, and proposed second-order hyperbolic
PDE (SOHPDE) [29] and fourth-order hyperbolic PDE
(FOHPDE) [30] models for image restoration, which help
to avoid the staircase effect as well as preserving the edges
and features. Inspired by these new methods and the direction
diffusion [31], in this study, we propose a new second-order
nonlinear hyperbolic PDE model based on spatial direc-
tional diffusion (HPDEDD) for image restoration. Compared
with other models, the proposed HPDEDD model has three
advantages. First, the proposed HPDEDD model consid-
ers the structure of the observed image, where diffusion
only occurs along the edges to preserve fine features. Sec-
ond, hyperbolic diffusion helps to avoid the staircase effect.
Third, the added edge detector facilitates selective smooth-
ing to avoid blurred edges. Experimental comparisons with
other PDE-based methods demonstrated that the proposed
HPDEDD algorithm performs more effectively at high level
noisy image restoration while also preserving the edges and
avoiding the staircase effect.

The remainder of this paper is organized as follows.
In Section 2, we define the directional diffusion operator.
In Section 3, we propose the HPDEDD model and analyze
the diffusion direction. We explain the efficient numerical
implementation scheme for the proposed model in Section 4.
In Section 5, we consider the selection of the parameters.
In Section 6, we present the results of numerical experiments
and comparisons with several existing methods in order
to demonstrate the effectiveness of the HPDEDD model.
Finally, we give our conclusions in the final section.

Il. DIRECTIONAL DIFFUSION

The basic aim of image restoration is to recover an image
f(x) from an observed image g(x). First, we present the
definition of directional diffusion [10], [31]. Let us assume
that an image region 2 C R2, and H(x) = V' Vf(x)is a
Hessian matrix of f(x), where x = (x, y) € Q and T denotes
the transposition. nH(x)n' is the second order directional
derivative of f(x) along the direction n, where 1 is a unit
vector. Now, we define the directional diffusion ®(Vf(x)):

O(Vf(x)) = nHxn' =nvV'Vfxn'. (D)

We incorporate an edge detector I'(| Vg, g|) for the observed
image g(x) into Eq. (1) in the following manner:

d(Vf(x)) =nV ' ([(|Vg, gV, 2
where

I'(IVeg, gD = 1/(1 + Vg, gD,
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IVG, 8l = kiIVG, * gI* + k2| V3Go % 812, (3)

k1 and ky are positive constants, and G, is a Gaussian kernel
with the standard deviation o. In the edge detector, the term
V2 G, * g|> is added so the edge detector is better at
identifying the weak edges or textures. | V2 G, xg|? is larger in
the regions corresponding to the high frequency components
than the low frequency components (smooth regions), so the
proposed detector can identify strong edges or textures as
well as weak edges or textures. Near the edges and textures
where |V, gl is large, I'(|Vg, gl) is close to zero, and thus
the diffusion is weak. In the smooth regions |V¢, g| is small,
so I'(]Vg, gl) is close to one and the diffusion is strong. Thus,
the proposed model can smooth selectively during image
restoration. In summary, the edge detector improves the per-
formance of the proposed model at preserving the edges and
textures.

Ill. PROPOSED HPDEDD MODEL

1) HPDEDD RESTORATION MODEL

In the section, we present a nonlinear second-order
PDE-based image restoration model based on the second-
order hyperbolic diffusion equation, which is called the
HPDEDD model, for effectively restoring noisy images while
avoiding the staircase effect as well as preserving the edges
and fine details. Using the directional diffusion operator
defined in the previous section, the novel proposed HPDEDD
model is the following second-order nonlinear hyperbolic
initial boundary problem:

0% f | Lo
a5 B = V) + A () — gx) =0,

912
xeQ,t>0 4

with the initial condition:

f0,x) =g(x), x€,
af ©)
=0,%x) =0, X e Q,
and the boundary conditions:
of
—=(@,x)=0, x€09Q, (6)
oN

where ®(Vf(x)) is defined in Eq. (2), the parameters
o, B, A are positive constants, and N is the normal direction
on 0%2.

2) ANALYSIS OF THE DIFFUSION DIRECTION n
The directional diffusion operator ®(Vf(x)) in direction n
can be rewritten as:

DV (X))

= I'(|Vg, gDV VF®R" + 1V T(|Ve, gV (xn"

= I'(|Vg, gDV VxR + (VI'(|Vg,gl) - W)(Vf(X) - ).
7

The direction n is very important for the diffusion opera-
tor and there are two influential directions, i.e., the edge’s
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gradient direction n; = g; = ()ﬁv{) and the edge’s tan-
gential direction ﬁz = (IVJ}IL = (T@fff).
a)lfn=n; = |Vf| , then ®(Vf) should be:
Q(Vf(x))
= I'(IV6, gDV Vf (R + (VT(|Vg, &) - W)(Vf () - 1)
= (I'(IVg, &) + IVf®IT'(IVa, gD, ()]
where fyy = M is the second order derivative

Y
of the image f(x) along the gradient direction. In this case,
the PDE model (4) tends to diffuse along the gradient direc-
tion, which leads to blurring of the edges in the image f (x).

-4 n + — ‘V’ x

b)Iffi = i, = - = ( lf;ff ). then ®(Vf(x)) should be:
d(Vf(x)
= IV, DRV V()R + (VI( Y6, g]) - DY/ (x) - T)
= I'(IVg, gfrr, )
fxva e =2

f2+f2

of image f(x) along the edge’s tangential direction in the
image f(x). In this case, Eq. (4) tends to smooth along the
edge’s tangential direction to preserve the edges of the image
f(x). In fact, by diffusing along the edge’s tangential direction
in the image f (x, y), it can preserve the edges but it may pro-
duce the staircase effect. Based on the analysis given above,
it seems that choosing any of the aforementioned options
for n may not be adequate Thus, in this study, we employ

where frr is the second order derivative

_ (Vor _ (=880
— Vel T Vel
D(Vf(x)

=1V (I'(|Vg, gV (x)n "
= [(IVG, gDferr (X) + (VI'(IVg, g) - D)(VF(X) - 71), (10)

fxx85+fV)'g,%_28,xgny)>
gty
of image f(x) along the edge’s tangential direction in the
observed image g(x). To alleviate the effect of noise when
estimating n = (lvvg;ﬁ, the original image g(x) is prepro-
cessed with a Gaussian kernel with the standard deviation o,
ie., Vg = VG, *x g. To further remove any noise, we add
a smoothing term vI'(|Vg, g]) Af (), so the directional diffu-

sion ®(Vf(x)) is finally written as:
(Vf (%) =0V (I'(| Vg, ghVfx)n '
+vI(IVg, ghAf(x),  (11)

where fo,. = is the second order derivative

where v is a small constant.
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FIGURE 1. Effects of « and B on the image restoration results with noise
variance: 30 and 100. Lena image: SSIM values for different « and g.

In summary, the proposed HPDEDD model considers the
structure of the observed image and diffusion only occurs
alone the edges to preserve fine features, while the hyperbolic
diffusion helps to avoid the staircase effect, and the added
edge detector facilitates selective smoothing to avoid blurred
edges.

IV. NUMERICAL SCHEME

In this section, we explain the numerical implementation
method for the proposed HPDEDD model (4-6) using a finite
differences scheme. We perform the PDE discretization by
considering a space grid with a size of & and a time step At.
If the size of the original image is M x N, then the space and
time coordinates are quantized as:

x=ih, y=jh Viel{0,1,2,..., M},

Vie{0,1,2,....,N}. (12)

N I'(|V x (I'(IV x
P; = (ny, ny) (( (IVG, 8 x ([ Va, &1y )( V>+ vI'(IVg, ghaf™

(F(IVGUgI)f")> (T(IV6, 87Ny
= [(T(IV6, g2 + (T(1 VG, g)f) )i
= [DF (T(IVg, gDy f")i

+vI'(1Ve, gD

1] + [(C(1 V6, gD + (DY, gDf )y Ihehy + vI(| Ve, gDAS"
+ Dy (T(IVe, gDy f™Mi;]
S+ b )+ = )+ £+ B+ G — h)

+ [DF (T(1VG,&DDyf™) + D (T (IVg, ghDgf™) I 1y
— 4f" (. J)

h2
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FIGURE 2. Restoration results obtained using the different methods. The results in the second to fifth rows were obtained using the
TV model [20], SOHPDE model [29], FOHPDE model [30], and the proposed model, respectively.

The approximations used in the finite differences scheme are
explained as follows. Eq. (4) comprises three parts. The first

2
part, Py = 337{ + ,3%, is approximated by using finite
differences:
0% | Of
P =a— .
L=age thy,
G NG = 2 G)
Ar?
131024

AL ) 4 G )

+h 2At
L 204 BAL o 200— BAL A
210,
6D (13)

A2

The second part, P, = nV (I'(|Vg,g)VAn' +
vI'(|Vg,g)Af, can be rewritten as shown in Eq.(14),
as shown at the bottom of the previous page, where
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FIGURE 3. Restoration results obtained using the different methods. The results in the second to fifth rows were obtained using the TV
model [20], SOHPDE model [29], FOHPDE model [30], and the proposed HPDEDD model, respectively.

e L ) ' e PO
n = (1,0, = %,ny = %, and these differential Dis"(i, ) = s +h,])2hs ¢ h’J),

operator DY, Dyi, D¢, Df are defined as S+ ) — $G.j — B

DSs"(i, )) =
o SR ) = G ’ 2h
Dys"(i,j) =+ 7 ’ Therefore, we can obtain the numerical approximation of
o s"(i, j+ h) — s"(i, ) the HPDEDD by P1 — P2 4+ A(f" — g) = 0. If we take
Dys™(i,j) = £ A ) h = 1 and At = 1, then we have the following explicit
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FIGURE 4. Restoration results obtained using the different methods. The results in the second to fifth rows were obtained using the TV
model [20], SOHPDE model [29], FOHPDE model [30], and the proposed HPDEDD model, respectively.

numerical implementation scheme for the hyperbolic PDE The iterative algorithm begins with the original noisy image

model: g and iterates until the steady state using Eq. (15) for n =
o 4 L 2a—=PB . 1,2,3,....
g = IR £
200 + B 200 + B V. PARAMETER SELECTION
2 2 o s secti : . ]
+ ) (G, j) — gG, ). (15) In this sect19n, we explal.n the method for selecting the param
20 + B 20 + B eters used in our experiments. In the edge detector, k; and
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FIGURE 5. Restoration results obtained using the different methods. The results in the second to fifth rows were obtained using the TV
model [20], SOHPDE model [29], FOHPDE model [30], and the proposed HPDEDD model, respectively.

ko are used to control the effect of the edge detector, and on many edge detection experiment, we found that k; =
A controls the fidelity term, but the denoising results would 0.001, k» = 0.01, and a Gaussian kernel G, with zero mean
not adequate if they are excessively small or large. Based and variance o = 1.5 were highly appropriate values. We also
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TABLE 1. Quantitative analysis of the four methods with different noise levels.

Image Noise TV SOHPDE FOHPDE HPDEDD
SNR MSE SSIM SNR MSE SSIM SNR MSE SSIM SNR MSE SSIM
Lena 25 13.5914 99.3859 0.8154 12.8778 117.1349 0.7934 12.3982 130.8090  0.7717 13.6041 99.0959 0.8159
50 10.8995 184.7628 0.7301 10.7977 189.0983 0.7247 9.9781 228.3763 0.6669 10.8964 184.1556  0.7337
75 9.2054 272.8499 0.6726 9.2613 269.3577 0.6665 8.5025 320.7865 0.6102 9.2765 268.4205 0.6797
100 8.3062 335.6193 0.6190 8.1517 347.7718 0.6005 74718 406.7060  0.5652 8.3526 328.7987 0.6284
Cameraman 25 15.1478 118.7875 0.8074 13.5900 170.0387 0.7794 12.5125 217.9218 0.7202 14.5840 135.2550  0.7944
50 12.0280  243.6421 0.7330 11.7113 267.0736 0.7095 10.4308 351.9388 0.6047 11.6720 264.4532  0.7242
75 10.4216 352.6866 0.6787 10.3864  355.5622 0.6606 8.9672 492.9775 0.5558 10.4335 350.8808 0.6796
100 9.5666 429.4295 0.6496 9.4760 438.4828 0.5791 8.3065 573.9792  0.4898 9.5785 428.8861 0.6637
Pepper 25 15.2121 84.8347 0.8515 14.4966 100.0294 0.8458 13.4550 127.1418 0.8169 15.3155 82.8385 0.8505
50 12.0187 176.9769 0.7743 11.8086 185.7502 0.7705 10.7647 236.2224  0.7283 11.9624 179.2864  0.7822
75 10.2509 265.8860  0.7075 10.0397 279.1355 0.7159 9.4535 319.4734  0.6718 10.2649 265.4841 0.7237
100 8.9177 361.4257 0.6682 8.9039 362.5714 0.6325 8.4166 405.6274  0.6132 8.9281 360.2268 0.6727
Boat 25 12.8620 103.0901 0.7838 11.9582 126.9379 0.7485 12.4579 113.1413 0.7641 12.9663 100.6434  0.7845
50 9.8603 205.7707 0.6630 9.8879 204.4674 0.6686 9.5019 223.4738 0.6428 10.1492 192.5264  0.6778
75 8.3318 292.5713 0.5956 8.5572 277.7753 0.6095 7.8695 325.4339  0.5736 8.4923 281.9579 0.6101
100 7.2192 377.9982 0.5478 7.3753 364.6565 0.5504 6.8428 412.2194  0.5338 7.4381 359.4242  0.5620
Panda 25 16.6810 92.9724 0.7302 16.1542 104.9648 0.7152 15.8188 113.3908 0.7052 16.6179 94.3380 0.7272
50 14.0595 170.0247 0.6328 14.2443 162.9394 0.6424 13.3688 199.3329  0.6178 14.2170 163.9668 0.6450
75 12.6634  234.4860  0.5847 12.7656 229.0324 0.5892 12.0480 270.1805 0.5661 12.7841 228.0581 0.5971
100 11.8898 280.2081 0.5552 11.6241 297.8875 0.5387 10.9166 350.5929  0.5172 11.8940 280.1787 0.5663
TABLE 2. Average values with different noise levels corresponding to the results in Table 1.
Noise TV SOHPDE FOHPDE HPDEDD
) SNR MSE SSIM SNR MSE SSIM SNR MSE SSIM SNR MSE SSIM
25 14.6988  99.8141  0.7977 13.8154 123.8211 0.7765 13.3285 140.4809 0.7556 14.6176  102.4342  0.7945
50 117732 196.2354  0.7066  11.6900 201.8658 0.7031  10.8089  247.8688  0.6521  11.7794 197.0258 0.7126
75 10.1746  283.6960  0.6478  10.2020 282.1726  0.6483  9.3681 3457704 0.5955 10.2503  278.9603  0.6580
100 9.1799  356.9362 0.6080 9.1062  362.2740 0.5802 83909  429.8250 0.5438  9.2383  350.9028  0.6186
TABLE 3. Average values for each image with all noise levels corresponding to the results in Table 1.
Image TV SOHPDE FOHPDE HPDEDD
SNR MSE SSIM SNR MSE SSIM SNR MSE SSIM SNR MSE SSIM
Lena 105006  223.1545 0.7093 10.2721 230.8407 0.6963  9.5877  271.6694 06535 105324 220.1177 0.7144
Cameraman  11.7910 286.1364  0.7172  11.2909  307.7893  0.6822  10.0543  409.2043 0.5926 11.5670 294.8688  0.7155
Pepper 11.5999  222.2808 0.7501  11.3122  231.8716 0.7412 10.5225 272.1163  0.7075 11.6177 221.9589 0.7573
Boat 9.5683 2448576  0.6476  9.4447 2434593 0.6442  9.1680  268.5671 0.6286  9.7615  233.6380  0.6586
Panda 13.8234 1944228  0.6257 13.6970 198.7060  0.6214  13.0381 233.3743  0.6016  13.8783  191.6354  0.6339

fixed v = 0.5,1 = 0.01 because these settings obtained
the best results based on many experimental proofs. There
are two very important parameters in the hyperbolic PDE,
i.e., @ and B, which are the coefficients of the second order
and first order derivatives in the time variable . We tested
different values of «, 8 to obtain the restored image with the
highest structural similarity (SSIM) [32] value, and found that
a € [0.8,2.0], B €[0.7, 1.5] were the best for image restora-
tion. We experimentally determined the optimal parameters
o, B in the following manner: o ranging from 0.8 to 2.0 and
B ranging from 0.7 to 1.5 with a step size of 0.2 based on
the Lena image, as shown in Fig. 1(a) (low level noise vari-
ance 30) and Fig. 1(b) (high level noise variance 100), where
the noisy image was created by adding Gaussian noise using
the Matlab function Lena + randn(size(Lena)) x variance.
Thus, we selected « = 1.6, § = 1.3 for image restoration in
the following experiments because they obtained the largest
SSIM value.

VI. NUMERICAL EXPERIMENTS

We tested the efficiency and feasibility of the proposed
model, and the results are presented in this section.
We compared the restoration results obtained by the

131028

proposed HPDEDD model with those produced by the TV
using split Bregman [20], SOHPDE [29], and FOHPDE [30]
models. To objectively measure the image restoration quality,
we employed the signal to noise ratio (SNR) in decibels (dB),
mean squared error (MSE), and SSIM [32], which are defined
as:

SNR = 101 M= ally (16
= Ogl() ”u— u*”z’ )
2
||M—M*||%
MSE = =2, a17)
it + C1)20up + C
ssiv = —FCECOQour +C) g

(@2 + 10%° + C1)oy + o + C2)

where u* and u are the inpainting image and true image,
respectively; u and u* are the mean values of u and u*;
oy, and o,+ represent the variances of u and u*; oy, is the
covariance of u and u™; and C; and C; are constants selected
by considering the human visual system perception and to
ensure the numerical stability of the division. The SNR, MSE,
and SSIM have been used widely to test the quality of restored
images, where the quality of the restored image is better when
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FIGURE 6. Restoration results obtained using the different methods. The results in the second to fifth rows were obtained using the TV
model [20], SOHPDE model [29], FOHPDE model [30], and the proposed HPDEDD model, respectively.

the values of SNR and SSIM are higher, and the value of MSE
is lower.

In our experiments, the restoration results for TV
using split Bregman [20] were obtained from the source
code available from: http://dx.doi.org/10.5201/ipol.2012.g-
tvi. The parameters for TV, SOHPDE, and FOHPDE

VOLUME 8, 2020

were recommended in previous studies [20], [29], [30].
The parameters selected for the models were discussed in the
previous section and they obtained the best results according
to many experimental proofs. It should be noted that the
stopping condition for each algorithm was that producing the
best SSIM values.
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First, we tested the denoising performance of the proposed
method with five popular images at four different noise
levels, where some of the noisy images tested are shown
in the first rows of Figs. 2-5. The noisy images were cre-
ated by adding Gaussian noise using the Matlab function
Image+randn(size(Image)) x variance, with variances of 25,
50,75, and 100. The experimental results in terms of the SNR,
MSE, and SSIM are shown in Table 1. According to Table 1,
the proposed model obtained better values for SNR, MSE,
and SSIM in most of the denoising results compared with the
other models, especially the denoising results with high level
noise (such as the SSIM values for Boat and Panda).

To further compare the performance of the different algo-
rithms, we also present the corresponding average SNR,
MSE, and SSIM values with four different noise levels
in Table 2, and the corresponding average SNR, MSE, and
SSIM values for each image in Table 3. Table 2 shows
that the proposed model obtained the best average values
for SNR, MSE, and SSIM, except with the low noise level
(variance = 25), and the next best performance was with the
TV model using the split-Bregman method, followed by the
SOHPDE and FOHPDE models. For example, the proposed
model obtained higher average SSIM values than the TV
with split-Bregman method, SOHPDE model, and FOHPDE
model, thereby demonstrating that the proposed model per-
formed better than the other models under different noise
levels. Table 3 shows that the proposed model obtained
the highest average SNR, MSE, and SSIM values, except
with the Cameraman image (because the values obtained
using the proposed model were less than the values with the
TV model for the Cameraman image when the noise level
was low, e.g., variances of 25 and 50). Therefore, the pro-
posed model is suitable for different types of images. Thus,
we consider that the average image restoration performance
of the proposed model is better than that of the other three
models.

Second, we performed visual comparisons of the restored
images. The denoising results obtained for the four noisy
images with noise levels varying from 25 to 100 are shown
in Figs. 2-6. According to the image restoration results
in Figs. 2-6, the proposed model could remove various levels
of noise while preserving the details and sharp edges, as well
as avoiding the staircase effect. The TV model was affected
severely by the staircase effect with high noise. The SOHPDE
model was better at the preserving the edges and for avoiding
the staircase effect than the TV model, but it performed worse
when the noise level was very high. The FOHPDE model was
not affected by the staircase effect, but it failed to remove the
noise well and it blurred the sharp edges. Thus, the proposed
model obtained better visual resolution than the other three
models.

VIi. CONCLUSION

In this study, we proposed a new second order hyperbolic
PDE for image restoration based on directional diffusion in
order to preserve the edges and fine details in images, as well
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as avoiding the staircase effect. The proposed PDE model
can diffuse along the tangential direction of the edges in the
observed image, thereby preserving the features in the image
and the staircase effect never appears in the restored image.
Numerous experiments using images with different noise
levels demonstrated the effectiveness of the proposed second
order hyperbolic PDE model. In particular, the experiments
showed that the proposed model performed better than several
existing methods, i.e., TV-based smoothing, the SOHPDE
model, and the FOHPDE model.
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