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ABSTRACT Cooperative spectrum sensing can be regarded as a promising method to resolve the spectrum
scarcity owing to achieving spatial diversity gain in cognitive radio sensor networks. However, the spectrum
sensing data falsification attack launched by the malicious nodes will result in the wrong decision in the
fusion center owing to the falsified observations. It will cause a serious security threat and degrade the
decision making process. In this paper, we propose a secure cooperative spectrum sensing strategy based
on reputation mechanism for cognitive wireless sensor networks to counter above kind of attack. The beta
reputation model is applied to assign reputation value to cognitive sensor nodes according to their historical
sensing behavior, and a dynamic trust evaluation scheme of cooperative spectrum sensing is established.
In the final decision, the fusion center allocates a reasonable weight value according to the evaluation of
the submitted observations to improve the accuracy of the sensing results. Simulation results support that
our proposed strategy can weaken the impact of sensing data falsification attacks in cooperative sensing and
outperform some traditional methods.

INDEX TERMS Cooperative spectrum sensing, reputation mechanism, cognitive wireless sensor networks,
cognitive radio.

I. INTRODUCTION
By employing the cognitive radio (CR) technology, the
CR-enable sensor nodes can perform spectrum sensing to
detect available licensed bands and reduce channel unordered
competition. Owing to dynamically aware of the surrounding
environment, CR sensor networks (CRSNs) can overcome
the problem of overcrowded unlicensed spectrum bands and
improve spectrum utilization [1]. IEEE, IITU-R, and other
organizations and industry alliances have put forward a series
of standards and specifications in the following aspects,
including the network architecture, physical layer interface
and medium access layer design of CR technology [2]. The
current technologies for CRSNs are still in the development
stage, and there are deficiencies in many aspects. Basically,
the use of authorized frequency band by CR-enable sensor
nodes are required to guarantee no interference to the primary
user’s signal strictly. However, false alarms and misdetection
of PU’s will be inevitable by shadowing and fading effect,
especially under low signal-noise-ratio (SNR) conditions [3].
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It brings about tremendous challenges in cognitive radio
systems and influences the dynamic spectrum access for
CR-enable sensor nodes to utilize idle licensed bands oppor-
tunistically. By combining the numerous sensor nodes’ local
sensing results, cooperative spectrum sensing (CSS) can alle-
viate the inaccuracy of single node’s observation and enhance
the spectrum sensing performance [4]. However, false reports
included in cooperative nodes will cause a serious security
threat and may disrupt the cognitive radio system [5].

Due to the open and time-varying characteristics of wire-
less channel, CRSNs are vulnerable to various security
threats, e. g. interference, eavesdropping, deception and so
on. Especially, spectrum sensing data falsification (SSDF) [6]
or primary user emulation (PUE) [7] attacks are the most
common and serious attacks, which will produce erroneous
sensing decision and result in unwanted interference to the
PU. Among them, the SSDF can be regarded as a particular
case of the DoS (Deny of Service) attack [8]. During the
process of collaborative spectrum sensing decision-making,
the attackers will conduct a defective decision in term of the
spectrum utilization by injecting falsified observations. More
importantly, malicious users can illegally occupy spectrum
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bandwidth by disrupting the proper functioning of the coop-
erative spectrum sensing. Even if there exists only a small
number of malicious users in the CRSNs, that will lead to
a serious degradation of detection performance and affect
the robustness of the system [9]. When the number of mali-
cious users exceeds to some extent, large-scale attacks will
directly lead to the whole network collapse. Hence, when the
fusion center (FC) adopts some conservative fusion strategies
to protect the primary users as much as possible, only a
few malicious users can mislead the FC to make a wrong
decision [10]. Therefore, it is of great significance to design
a secure cooperative spectrum sensing mechanism to resist
SSDF attacks.

In this paper, we propose a secure cooperative spectrum
sensing strategy based on reputation mechanism for cognitive
wireless sensor networks to counter the SSDF attack. The
main contributions of this paper are as follows:

• introducing the beta reputation model is applied to
assign reputation value to cognitive sensor nodes accord-
ing to their historical sensing behavior;

• proposing a dynamic trust evaluation scheme and assign-
ing reasonable weight value to cooperative sensor node
according to the evaluation of the submitted observa-
tions to improve the accuracy of the sensing results;

• proposing a attacker-identification method to detect
attackers effectively.

II. RELATED WORK
By utilizing the cooperation of multi sensor nodes in dif-
ferent geographical locations, CSS can effectively alleviate
the problem of spectrum allocation, which can reduce the
interference inside the network under shadow fading andmul-
tipath effect. However, the corrupted sensing reports during
transmission or sensing observations manipulated by mali-
cious users will mislead the FC tomake wrong decisions [11].
The countermeasures for secure cooperative sensing are dis-
cussed in many literatures, and different kinds of security
attacks and defenses are studied recently.

Many anti-SSDF attack strategies employ analytical
method with outlier detection for malicious user’s detection.
Li et al. [12] proposed a method combining spectrum sens-
ing and outlier detection to distinguish the node’s failure
or malicious user’s attack. Ghaznavi and Jamshidi [13] pro-
posed a fast search algorithm based on the clustering net-
work structure to detect the malicious nodes of each cluster,
which can reduce the overhead by reducing the sensing infor-
mation exchange between the cognitive users and the FC.
By constructing a cooperative sensing network with double
sparsity property, Qin et al. [14] introduced a compressive
sensing technique and the strategy of adaptive outlier pursuit
with low-rank matrix completion to detect malicious users.
By utilizing the spatial characteristics of the CR sensors,
Kaligineedi et al. [15] proposed an outlier detection technique
with constraints of small size of the sensing data samples.
Nath et al. [16] proposed a k-medoids clustering algorithm to

isolate and distinguish the attackers without predefining the
detection threshold.

Some countermeasures against SSDF attack are based
on Dempter-Shafer theory of evidence, in which all rec-
ommendations are usually qualified as honest and accu-
rate. Wang et al. [17] introduced a CSS algorithm based on
Dempter-Shafer theory and defined the credibility of cog-
nitive user’s local results to improve the sensing accuracy.
Considering the difference of cognitive users’ sensing chan-
nel, Nguyen-Thanh and Koo [18] proposed an enhanced
CSS mechanism to evaluate the degree of reliability of each
sensing terminal, and assign different weight of sensing
data based on Dempter-Shafer theory of evidence. By ana-
lyzing the distance between evidence vectors of different
cooperative secondary users, Yu et al. [19] introduced an
improved CSS scheme with the mathematical model from
Dempster-Shafer evidence. Han et al. [20] proposed a detec-
tion method to resist SSDF attack, in which the FC removes
the evidence with low reliable sensing nodes and fuses the
reports with high reliability to obtain better detection per-
formance. By exploiting the characteristics of sensing node’s
spatial diversity, Feng et al. [21] proposed a trustworthy coop-
erative spectrum sensing scheme and designed the factors of
the current reliability and the historical reputation to estimate
the trustworthiness degree of each sensing node.

To identifying attackers effectively and avoid detecting
honest sensor nodes as attackers, trust mechanism can be
regarded as more effective measure in many application sce-
narios. Chen and Xie [22] proposed a reputation-based CSS
scheme based on hierarchical clustering architecture, which
effectively reduced the impact of multipath fading, shadow
and malicious attack by using the two-level reputation esti-
mation. Gupta and Yerma [23] proposed a reliability-based
weighting algorithm, which mainly improves the sensing
performance in the low SNR conditions, and distinguishes
the cognitive users according to the comparison between the
user’s historical sensing results and the FC. By exploiting
the spatial and temporal correlation of sensing information,
Huang et al. [24] employed the trust value of cognitive users
to lessen the impact of malicious users on sensing results.
To degrade the impact of malicious users, Wei et al. [25]
applied a weighted average consistency algorithm to cooper-
ative spectrum sensing, which can ensure reliable data trans-
mission by direct and indirect trust value. In order to prevent
malicious nodes frommaintaining a high degree of trust in the
alternate process of reporting real or erroneous sensing data,
Feng et al. [26] proposed a novel trust scheme with dynamic
evaluation against intermittent SSDF attack.

To alleviate the attacker’s influence on the network per-
formance, the punishment strategies are established to moti-
vate the malicious nodes’ falsified reports conservatively.
Besides, the honest sensor nodes will acquire more fair dis-
tribution of data transmission owing to their local sensing
information consistent with final results. To overcome the
low spectrum access rate of normal nodes caused by coop-
erative malicious nodes’ attack, Duan et al. [27] defined
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direct and indirect punishments and proposed two attack-
prevention mechanisms, in which the FC is not required to
identify or exclude attackers. Based on scheduling probability
associatedwith each user’s sensing data, Althunibat et al. [28]
proposed an attacker identification and punishment strategy
to assign each sensing node with proper scheduling probabil-
ity. To minimize the Bayes risk, Sharifi and Niya [29] pro-
posed an attack-aware cooperative spectrum sensing method
to estimate the attack strength of SSDF, and deduced the
optimal voting threshold in majority rule to improve the
global decision-making accuracy.

Identifying the attacker is a critical process and should be
conducted cautiously to avoid the detection of honest nodes
as attackers. Therefore, the identification criteria of attackers
should be reliable enough, and provide enough robustness for
the system especially as the number of attackers is large.

III. METHODOLOGY
A. SYSTEM MODEL
We assume that the sensor nodes being deployed randomly
in the monitoring region and a FC are organized into
infrastructure-based CRSNs. All cognitive sensor nodes will
perceive the PU’s signal through the sensing channel, and
then report the sensing information or local decision results to
the FC via the reporting channel. Among them, the legitimate
sensor nodes share the real energy values in spectrum sensing
process, but the malicious sensor nodes send their falsified
sensing data, to the FC for final combination. Based on binary
hypotheses, the spectrum sensing for a specific frequency
band can be generally formulated by:

xi(t) =

{
ni(t), H0

his(t)+ ni(t), H1
(1)

where s(t) the PU’s transmit signal, hi is the channel gain
without delay, and ni(t) denotes the additive white Gaussian
noise (AWGN) sample with mean 0 and variance σ 2

n .
Then, the energy detection method is employed to deter-

mine the spectrum sensing result [30]. Thus, the test statistics
Ti of i-th sensor node for l samples can be given by:

Ti =
l∑

k=1

|xi(k)|2 (2)

Comparing the energy threshold γ with the test statistics,
the local sensing result will be obtained as:

gi =

{
0, Ti < γ

1, Ti > γ
(3)

The sensor node participates in CSS and sends the local
result 0 or 1, which indicates the channel being idle and
occupied, to FC for subsequent global fusion decision. The
FC fuses the received local results and makes the decision
about the authorized spectrum according to the k-out-of-n

rule [31]. The final decision F(k) can be written as:

F(k) =


H1, if

N∑
i=1

gi(k) ≥ K

H0, otherwise

(4)

where H0 and H1 represent idle and occupied states of the
channel respectively. gi(k) indicates that FC receives the local
sensing results of the i-th sensing node at the k-th round. The
majority fusion rule is applied, K = d(N + 1) /2e and d·e is
the integral function for upper limit.

Suppose that Pd and Pf represent the detection probability
and false alarm probability of cognitive sensor node, the
global detection probability and global false alarm probability
can be given by [32]

Qd =
N∑
j=K

(
N
j

)
Pjd (1− Pd )

N−j

Qf =
N∑
j=K

(
N
n

)
Pjf (1− Pf )

N−j

(5)

The FC can schedule the cognitive sensor node for data
transferring only when the final decision about the channel is
idle (i. e., F(k) = 0). Otherwise, F(k) = 1 and the FC will
inform all sensor nodes remain silent to avoid interference to
authorized users.

B. ATTACKING MODEL
During the phase of CSS, it is assumed that the attacking
probability of each malicious node is θ . Once the attack is
decided, the malicious node sends the report inconsistent
with the local sensing result to the FC. Based on this attack
strategy, the detection probability and false alarm probability
of malicious nodes can be written as:{

Pd_MU = θ (1− P̃d )+ (1− θ )P̃d
Pf _MU = θ (1− P̃f )+ (1− θ )P̃f

(6)

where P̃d and P̃f represent the actual local detection proba-
bility and false alarm probability of the sensing node.

Considering that the main motivation of malicious nodes
is to reduce the throughput of normal nodes and occupy
the communication channel selfishly, malicious nodes will
neglect the scheduling strategy of FC to access the channel
directly for data transmission as global false alarm occurs.
Specifically, malicious nodes cooperate with each other inter-
nally, and conduct majority criteria to obtain the global deci-
sions R(k) based on their local actual sensing results. Once
F(k) = 1 but R(k) = 0, the malicious nodes will choose
some of them randomly to access the frequency band and
independently transmit their own data. The attack steps of
malicious nodes mainly include:

(1) At the beginning of spectrum sensing, all malicious
nodes have the same local spectrum sensing as normal nodes,
and they also make their own local sensing decision.
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(2) Each malicious node independently decides whether
to attack or not with the probability of θ . If deciding to
launch an attack, the malicious node will send the reporting
inconsistent with the local sensing data to the FC. Otherwise,
the malicious node does not launch the attack, and it will
report the actual local sensing data.

(3) Malicious nodes share their local sensing results, and
make a global decision R(k) for internal notification.

(4) If the FC makes the global decision of CSS that the
primary user does not exist, then it will select one of all nodes
(possibly a malicious node), and schedule the node to access
the channel for data transmission.

(5) Or else, once the global decision indicates that the pri-
mary user exists, the malicious nodes will check the internal
global decision. If R(k) = 0, one of the malicious nodes will
hand over the licensed channel.

Let Perror represent the sensing error probability of node i
in spectrum sensing, we have
Perror=Pf P(H0)+(1− Pd )P(H1), if i− th

sensor node
is honest,

Perror_MU=Pf _MUP(H0)+(1−Pd_MU )P(H1), otherwise.
(7)

C. REPUTATION MODEL
To solve the problem of SSDF attacks, the reputation system
can be employed to integrate into the process of cooperative
spectrum sensing. The theoretical basis of reputation system
is originated from the collective measurement of the trustwor-
thiness of other members to a certain one [33]. Furthermore,
the reputation is often defined as the collective evaluation
of a member’s behavior in the system, which represents the
reliability of the member and helps to determine the specific
measures of some attributes. The basic idea of reputation
system is to get a reputation value according to the histori-
cal behavior of members [34]. Generally, the members with
higher reputation will get more opportunities and returns, and
at the same time restrain the bad behavior of the members
with lower reputation, so as to enhance the performance of
the system.

During the phase of local sensing, the node’s results have
two possible types, which accord with binomial distribution.
The probability distribution of binary events can be described
by beta distribution. Therefore, we can employ Beta dis-
tribution function to build reputation model for credibility
assignments to member nodes.

Suppose r indicate the events that the cognitive sensor
node sends the local sensing results to the FC truthfully, and
s indicate the events that the cognitive sensor node sends a
report to the FC that is opposite of its local sensing decision.
By setting α = r + 1 and β = s+ 1, the probability density
function will be obtained by [35]

f (p|α, β) =
0(α + β)
0(α)0(β)

pα−1(1− p)β−1 (8)

where 0 (·) is the Gamma function,p represents the prob-
ability of sensing behaviors and 0 ≤ p ≤ 1. Besides,
α > 0, β > 0.
For the i-th sensor node, its reputation value will be evalu-

ated by beta function: Ri = Beta(ri+1, si+1). Furthermore,
the expectation value of the beta function can be calculated
as: E [Beta(α, β)] = α/ (α + β). Thus, the trust degree can
be deduced by:

Ri =
ri + 1

ri + si + 2
(9)

To resist the SSDF attacks launched by most malicious
users effectively, the FC will utilize the beta reputation model
to allocate the reputation value dynamically according to
the historical behavior of cognitive sensor nodes. In the
final fusion decision, the FC will assign the reasonable
weight value for cognitive sensor nodes for sensing results
combination.

The local sensing result of cognitive sensor node i in the
k-th time interval is gi(k) and the FC aggregate all the results,
which can be calculated as

G(k) =
N∑
i=1

wi(k)gi(k) (10)

Next, according to the results of local sensing result and
global fusion result, the sensing result deviation of the cogni-
tive sensor node i at k-th time interval will be given by:

DIS(i, k) =

√√√√√ N∑
i=1
(gi(k)− G(k))2

N
(11)

Hence, the mean value of the deviation of sensing results
can be given by

AveDIS(i, k) =
1
N

N∑
i=1

DIS(i, k) (12)

Let µi(k) represent the positive or negative evaluation of
the spectrum sensing results obtained by the i-th cognitive
sensor node in the k-th time slot. If AveDIS(i, k) ≥ DIS(i, k),
it indicates that the local sensing result of the cognitive sensor
node in the k-th time slot is reliable and the positive eval-
uation to the cognitive sensor node should be increased as
µi(k) = 1. Otherwise, it means that the local sensing result
is untrustworthy with respect to µi(k) = 0, and then the
negative evaluation will be assigned.

By analyzing the influence on the reputation of sensor
node’s report from the historical sensing results, the weight
of reputation value should be updated with the varying of the
sensing time. In order to ensure the robustness of the system,
the model should have a certain tolerance for honest users
who occasionally send error sensing data, and its reputation
value can be gradually improved by continuously reporting
correct data in subsequent period. Let m denote the maxi-
mum storage length of the cognitive sensor node’s historical
evaluation value, and according to the historical evaluation
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value, the positive evaluation posi(k) and negative evaluation
negi(k) of cognitive sensor node i in the k-th sensing time slot
can be obtained by

posi(k) =



m∑
n=1

µi(k) (wi(k))m−n, if k < m,

m∑
n=k−m+1

µi(k) (wi(k))m−n, otherwise.
(13)

negi(k) =



m∑
n=1

(1− µi(k)) (wi(k))m−n, if k < m,

m∑
n=k−m+1

(1− µi(k)) (wi(k))m−n, otherwise.

(14)

Taking the total evaluation into the beta reputation model,
for the cognitive sensor node i, the reputation parameters ri(k)
and si(k) in the k-th time interval can be given by

ri(k) = posi(k)+ ωr (15)

si(k) = negi(k) ∗ ωs (16)

where ωr and ωs denote the tuning parameters to reflect the
linear and multiplier increase of different type of reports,
respectively.

Therefore, based on Eq. (9), the reputation value Ri(k) of
cognitive sensor node i can be estimated expressed as

Ri(k) = wi(k + 1) =
posi(k)+ ωr + 1

posi(k)+ negi(k) ∗ ωs + ωr + 2
(17)

D. IDENTIFICATION OF ATTACKERS
The identification of malicious nodes is one of the key factors
to enhance the overall performance of CRSN and enhance
the sensing accuracy and energy efficiency [36]. During the
process of malicious node identification, it should be avoided
to identify normal nodes as malicious nodes. Once identified
as a malicious node, the reports sent by the sensor node to the
FC will be rejected before the final fusion.

According to the reputation model and data delivery, the
credibility of sensing nodes can be estimated, and each sens-
ing nodes increment their counters compared with the attack-
ers. When the FC makes a global decision that the channel is
idle, it will schedule a node to access the channel for data
transmission, and evaluate the actual status of the channel
through the success or failure of the data transmission of
the node being scheduled. If the sensing report sent to the
FC is inconsistent with the actual status of the channel, the
counter value of the sensing node will be incremented by
1. Otherwise, the value of the counter will keep unchanged.
AfterM sensing intervals, if the value of the counter is higher
than the predetermined threshold, the relevant sensing node
will be regarded as a malicious node. The counter value of the

i-th sensing node at k-th time interval can be expressed as

Ui(k) =

{
Ui(k − 1)+ 1, if F(k) = 0 and gi(k) 6= 2(k)
Ui(k − 1), otherwise

(18)

where 2(k) indicates the actual status of the channel at k-th
time interval.

After k time intervals, the counter value follows the bino-
mial distribution function and corresponding probability can
be obtained by

Pr{Ui(M ) = u} =

(
M
u

)
πui (1− πi)

M−u

πi = Pr (Ui(k) = Ui(k − 1)+ 1)
= P (H0)Pf ,i Pr (F(k) = 0|gi(k) = 1)+
P (H1)Pd,i Pr (F(k) = 0|gi(k) = 0)

(19)

whereP(H0) andP(H1) represent the probability that the state
of PU be idle and occupied respectively.

Then, the average value of the counter corresponding to the
i-th sensing node can be expressed as

Ave_Ui(t) =
M∑
u=0

uPr{Ui(M ) = u}

=

M∑
u=0

u
(
M
u

)
πui (1− πi)

M−u (20)

Suppose λ be the identification threshold of malicious
node. If Ui(t) ≥ λ, the reputation model will detect and
identify the attacker of malicious sensor nodes. Obviously,
high values of λmay result in omitting the attackers, whereas
some honest sensing nodes will be identified as attackers at
low values of λ.

To optimize the threshold, we define the objective function
as

max
{∣∣∣Pr{Ave_U (t) ≥ λ} − Pr{Ave_Ũ (t) ≥ λ}

∣∣∣} (21)

where Ave_U (t) and Ave_Ũ (t) represent the average value
of counter of all nodes and attackers being identified,
respectively.

Bring the false alarm probability and detection probability
of normal and malicious nodes into the Eq. (19), we can get
the corresponding π0 and π ′0. Thus, and the objective function
can be written as

max

{∣∣∣∣∣
M∑
u=λ

(
M
u

)
(π0)

u (1− π0)M−u

−

M∑
u=λ

(
M
u

) (
π ′0
)u (1− π ′0)M−u

∣∣∣∣∣
}

(22)

Next, according to Lagrange method, the derivative of the
function with respect to λ is equal to 0 and then the optimal
threshold λopt can be obtained. Hence, we can deduce the
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derivative of part of objective function with respect to λ as
follows:
∂ Pr{Ave_U (t) ≥ λ}

∂λ
= −M

(
M
λ

)
(π0)

λ (1− π0)M−λ

∂ Pr{Ave_U (t) ≥ λ}
∂λ

= −M

(
M
λ

) (
π ′0

)λ (1− π ′0)M−λ
(23)

According to the objective function, the derivative of λ is
equal to 0, and the following expression can be given by

π0
(
1− π ′0

)
π ′0 (1− π0)

=

(
1− π ′0
1− π0

)M/λ
(24)

Take logarithm on both sides of the equation, and finally
get the optimal threshold can be estimated as

λopt =
M

log 1−π ′
1−π0

π0
π ′0
+ 1

(25)

IV. SIMULATION RESULTS
In this section, we conduct some simulations and compare
it with the previous schemes to evaluate the performance
of the proposed method. In the simulation experiment, the
number of cooperative sensor nodes is assumed to be 40,
the number of samples for energy detection is equal to 20,
and the noise power σ 2

n =1, n = 1, 2, · · · ,N . The local
false alarm probability is fixed to constant value 0.1, and
P (H1) = P (H0) = 0.5. Besides, the parameter δ is set to
0.6, ωr = 1 and ωs = 2. PU’s signal is transmitted through
AWGN channel, and all cooperative sensor nodes transmit
their sensing data to the FC via ideal control channel.

To analyze the impact of the attacking probability on
global error probability, we consider three typical SSDF
attacks: Always-Yes, Always-No and Always-Opposite
attacks [37], [38]. Among them, Always-Yes attack means
that the attacker submits the sensing report ‘‘1’’ to show
the PU signal being absent regardless of its local sensing
result [39], [40]. Hence, the cognitive radio system mistak-
enly believes that the frequency band is occupied by PU,
and the malicious sensor nodes can monopolize the spec-
trum band. Under the Always-No attack, the attacker submits
the sensing report ‘‘0’’ to show the PU signal is absent,
even though the PU is occupying the spectrum band. As a
result, the final decision made by FC will show the PU
spectrum bands to be absent and the interference to PU may
be occurred by sensor node’s data transmission. In the case
of Always-Opposite attack, the attacker usually intends to
cause either selfish grabbing or interference to the PU by
submitting the sensing report that is opposite of its local
sensing result [41], [42].

Figure 1 shows the results of global error probability
under different attacking probability. The higher the attack
probability is, the more frequent the attack is as well as the
easier the malicious nodes to be exposed. It can be seen that

FIGURE 1. Global error probability under different attacking probability.

with the increase of node attack probability, the error prob-
ability increases evidently and then decreases as the attack
probability exceeds 30%. It illustrates that our method can
distinguish the reports of the honest SUs and the reports of
the attackers, thus identify the attackers effectively. Compara-
tively, the malicious nodes can obtain higher error probability
by launching Always-Opposite attack, and it shows that the
attack behavior is more hidden and destructive than other
attacks. Also, it demonstrate that our proposed method can
alleviate the effect of false sensing data caused by malicious
nodes, which can oblige the malicious nodes to take into
account of the trade-off between concealment and destruc-
tiveness as launching the attacks.

FIGURE 2. False alarm probability under Always-Yes attack.

Additionally, to evaluate the sensing performance of
the proposed method, we compare with ARC [43] and
Trusted-based CSS [44] in aspects of missed detection proba-
bility and false alarm probability under various attackmodels.
Figure 2 and 3 respectively show the cooperative spectrum
sensing performance under Always-Yes attack with different
proportion of malicious sensor nodes. It can be found that the
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FIGURE 3. Missed detection probability under Always-Yes attack.

probability of false alarm andmissed detection increases with
the proportion of malicious sensor nodes. When the propor-
tion of malicious sensor nodes exceeds 35%, the false alarm
probability of the system of Trusted-based CSS deteriorates
significantly. Compared with other methods, the false alarm
probability in our proposed method varies from 0.011 to 0.12
even when the proportion of malicious sensor nodes reaches
80%. It is worth noting that the missed detection probability
of ARC is better than that of the proposed method under the
low proportion of malicious sensor nodes. However, when
the high proportion of malicious sensor nodes will launch
attacks, most of the sensing data are unreliable. It makes
the anti SSDF attack strategy unable to play a role, and the
performance drops obviously. In our method, the reputation
mechanism based on historical perception data can help to
eliminate the influence of falsified sensing information, and
be proven to be an effective way to remove the effect of SSDF.

FIGURE 4. False alarm probability under Always-No attack.

Figs. 4 and 5 show the false alarm probability and the
missed detection probability versus percentage of malicious
SUs under the Always-No attacks. We observe that both

FIGURE 5. Missed detection probability under Always-No attack.

our proposed method and ARC better performance than
Trusted-based CSS. When the percentage of malicious pres-
ence becomes more than 50%, the false alarm probability
of Trusted-based CSS has reached about 25%. Moreover,
Trusted-based CSS shows the worse missed detection prob-
ability for different percentage of malicious sensor nodes
as compared to our proposed method and ARC. After the
proportion of malicious sensor nodes is more than 25%,
the performance of ARC has deteriorated dramatically. The
deterioration of our proposed method is relatively slow, and
the probability of missed detection is increased to 0.165 in
the case of 80% malicious sensor nodes.

FIGURE 6. False alarm probability under Always-Opposite attack.

In addition, the simulation is performed under Always-
Opposite attack to analyze the performance of our method.
Figs. 6 and 7 show the false alarm probability and
missed detection probability of different methods under
Always-Opposite attack. It can be found that the probability
of missed detection and false alarm under Always-Opposite
mode increases with the proportion of malicious nodes, and
the deterioration degree of all methods is significantly higher
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FIGURE 7. Missed detection probability under Always-Opposite attack.

than that in the previous two scenarios. It demonstrate that the
opposite sensing data can cause a mass of more hazardous
influence on the final fusion and result in more remarkable
rise in the number of low detections and high false alarm
circumstance at the FC. It also can be observed that our
proposed method can obtain better sensing performance than
other methods. This is due to the fact that our proposed
approach succeeds in detecting and isolating the attackers,
and avoids the confusion between the reports of the honest
sensor nodes and the attackers.

V. CONCLUSION
In this paper, a secure CSS strategy based on reputationmech-
anism for cognitive wireless sensor networks is proposed to
defense against SSDF attack. The beta reputation model is
applied to assign reputation value to cognitive sensor nodes
according to their historical sensing behavior, and a dynamic
trust evaluation scheme of CSS is established. In the final
fusion decision, the FC allocates a reasonable weight value
according to the evaluation of the submitted observations to
enhance the accuracy of the sensing system.

In this paper, we focus on the performance parameters
of missed detection probability and false alarm probability.
In the future, we will concentrate other network parameters,
e. g., detection rate, false detection rate, and throughput at the
presence of attackers. Additionally, we will further optimize
the proposed reputation model to deal with the case when the
attackers may improve their attack strategy adaptively based
on the previous decisions.
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