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ABSTRACT Due to the increasing spectrum scarcity in satellite communications and terrestrial communi-
cations, cognitive satellite communications have received widespread attention. In this paper, we take the
inherent feature that the terrestrial cognitive users suffer from inter-beam interference. In particular, for the
first time, we consider the coupling characteristics of channel access and power optimization in opportunistic
spectrum access based on distributed frameworks. We first formulate a joint channel access and power
optimization game, which is proven to be an exact potential game and accordingly has at least one pure
Nash Equilibrium (NE) point. The sufficient conditions for interference-free between cognitive users and for
maximization of system utility are given, respectively. Also, the lower bound of the system utility is deduced
theoretically. For discrete power control strategies, we then propose a joint-strategy iteration algorithm (JID)
to converge to the general NE in two-dimensional discrete strategy space. Especially, to solve the challenge
of finding the optimal NE solution in two-dimensional strategy space, we propose a novel joint-strategy
iteration algorithm based on exploration and exploitation (JIDEE). Simultaneously, these two algorithms are
extended to the case where the power control strategies are continuous. Finally, simulations are conducted
to confirm the effectiveness of the formulated game and the two proposed algorithms.

INDEX TERMS Cognitive satellite communication, spectrum sharing, exact potential game, exploration
and exploitation.

I. INTRODUCTION
With the increasing demand for broadcast, multimedia, and
interactive services, satellite communications and terrestrial
communications face the challenges of insufficient spec-
trum resources [1], [2]. Spectrum sharing between them
has become a promising option. As a spectrum sharing
technology, cognitive radio has been extensively investi-
gated in many fields, such as device-to-device communi-
cation [3], vehicular communication [4], unmanned aerial
vehicle (UAV) communication [5], and wireless sensor net-
work [6]. However, cognitive satellite communications have
many inherent characteristics, such as considerable propa-
gation delay, wide beam coverage, cumulative uplink inter-
ference, sensitivity to interference, and so on [7]. There are
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still many challenges to be be solved in cognitive satellite
communications.

A. BACKGROUND AND MOTIVATIONS
In the spectrum sharing between satellite communications
and terrestrial communications, some of the schemes work
in the overlay mode [8], [9]. When operating in this mode,
terrestrial users are often cognitive users, satellite users are
often primary users, and both use the same frequencies. The
interference caused by the terrestrial cognitive users to the
primary users can be compensated by assisting the primary
users in transmitting [10]. The relay nodes (cognitive users)
usually receive the signals of the primary satellite network
in the first phase and then transmit to the receivers of the
primary satellite users in the second phase by amplify-and-
forward (AF) relay or decode-and-forward (DF) relay mode.
Therefore, it has lower power efficiency and a relatively
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large delay [11]. On the other hand, most spectrum sharing
schemes between satellite and terrestrial communication sys-
tems operate in the underlaymode [12]–[19]. However, due to
the large antenna gain, satellite receivers are very sensitive to
interference [20], [21]. In this mode, the protection distance
between terrestrial cognitive users and primary satellite users
is large, which reduces the sharing efficiency and causes
inconvenience to terrestrial cognitive users.

With the emergence of spectrum database technology [22]
and the development of various spectrum sensing tech-
nologies in the cognitive satellite communication systems
[23]–[25], it is possible to share the spectrum between
satellite communications and terrestrial communications in
the interweave mode. When working in this mode, cogni-
tive users will temporarily access the idle spectrum unused
by the primary user, and no power constraint is required
to avoid exceeding the interference threshold [26]. There-
fore, it has higher power efficiency and no requirement for
protection distance, which is especially suitable for cog-
nitive satellite communications. Consequently, it has prac-
tical significance and some advantages to investigate the
spectrum sharing between satellite communication systems
and terrestrial communication systems in the interweave
mode. Despite a plethora of research in cognitive satellite
communication in the overlay mode and underlay mode,
very few works have focused on the interweave spectrum
sharing between terrestrial communications and satellite
communications.

B. CONTRIBUTIONS
In this paper, we investigate the interweave spectrum sharing
between satellite communications and terrestrial communi-
cations, and perform distributed algorithms to optimize the
system throughput. The main contributions are summarized
as follows:
• The channel access and power optimization problem for
cognitive satellite communication networks is formu-
lated as joint channel access and power optimization
game, taking the inherent feature that the terrestrial
cognitive users suffer from inter-beam interference into
account. It is noteworthy that the coupling characteristic
of channel selection and power control in opportunis-
tic spectrum access based on distributed framework is
considered for the first time. The joint channel access
and power optimization game is proven to be an exact
potential game.

• Due to the differences in available channel quality, suffi-
cient conditions for interference-free between terrestrial
cognitive users and for maximizing system utility are
given, respectively. Also, the lower bound of the system
utility is deduced theoretically.

• For discrete power control strategies, the JID algorithm
is proposed to converge to the general NE of the joint
channel access and power optimization game. Espe-
cially, to solve the challenge of finding the optimal NE
solution in the two-dimensional discrete strategy space,

the novel JIDEE algorithm is proposed. Both of these
two algorithms are extended to the case where the power
control strategies are continuous.

• It is shown that the joint channel access and power
optimization scheme achieves better system through-
put performance than only considering channel access,
which verifies the effectiveness of the formulated
game.

It is noted that our earlier work [27] studies the spec-
trum sharing in cognitive satellite communication in the
interweave mode, in which only channel selection is opti-
mized (terrestrial cognitive users are non-cooperative and
always transmit with the maximum power), thus significantly
reducing the system throughput. Besides, the algorithm pro-
posed in [27] converges slowly and does not always con-
verge to the optimal NE. Motivated by all these observations,
this work extends pure channel selection to joint channel
selection and power control, which is also not investigated
in dynamic spectrum access based on distributed frame-
works [26], [28]–[35]. Besides, most of the distributed algo-
rithms are mainly designed and applied to converge to the
NE in one-dimensional strategy space [26]–[36], we solve the
challenge of developing an algorithm with fast convergence
speed and can converge to the optimal NE in two-dimensional
strategy space.

C. RELATED WORKS
In recent years, many papers studied the distributed chan-
nel selection problem using game theory. In [28], [29],
the authors examined the problem of distributed chan-
nel selection in opportunistic spectrum (OSA) networks.
In [30], [31], the authors studied the problem of channel
selection for interference mitigation in canonical networks.
In [32], [33], the authors studied the problem of anti-jamming
dynamic spectrum access in wireless networks. In [34],
the author studied the spectrum access problem with channel
bonding in Mesh Networks. These works only focus on the
problem of channel selection without considering the cou-
pling characteristic of channel access and power control in
the spectrum access competition. In order to further improve
system performance, it is necessary to consider the issues
of channel access and power optimization together in the
spectrum access competition.

The resource optimization problem in cognitive radio com-
munications has been studied by game theory in some lit-
erature. Most of them only concentrated on power con-
trol or channel selection. In [37], [38], the authors focused
on the power control strategy in cognitive radio networks.
In [39], [40], the authors focused on the channel selection
strategy in cognitive radio networks. In [16], [41], the authors
investigated the power control and channel allocation prob-
lem using game theory. However, most of the works about
the joint channel selection and power control in cognitive
radio networks work in the underlay mode, and few works
have studied the channel selection and power control in the
interweave mode.
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FIGURE 1. The system model of the Multibeam-based cognitive satellite
communication system.

In the competition of spectrum access based on game
theory, most studies assume that cognitive users only inter-
fere with each other and are not interfered by the external
environment [28], [30], [35]. Hence, the quality of all avail-
able channels is the same. However, cognitive users may be
subject to different degrees of external interference, resulting
in differences in available channel quality. In the research
scenario of this paper, cognitive users are also interfered by
the multi-beam satellite communication system, resulting in
different channel quality.

The rest of this article is organized as follows. In Section II,
we present our system model and problem formulation
for joint channel access and power optimization problem.
In Section III, we present the joint channel access and power
optimization game model and investigate the properties of
its NE. In Section IV, two distributed learning algorithms
are proposed to achieve the general NE and optimal NE of
the proposed game, respectively. Moreover, these two algo-
rithms are extended to the case where the power strategies
are continuous. Simulation results and analysis are presented
in Section V. Concluding remarks are provided in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
We consider a multi-beam KU-band satellite communication
system as shown in Fig.1, each beam covering a specific
area. Frequency reuse is adopted between beams to improve
spectrum efficiency. In downlink satellite communications,
satellite receivers at any beam will suffer co-channel interfer-
ence from other beams using the same frequency.

For any coverage area, the idle downlink channel of
satellite communication is opportunistically accessed by the
terrestrial cognitive users. Each cognitive user refers to a
cognitive transmitter-receiver pair [35]. Through spectrum

sensing [24], [25] or querying the local spectrum database [7],
the terrestrial cognitive users can obtain information about
whether each channel is occupied or idle. The available idle
channels and the terrestrial cognitive users are denoted by
C = {1 · · ·C} andN = {1 · · ·N }, respectively. In addition, to
facilitate the collaboration between cognitive users, channel
state information and user transmission strategies need to be
exchanged between cognitive users.

B. PROBLEM FORMULATION
By spectrum sensing or by querying the spectrum database,
the terrestrial cognitive user n in beam b ∈ B selects an
idle channel sn ∈ Sn and power pn ∈ Pn for transmission.
The co-channel interference from satellite downlink signals
experienced by cognitive user n can be expressed as

I snb =
∑
j∈Bn

psnj hj,bGmax

(
λ

4πd

)2

, (1)

where Bn is the set of satellite beams causing co-channel
interference to terrestrial cognitive user n, psnj is transmitted
power allocated to channel sn by beam j ∈ Bn, Gmax is
the maximum transmission antenna gain of satellite, and hj,b
(0 < hj,b < 1) represents the interference coefficient of beam
j ∈ Bn to beam b ∈ B. In addition, free space loss is expressed
as (λ/4πd)2, where d is the distance between satellite and the
cognitive users, and λ is the working wavelength.

In addition to the co-channel interference from the down-
link signals of satellite, cognitive user n also suffers the co-
channel interference from other cognitive users occupying
the same channel sn. The received Signal to Interference plus
Noise Ratio (SINR) of the terrestrial cognitive user n is given
by

ηn(sn, s−n, pn, p−n) =
pngnn∑

i∈Fn(sn)
pigin + I

sn
b + σ

, (2)

where Fn(sn) is the set of terrestrial cognitive users also
choosing the same channel sn as user n, σ denotes the back-
ground noise, pn is the transmission power of cognitive user
n, gnn is the link gain from the transmitter to the receiver for
cognitive user n, and

∑
i∈Fn(sn) pigin indicates the co-channel

interference from other cognitive users to cognitive user n.
The achievable rate of cognitive user n is given by

Rn(an, a−n, pn, p−n)=B log(1+ηn(an, a−n, pn, p−n)), (3)

where B denotes the channel bandwidth. From the system
optimization point of view, the total achievable throughput
of all the terrestrial cognitive users can be expressed as

P1 : max
sn∈Sn,pn∈Pn

N∑
n=1

Rn(sn, s−n, pn, p−n),

s.t. 0 < pn < pmax
n , ∀n ∈ N (4)

where pmax
n indicates the maximum power constraint of

cognitive user n.
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However, solving the problem P1 is challenging for the
following reasons: i) the strategy set of channel selection
is discrete, and the strategy set of power control may be
continuous or discrete. Even if we only consider the channel
selection problem, it is a combinatorial optimization problem,
which cannot be solved by standard optimization techniques
with low complexity [30], and ii) there may be no centralized
controller, so centralized optimization is not feasible. Based
on the above analysis, we consider adopting game theory and
distributed learning algorithms to solve this problem.

III. JOINT GAME MODEL FOR CHANNEL ACCESS AND
POWER OPTIMIZATION
A. GAME MODEL
Denote the joint channel access and power optimization game
as G =

{
N , {An}n∈N , {un}n∈N

}
, where N = {1, · · ·N }

is the cognitive user set, An is the strategy set of available
actions for cognitive user n, An = Sn ⊗ Pn, where Sn is
the strategy set of available channels for cognitive user n,
Pn =

{
pn|0 < pn ≤ pmax

n
}
represents the power constraint

of cognitive player n, and ⊗ denotes the Cartesian product.
The utility function of player n is defined as

un(an, a−n)=−

∑
i∈Fn(sn)

pigin+I
sn
b +σ

pngnn
−

∑
i∈Fn(sn)

pngni
pigii

, (5)

where an ∈ An and an = sn ⊗ pn, an is the joint strategy
of player n, a−n = a1 ⊗ · · · an−1 ⊗ an+1 ⊗ · · · ⊗ aN is the
action profile of all the cognitive users excluding n, sn and pn
indicate the channel selection and power control strategy of
cognitive user n, respectively.

In equation (5), the first term indicates the negative recip-
rocal of SINR for cognitive user n,

∑
i∈Fn(sn) (pngni

/
pigii) is

the penalty term, which represents the weighted interference
of cognitive user n to other cognitive users, the weight factor
is pigii(i ∈ Fn(sn)).

B. ANALYSIS OF NASH EQUILIBRIUM
Definition 1 (Nash Equilibrium): The joint channel access

and power control profile a∗ =
(
a∗1, a

∗

2, · · · a
∗
N

)
is a pure

strategy NE if and only if no player can improve its utility
by deviating unilaterally, i.e.,

un(a∗n, a
∗
−n) ≥ un(a

′
n, a
∗
−n), ∀n ∈ N ,∀a′n ∈ An/

{
a∗n
}
.

(6)

Theorem 1: The joint channel access and power optimiza-
tion game G is an exact potential game, which has at least one
pure-strategy NE point.

Proof: The following network potential function
ϕ(an, a−n) = −

∑N
n=1 1

/
rn is constructed for the joint chan-

nel access and power optimization game, which is the sum of
the negative reciprocal of SINR over all the users.

According to (2), the network potential function can be
expressed as

ϕ(an, a−n) = −
N∑
n=1

∑
i∈Fn(sn)

pigin + I
sn
b + σ

pngnn

= −

∑
i∈Fn(sn)

pigin + I
sn
b + σ

pngnn

−

N∑
j=1,j6=n

∑
i∈Fj(sj)

pigij + I
sj
b + σ

pjgjj

= −

∑
i∈Fn(sn)

pigin + I
sn
b + σ

pngnn

−

N∑
j=1,j6=n

pngnj(sn, sj)
pjgjj

−

N∑
j=1,j6=n

∑
i∈Fj(sj),i6=n

pigij + I
sj
b + σ

pjgjj
, (7)

where,

gnj(sn, sj) =

{
0, sn 6= sj
gnj, sn = sj

(8)

Therefore,
∑N

j=1,j6=n (pngnj(sn, sj)/pjgjj) can also be writ-
ten as

N∑
j=1,j6=n

pngnj(sn, sj)
pjgjj

=

∑
j∈Fn(sn)

pngnj
pjgjj

=

∑
i∈Fn(sn)

pngni
pigii

. (9)

Based on (7) and (9), we can get

ϕ(an, a−n)=−

∑
i∈Fn(sn)

pigin + I
sn
b + σ

pngnn
−

∑
i∈Fn(sn)

pngni
pigii

−

N∑
j=1,j6=n

∑
i∈Fj(sj),i6=n

pigij + I
sj
b + σ

pjgjj
. (10)

According to (5) and (10), we have

ϕ(an, a−n) = un(an, a−n)− v(a−n), (11)

where v(a−n) =
∑N

j=1,j6=n

∑
i∈Fj(sj),i6=n pigij+I

sj
b +σ

pjgjj
is indepen-

dent of an. Thus, we also have

ϕ(a′n, a−n) = un(a′n, a−n)− v(a−n). (12)

Based on (11) and (12), we can get

un(a′n, a−n)− un(an, a−n) = ϕn(a′n, a−n)− ϕn(an, a−n).

(13)

According to the definition and properties of exact poten-
tial game given in [28], it can be seen that G is an exact
potential game, which has at least one pure NE point.
Theorem 2:When achieving the NE, if one user monopo-

lizes a channel, the user on that channel will transmit at its
maximum power.
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Proof: The channel monopolized by cognitive user
n is denoted by s∗n. Terestrial cognitive user n will not
interfere with other users, nor will it be interfered by
other users, we readily get

∑
i∈Fn(s∗n)

pigin = 0 and∑
i∈Fn(s∗n)

(pngni
/
pigii) = 0.

Assume that 0 < pn < pmax
n , the joint strategy of the

terrestrial cognitive user n is denoted by a∗n = s∗n ⊗ p∗n, and
thus we can get

un(a∗n, a−n) = −

∑
i∈Fn(s∗n)

pigin + I
s∗n
b + σ

p∗ngnn

−

∑
i∈Fn(sn)

p∗ngni
pigii

= −
I
s∗n
b + σ

p∗ngnn

< −
I
s∗n
b + σ

pmax
n gnn

. (14)

Since channel s∗n is only occupied by user n, it is easy to
get

∑
i∈Fn(s∗n)

(pmax
n gni

/
pigii) = 0, which consequently leads

to

−
I
s∗n
b + σ

pmax
n gnn

= −

∑
i∈Fn(s∗n)

pigin + I
s∗n
b + σ

pmax
n gnn

−

∑
i∈Fn(s∗n)

pmaxn gni
pigii

= un(an, a−n), (15)

where an = s∗n ⊗ pmax
n . Combing (14) and (15), we have

un(a∗n, a−n) < un(an, a−n). To pursue its own payoff, terres-
trial cognitive user nwill deviate definitively the current strat-
egy and to transmit at its maximum power, which contradicts
with the assumption. This concludes the proof.
Theorem 3: In equally loaded or underloaded scenarios

(N ≤ C), if I1b = I2b = · · · = ICb , each channel is
not occupied by multiple terrestrial cognitive users when
achieving the NE.

Proof: We proof it by contradiction. Assuming that
at the NE point, channel s∗n is co-occupied by cognitive
user n and other terrestrial cognitive users, there must
be mutual interference between them. It is easy to get∑

i∈Fn(s∗n)
pigin > 0 and

∑
i∈Fn(s∗n)

(pngni
/
pigii) > 0. The

joint channel access and power control strategy is denoted by
a∗n = s∗n ⊗ p

∗
n, thus we can get

un(a∗n, a−n) = −

∑
i∈Fn(s∗n)

pigin + I
s∗n
b + σ

p∗ngnn

−

∑
i∈Fn(s∗n)

pngni
pigii

< −
I
s∗n
b + σ

p∗ngnn
. (16)

Based on the assumption I1b = I2b = · · · = ICb , it follows
that

−
I
s∗n
b + σ

p∗ngnn
= −

I snb + σ

p∗ngnn
≤
I snb + σ

pmax
n gnn

(17)

Since N ≤ C , according to the assumptions, at least one
channel is not occupied by any cognitive user. Any one of the
unoccupied channels is denoted by sn. If the channel selection
of cognitive user n is changed from s∗n to sn, and the strategies
of other cognitive users remain unchanged, there must be no
mutual interference between them. Thus, it is easy concluded
that

∑
i∈Fn(sn) pigin = 0 and

∑
i∈Fn(sn) (p

max
n gni

/
pigii) = 0.

Combining (16), (17), we have

un(a∗n, a−n) <
I snb + σ

pmax
n gnn

= −

∑
i∈Fn(sn)

pigin + I
sn
b + σ

pmax
n gnn

−

∑
i∈Fn(sn)

pmaxn gni
pigii

= un(an, a−n), (18)

where, an = sn ⊗ pmax
n . Obviously, to pursue higher payoff,

the cognitive user n will deviate from the selection s∗n, s
∗
n

is not the channel selection of terrestrial cognitive user n at
the NE point, which contradicts the former assumption. This
concludes the proof.
Theorem 4: ∀n ∈ N , ∀s∗n ∈ Sn and ∀p∗n ∈ Pn,

if
∑

i∈Fn(s∗n)
pigin + I

s∗n
b ≥ max[I1b · · · I

C
b ] holds, in equally

loaded or underloaded scenarios, cognitive users do not inter-
fere with each other when achieving theNE, i.e., each channel
is occupied by at most one cognitive user.

Proof: We assume that the channel s∗n is occupied by
cognitive n and other cognitive users when achieving the
NE, we have

∑
i∈Fn(s∗n)

(pngni
/
pigii) > 0. The joint channel

access and power control strategy is denoted by a∗n = s∗n⊗p
∗
n,

we can get

un(a∗n, a−n) = −

∑
i∈Fn(s∗n)

pigin + I
s∗n
b + σ

p∗ngnn

−

∑
i∈Fn(s∗n)

p∗ngni
pigii

≤ −
max[I1b · · · I

C
b ]+ σ

p∗ngnn

−

∑
i∈Fn(s∗n)

p∗ngni
pigii

< −
max[I1b · · · I

C
b ]+ σ

p∗ngnn
. (19)

Since N ≤ C , according to the assumption that the
channel s∗n is co-occupied by cognitive n and other cognitive
users, there must exist one or more channels unoccupied by
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any other cognitive users. Without loss of generality, one of
the unoccupied channel is denoted by sn. If the terrestrial
cognitive user n unilaterally changes its channel selection
from s∗n to sn, it is easy to get

∑
i∈Fn(sn) pigin = 0 and∑

i∈Fn(sn) (p
max
n gni

/
pigii) = 0. Accordingly, it follows that

un(a∗n, a−n) < −
max[I1b · · · I

C
b ]+ σ

p∗ngnn

≤ −
I snb + σ

p∗ngnn

≤ −
I snb + σ

pmax
n gnn

= −

∑
i∈Fn(sn)

pigin + I
sn
b + σ

pmaxn gnn

−

∑
i∈Fn(sn)

pmaxn gni
pigii

= un(an, a−n), (20)

where an = sn ⊗ pmaxn . Obviously, to pursue its own higher
payoff, terrestrial cognitive user n will choose channel sn
instead of s∗n, which contradicts with the former assumption.
This concludes the proof.
Theorem 4 can be intuitively understood as: If the inter-

beam interference suffered on any channel is less than or
equal to the total interference (

∑
i∈Fn(s∗n)

pigin + I
s∗n
b ) on the

occupied channel, in equally loaded or underloaded scenar-
ios, the cognitive user will select the unoccupied channel.
This process continues until all channels are occupied by at
most one user.
Theorem 5: When achieving NE, if there exists one or

more channels not occupied by any users, the inter-beam
interference on these channels must be greater than or equal
to that on the occupied channels.

Proof: When achieving NE, without loss of generality,
any one channel unoccupied and occupied by the terrestrial
cognitive user n are denoted by sn ∈ Sn and s∗n ∈ Sn,
respectively. Thus, we can get

un(a∗n, a−n) = −

∑
i∈F (s∗n)

pigin(s∗n, si)+ I
s∗n
b + σ

p∗ngnn

−

∑
i∈Fn(s∗n)

pngni
pigii

≤ −
I
s∗n
b + σ

p∗ngnn

≤ −
I
s∗n
b + σ

pmaxn gnn
. (21)

It is assumed that I
s∗n
b > I snb , we have

−
I
s∗n
b + σ

pmaxn gnn
< −

I snb + σ

pmaxn gnn
. (22)

When only the channel selection of cognitive user n is
changed from s∗n to sn, channel sn is occupied only by cog-
nitive user n, we have

∑
i∈Fn(sn) (p

max
n gni

/
pigii) = 0 and∑

i∈Fn(sn) pigin = 0. Combining (21) and (22), we have

un(a∗n, a−n) < −
I snb + σ

pmaxn gnn

= −

∑
i∈Fn(sn)

pigin + I
sn
b + σ

pmaxn gnn

−

∑
i∈Fn(sn)

pngni
pigii

= un(an, a−n), (23)

where an = sn ⊗ pmaxn . Therefore, to pursue higher payoff,
the terrestrial cognitive user n will definitively deviate its
current channel selection from s∗n to sn, s

∗
n is not the channel

selection of terrestrial cognitive user n at the NE point, which
contradicts with the former assumption. This concludes the
proof.
Theorem 6: When the NE is achieved, the system

utility of the joint channel access and power optimiza-
tion game is lower bounded by

∑
n∈N un(a∗n, a−n) ≥

−2JO/C −
(
(I + Cσ)

/
C
)∑

n∈N (1/pngnn), where JO =∑
n∈N

∑
i∈N ,i6=n

(
pigin

/
pngnn

)
means the aggregated

weighted interference experienced by all the cognitive users
when occupying the same channel, and I =

∑
i∈C I

i
b is

the sum of the inter-beam interference to all the available
channels.

Proof: Based on the definition of NE, we have the
following inequality:

un(a∗n, a−n) ≥ un(an, a−n). (24)

where
(
a∗1, a

∗

2 · · · a
∗
N

)
refers to any pure-strategy NE point.

Based on (5) and (24), we have

un(a∗n, a−n)≥−

∑
i∈Fn(sn)

pigin+I
sn
b +σ

pngnn
−

∑
i∈Fn(sn)

pngni
pigii

(25)

Summing the two sides of (25) upon all the available C
channels to obtain

un(a∗n, a−n) ≥ −

∑
sn∈C

∑
i∈Fn(sn)

pigin +
∑
i∈C

I ib + Cσ

Cpngnn

−

∑
sn∈C

∑
i∈Fn(sn)

pngni
Cpigii

. (26)

Note that
∑

sn∈C
∑

i∈Fn(sn) pigin refers to the aggregated
interference suffered by cognitive user n when all the cog-
nitive users occupy the same channel. Thus, we have:∑

sn∈C

∑
i∈Fn(sn)

pigin =
∑

i∈N ,i6=n

pigin. (27)

Also,
∑

sn∈C
∑

i∈Fn(sn) pngnj
/
pigii can be interpreted as

the aggregated weighted interference experienced by all the
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cognitive users excluding cognitive user n, which corresponds
to the following virtual scenario. That is, the terrestrial cog-
nitive user n selects all the channels at the same time while
all the other maintain their channel selection unchanged,
the weighting factor is 1

/
pigii. Therefore, we have the fol-

lowing result∑
sn∈C

∑
i∈Fn(sn)

pngni
pigii

=

∑
i∈N ,i6=n

pngni
pigii

. (28)

Combining (26)-(28), we can derive the following result

un(a∗n, a−n)≥−

∑
i∈N ,i6=n

pigin+
∑
i∈C

I ib+Cσ

Cpngnn
−

∑
i∈N ,i6=n

pngni
Cpigii

.

(29)

Therefore, the system utility of the formulated game can
be expressed as

∑
n∈N

un(a∗n, a−n) ≥ −
∑
n∈N

∑
i∈N ,i6=n

pigin +
∑
i∈C

I ib + Cσ

Cpngnn

−

∑
n∈N

∑
i∈N ,i6=n

pngni
Cpigii

. (30)

It is noted that
∑

n∈N
∑

i∈N ,i6=n pigin is the aggre-
gated interference suffered by all the terrestrial cognitive
users when selecting the same channel.

∑
n∈N∑

i∈N ,i6=n
(
pigin

/
pngnn

)
and

∑
n∈N

∑
i∈N ,i6=n

(
pngni

/
pigii

)
both refer to the the aggregated weighted interference expe-
rienced by all the terrestrial cognitive users when they select
the same channel. Thus, we have∑

n∈N

∑
i∈N ,i6=n

pigin
pngnn

=

∑
n∈N

∑
i∈N ,i6=n

pngni
pigii

. (31)

Combining (30) and (31), we can derive the following
results∑

n∈N
un(a∗n, a−n) ≥ −

2JO
C
−

∑
n∈N

I + Cσ
Cpngnn

= −
2JO
C
−
(I+Cσ)

C

∑
n∈N

1
pngnn

, (32)

where JO =
∑

n∈N
∑

i∈N ,i6=n
(
pigin

/
pngnn

)
means the

aggregated weighted interference suffered by all the terres-
trial cognitive users when occupying the same channel, and
I =

∑
i∈C I

i
b is the sum of the inter-beam interference to all

the available channels. The proof is completed.
Theorem 7: Suppose that at the NE point, each channel

is not occupied by multiple cognitive users, then the system
utility will reach the maximum if the user with the smaller
product of power constraint and link gain occupy a better
channel. That is, ∀m ,n ∈ N , if pmaxm gmm < pmaxn gnn,
I smb < I snb holds,

∑
n∈N un(an, a−n) will achieve the

maximum.
Proof: At the NE point, when each channel

is not occupied by multiple cognitive users, we have

∑
i∈Fn(sn) (pngni

/
pigii) = 0 and

∑
i∈Fn(sn) pigin = 0. The

system utility can be expressed as

ϕ1 = −
N∑
n=1

∑
i∈Fn(sn)

pigin + I
sn
b + σ

pngnn

−

∑
i∈Fn(sn)

pngni
pigii

= −

N∑
n=1

σ + I snb
pngnn

. (33)

Theorem 2 has proven that if each channel is not occupied
by multiple cognitive users, at the NE point, pn = pmaxn holds.
Supposing that there exists one or more terrestrial cognitive
users with the smaller product of power constraint and link
gain occupy worse channels, i.e., ∃ m, n ∈ N , if pmaxm gmm <
pmaxn gnn, I

sm
b > I snb holds. Thus, we have

ϕ1 = −
N∑
n=1

σ + I snb
pngnn

= −

N∑
n=1

σ + I snb
pmaxn gnn

= −
σ + I snb
pmaxn gnn

−
σ + I smb
pmaxm gmm

−

N∑
i=1,i6=m,i6=n

σ + I sib
pmaxi gii

. (34)

When cognitive user m and n exchange their channel
selection, and other users maintain their choices unchanged,
the system utility can be expressed as follows

ϕ2 = −
σ + I smb
pmaxn gnn

−
σ + I snb
pmaxm gmm

−

N∑
i=1,i6=m,i6=n

σ + I sib
pmaxi gii

. (35)

Combining (34) and (35), we can get

ϕ2 − ϕ1 =
I snb − I

sm
b

pmaxn gnn
+
I smb − I

sn
b

pmaxm gmm

=
(
I smb − I

sn
b

) ( 1
pmaxm gmm

−
1

pmaxn gnn

)
. (36)

According to the assumption that pmaxm gmm < pmaxn gnn and
I smb > I snb , we can get

ϕ2 − ϕ1 > 0. (37)

Therefore, for any two cognitive users, if the cognitive
user with the smaller product of power constraint and link
gain occupies the worse channel, by exchanging their selec-
tions while the strategies of other cognitive users maintain
unchanged, the system utility will increase. If this continues,
the system utility will continue to increase until the user with
the smaller product of power constraint and link gain occupies
the better channel between any two cognitive users. At this
time, the system utility reaches the maximum. The proof is
completed. From theorem 7, we can see that fairness is well
reflected in our game model. In other words, if each channel
is not occupied by multiple cognitive users, cognitive users
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with a smaller pmaxn gnn will occupy a better channel when
achieving the optimal NE.

IV. DISTRIBUTED ALGORITHMS
As the joint channel access and power control problem now
formulated as an exact potential game, it is another essential
work to achieve the NE. Many distributed algorithms can be
applied to achieve the NE of the potential game, including
best response [28], stochastic-learning automata [35], no-
regret learning [30], Q-learning algorithm [42] and trial and
error learning [27]. However, it is still not an easy work to
achieve the NE solution in the channel access and power
optimization game due to the following reasons: i) The strate-
gies of channel access are discrete, while the power control
strategies may be continuous. Accordingly, the number of
strategies in the joint two-dimensional strategy space may
be infinite. These conventional algorithms cannot be directly
applied in cases where the number of the two-dimensional
strategies is infinite, and it is more challenging to find the
optimal NE solution. ii) Even though the power control
strategies are also discrete, the number of joint strategies in
the two-dimensional strategy space is large (the number of
joint strategy in the two-dimensional strategy space in each
iteration isC ∗ K ,C is the number of available channels,K is
the number of power control strategies). It requires consider-
able computation complexity and storage space. Besides, for
the combination optimization problem, standard optimization
techniques cannot be applied directly to obtain the globally
optimal solution [30]. If the exhaustive search approach is
applied, a central controller and a considerable amount of
computation are needed, which is impractical for implemen-
tation. ( the number of combination strategies in the two-
dimensional strategy space is NC∗K ).
For discrete power control strategies, we propose the JID

algorithm to achieve the general NE of the joint channel
access and power optimization game. Besides, inspired by
the process of exploration and exploitation in reinforce-
ment learning algorithms [43], [44], the JIDEE algorithm is
designed to achieve the optimal NE. Simultaneously, these
two algorithms are extended to the case where the power
control strategies are continuous. In the implementation of
these algorithms, some information exchange ((e.g., user
transmission strategies, channel state information) is needed,
which can be regarded as a reflection of cooperation between
terrestrial cognitive users.

A. JOINT-STRATEGY ITERATION ALGORITHM FOR
DISCRETE POWER CONTROL STRATEGIES
As discussed above, if the strategies of channel access and
power control are both discrete, the number of the joint two-
dimensional strategies may be huge, which leads to consider-
able computation complexity and large storage requirements.
To solve this problem, a decomposed joint-strategy iteration
algorithm suitable for the discrete power control strategies is
proposed, which can converge to the general joint-strategy
NE point. The detail of the joint-strategy iteration algorithm

suitable for the discrete power control strategies (JID) is listed
in algorithm 1.

Algorithm 1 Joint-Strategy Iteration Algorithm for Discrete
Power Control Strategies (JID)
1: Initialization: Set t = 1, each cognitive user n ∈ N

randomly chooses a channel sn ∈ S and selects power
pn = pmax

n /K .
2: For t = 2, 3, · · · L
3: at = at−1 ( st = st−1, pt = pt−1)
4: For n = 1 : N ,
5: Fix the power at the value updated in the last iterat-

ion, terrestrial cognitive user n chooses a best respo-
nse according to stn = argmax

sn∈S,p=pt

(
un
(
sn, st−n

))
.

6: Fix the channel selection updated in the last iterat-
ion, terrestrial cognitive user n chooses a best respo-
nse according to ptn = argmax

pn∈Pn, s=st

(
un
(
pn, pt−n

))
.

7: End For
8: End For: until at = at−1 or reach the maximum number

of iterations L.

Each terrestrial cognitive user independently makes deci-
sions about its channel access and power control strategy.
Therefore, no central controller is needed, which greatly
reduces the computation complexity.

B. JOINT-STRATEGY ITERATION ALGORITHM FOR
CONTINUOUS POWER CONTROL STRATEGIES
The proposed JID is designed for the case that the power
control strategies are discrete. In this subsection, a joint-
strategy iteration algorithm for continuous power control
strategies (JIC) is designed, which is easy to implement and
can also converge to the joint-strategy NE. The optimal power
control strategy can be obtained by the partial derivative of
utility function to power.

∂un(an, a−n)
∂pn

=

∑
i∈Fn(sn)

pigin+I
sn
b +σ

p2ngnn
−

∑
i∈Fn(sn)

gni
pigii
= 0.

(38)

Then, the optimal power strategy can be expressed as

p∗n =

√√√√√√√
∑

i∈Fn(sn)
pigin + I

sn
b + σ

gnn
∑

i∈Fn(sn)

gni
pigii

. (39)

The detail of the JIC is listed in algorithm 2.
It is noted that although the JIC is updated by a step size δ

tomake it easier to find the global optimal solution, it does not
necessarily guarantee to convergence to the optimal NE point.
In addition, It is worth noting that although a larger step size
δ will accelerate the convergence speed of the JIC, it may also
make the value of pi−1n + δ(min

(
p∗n, p

max
n
)
− pi−1n ) negative,

so an appropriate value of δ needs to be carefully set.
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Algorithm 2 Joint-Strategy Iteration Algorithm for Continu-
ous Power Control Strategies (JIC)
1: Initialization: Set i = 1, each cognitive user n ∈ N

randomly chooses a channel sn ∈ S and sets the initial
power pn = pmax

n
/
2.

2: For i = 2, 3, · · · L
3: ai = ai−1 ( si = si−1, pi = pi−1)
4: For n = 1 : N ,
5: Fix the power at the value updated in the last iterat-

ion, terrestrial cognitive user n chooses a best respo-
nse according to sin = argmax

sn∈S,p=pi

(
un
(
sn, si−n

))
.

6: Fix the channel selection updated in the last iterat-
ion, terrestrial cognitive user n updates its power
according to

p∗n = argmax
pn∈Pn,s=si

(
un(pn, pi−n)

)
. (40)

pin = pi−1n + δ(min
(
p∗n, p

max
n
)
− pi−1n ). (41)

7: End For
8: End For: until ai = ai−1 or reach the maximum number

of iterations L.

Theorem 8: The proposed JID and JIC converge to the
general NE point.

Proof: According to the definition of exact poten-
tial game, the equation un(a′n, a−n) − un(an, a−n) =

ϕn(a′n, a−n)− ϕn(an, a−n) always holds. That is, the change
in the utility function caused by any unilateral deviation is
consistent with the change in the exact potential function.
In the JID, although the channel access and power control
are decomposed into two steps, the best response algorithm
for each step guarantees the improvement of the individual’s
utility when other strategies unchanged, which achieves a fea-
sible improvement path in system utility. Besides, the feasible
strategy profiles are finite; the improvement path must be
limited and will terminate in a pure NE point. In the JIC,
through the partial derivative of the utility function to the
transmit power, and makes it to zero, the value of utility
function will not decrease in each iteration. Thus, it will also
eventually converge to the general NE.

C. JOINT-STRATEGY ITERATION ALGORITHM FOR
DISCRETE POWER CONTROL STRATEGIES BASED ON
EXPLORATION AND EXPLOITATION
Both of the above algorithms converge to a general NE in
the joint two-dimensional strategy space, but it is challenging
to find the optimal NE solution. Most existing algorithms
converge to a general NE, such as best/better response [28],
no regret learning [30], stochastically learning automata [35],
and reinforcement learning [42]. Although the trial and error
algorithm (TE) can statistically converge to the optimal
NE [27], it needs lots of iterations and will deviate from
the optimal NE with a certain probability. Moreover, finding

the optimal NE in a two-dimensional strategy space is even
more difficult. Inspired by the thought of exploration and
exploitation in reinforcement learning algorithms [43], [44],
a joint-strategy iteration algorithm for discrete power control
strategies based on exploration and exploitation (JIDEE) is
proposed, which will eventually converge to the optimal NE
after a sufficient number of iterations. The detail of JIDEE is
listed in algorithm 3.

Algorithm 3 Joint-Strategy Iteration Algorithm for Discrete
Power Control Strategies Based on Exploration and Exploita-
tion (JIDEE)
1: Initialization: Set i = 1, each cognitive user n ∈ N

randomly chooses a channel sin ∈ S and selects power
pn = pmax

n /K .
2: For i = 2, 3, · · · L
3: Initializaion: Set j = 1, each cognitive user n ∈ N

randomly chooses a channel sjn ∈ S.
4: For j = 2, 3, · · ·Q
5: Fix the power at the value updated in the last

iteration, each cognitive user n ∈ N sequentially
updates its channel selection according to the best
response, i.e.,

sjn = argmax
sn∈S,p=pi−1

(
un
(
sn, s

j−1
−n

))
.

6: End For: until sj = sj−1.
7: Channel selection vector is set to si = sj, the

power vector is set to pi = pi−1, and calculate the
system utility SU(i) according to (7).

8: If i>2
If SU (i) > SU (i− 1), the channel selection

vector s(i) = s(j)
Else the channel selection vector

s(i) = s(i− 1)
End If

Else
End If

9: Fix the channel selection at the value updated in the
last iteration, each terrestrial cognitive user n sequen-
tially chooses a best response according to

pin = argmax
pn∈Pn, s=si−1

(
un
(
pn, p

i−1
−n

))
.

10: Channel selection vector is set to s1i, the power
control vector is set to pi, and compute the system
utility SU (i) according to (7).

11: If i==2, SU (1) = SU (2)
Else
End If

12: End For: until ai = ai−1 or reach the maximum number
of iterations L.

The implementation of JIDEE can be summarized as
follows: Based on power optimization in the last iteration,
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it randomly selects channels for exploration in step 3, and
achieve the NE from step 4 to 6. Step 7, 8 and 10 are
used to calculate the system utility, compare, and choose the
better channel combination. Step 9 is used for power opti-
mization. Continue to explore, find a better channel choice,
and optimize the power, which cycles until it achieves the
optimal NE.
Theorem 9: The proposed JIDEE will converge to the

optimal NE point when the power control strategy set is
sufficiently enough.

Proof: The JIDEE includes three stages: 1) channel
selection process through best response, 2) power control pro-
cess through best response, and 3) exploration and exploita-
tion stage. The Theorem 8 has proved that stage 1 and 2 can
make sure it converges to the general NE, the system utility
may be locally optimal or globally optimal. Through the
process of exploration and exploitation, when iterating a
sufficient number of times, the system utility will eventually
jump out of the local optimum and reach the global optimum.

It should be noted that in order to achieve the optimal
NE, the power control strategies must be sufficiently large.
In this way, in the power control stage, when the best response
method is used to optimize the power, it is beneficial for
potential function to producemore subtle changes. Therefore,
it is favorable for the potential function to jump out of the
local optimum in the channel exploration and exploitation
stage. After enough times of exploration and exploitation,
the potential function reaches the maximum, which corre-
sponds to the optimal Nash equilibrium solution. The proof
is completed.

D. JOINT-STRATEGY ITERATION ALGORITHM FOR
CONTINUOUS POWER CONTROL STRATEGIES
BASED ON EXPLORATION AND EXPLOITATION
The JIDEE converges to the optimal NE when the power
control strategies are discrete. In this subsection, we study the
joint-strategy iteration algorithm for continuous power con-
trol strategies based on exploration and exploitation (JICEE).
As with the JIDEE, the JICEE also has a process of explo-
ration and exploitation, with the main difference being the
power optimization stage. Since the power control strategies
are continuous, the power can be optimized by Eq. (39)-(41).
The detail of the JICEE is listed in algorithm 4.
Theorem 10: The proposed JICEE will converge to the

optimal NE point.
Proof: The JICEE includes three stages: 1) channel

selection process through the best response method, 2) power
control process, 3) exploration and exploitation stage. The
Theorem 8 has proved that stage 1 and 2 can make sure it
converges to the general NE, the system utility may be locally
optimal or globally optimal.

It should be noted that in the power control stage, the power
changes slightly, it is conducive for the potential function to
produce subtle changes, which is similar to the case where
the number of power control strategies in the JIDEE is suf-
ficiently large. Therefore, after enough times of exploration

Algorithm 4 Joint-Strategy Iteration Algorithm for Contin-
uous Power Control Strategies Based on Exploration and
Exploitation (JICEE)
1: Initialization: Set i = 1, each cognitive user n ∈ N

randomly chooses a channel sin ∈ S and sets the initial
power pin = pmax

n
/
2.

2: For i = 2, 3, · · · L
3: Initializaion: Set j = 1, each cognitive user n ∈ N

randomly chooses a channel sjn ∈ S.
4: For j = 2, 3, · · ·Q
5: Fix the power at the value updated in the last

iteration, each cognitive user n ∈ N sequentially
updates its channel selection according to the best
response, i.e.,

sjn = argmax
sn∈S,p=pi−1

(
un
(
sn, s2

j−1
−n

))
.

6: End For until sj = sj−1.
7: The channel selection vector is set to si = sj, the

power vector is pi, and calculate the system utility
SU(i) according to (7).

8: If i>2
If SU (i) > SU (i− 1), the channel selection

vector s(i) = s(j)
Else the channel selection vector

s(i) = s(i− 1)
End If

Else
End If

9: Fix the channel selection at the value updated in the
last iteration, each terrestrial cognitive user n sequen-
tially chooses a best response according to

p∗n = argmax
pn∈Pn,s=si−1

(
un(pn, p

i−1
−n )

)
pin = pi−1n + δ(min

(
p∗n, p

max
n
)
− pi−1n )

10: Channel selection vector is set to s1i, the power
control vector is set to pi, and compute the system
utility SU (i) according to Eq. (7).

11: If i==2, SU (1) = SU (2);
Else
End If

12: End For: until ai = ai−1 or reach the maximum number
of iterations L.

and exploitation, the potential function will eventually
achieve the maximum value, which corresponds to the opti-
mal NE solution. The proof is completed.

V. SIMULATION RESULTS AND BEHAVIOR
We consider a multi-beam GEO satellite communication sys-
tem that has 10 beams. For each beam, there are multiple
downlink channels, the bandwidth and power of each channel
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FIGURE 2. The convergence of the proposed algorithms (N = 10, C = 4,
δ = 0.5, K = 6).

FIGURE 3. Evolution of the channel selection for any two selected
cognitive users cognitive users (N = 10, C = 4, δ = 0.5, K = 6).

are set to B = 3MHz and p = 1W , respectively. According
to TTU-R.672, the maximum antenna gain of the satellite
is set to Gmax = 50dBi [45]. In the converge of beam b,
there are four available idle channels, and ten terrestrial cog-
nitive users are randomly distributed in a 200*200m square
area. Unless otherwise specified, the maximum transmission
power for each cognitive user is set to pmax = 0.8W . The
distance between the transmitter and receiver of each terres-
trial cognitive user is set to d = 20m [35]. In all simulations,
the transmission loss between terrestrial cognitive users is
calculated by ideal attenuation formulation L = 32.5 +
20 lgD (km) + 20 lgF (MHz), where F is set to 14000 [27].
It is assumed that the cognitive users are interfered by three
co-channel beams, the interference coefficient to beam b is
set to h = [0.3, 0.2, 0.1], respectively [46]. Also,we assume
that the four available channels are independently occupied
in the three co-channel beams with a probability of 1/2.

A. CONVERGENCE BEHAVIOR
The convergence performance of the proposed algorithms
is shown in Fig.2-Fig.7. To verify the effectiveness of the
formulated game model and the feasibility of the proposed
algorithms, two other schemes based on best response are

FIGURE 4. Evolution of the power control for any two selected cognitive
users in an area 150m× 150m (N = 10, C = 4, δ = 0.5, K = 6).

FIGURE 5. Evolution of the power control for any two selected cognitive
users in an area 150m× 150m (N = 4, C = 4, δ = 0.5, K = 6).

considered for comparison: (i) Maximum power algorithm 1,
(ii) Maximum power algorithm 2. Both approaches do not
consider the coupling characteristic between channel selec-
tion and power control, so the cognitive users alway transmit
at their maximum power. The difference is that the Maximum
power algorithm 2 does not consider the cooperation between
users and directly optimizes the throughput. In contrast,
the Maximum power algorithm 1 considers the cooperation
between users, maximize the utility function (5) presented in
this paper. The step size δ for the JIC and the JICEE is set to
0.5, and the number of power control strategies for the JID
and the JIDEE is set to 6.

Fig.2 shows the convergence behaviors of the proposed
algorithms. The results are obtained through the expectations
of 200 independent trails. It can be seen that the JID and
the JIC converge to a pure strategy in about 10 iterations,
while the JIDEE and the JICEE generally need more than
100 iterations to converge to a pure strategy. The reason is
that there is a process of exploration and exploitation in the
implementation of the JIDEE and the JICEE. Besides, it can
be seen that the proposed algorithms achieve better network
throughput than the other two compared ones. The reason is
that in the implementation of the two compared algorithms,
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FIGURE 6. The convergence behavior of the JIDEE with random initial
channel selection (N = 10, C = 4, K = 600).

FIGURE 7. The convergence behavior of the JICEE with random initial
channel selection (N = 10, C = 4, δ = 0.5).

the cognitive users always transmit at their maximum power,
andwill causemore significant interference to other cognitive
users. Not only that, but the Maximum power algorithm 2
also does not consider the cooperation between cognitive
users, so its throughput performance is the worst. It should
be pointed out that the JIDEE and the JICEE converge to dif-
ferent optimal NE point because they have different strategy
spaces.

Fig.3 shows the evolution of channel selection for any two
selected cognitive users. It can be seen that the terrestrial cog-
nitive users remain their current channel selection strategies
unchanged within 200 iterations. It can also be seen that the
JIDEE and the JICEE has a longer convergence time than the
JID and the JIC.

Fig.4 and Fig.5 show the evolution of power control for any
two selected cognitive users. The present results show that,
for the proposed algorithms, the cognitive users remain their
power control strategies unchanged after several iterations,
and the JIDEE and the JICEE has a longer convergence time
than the JID and the JIC. Besides, it is seen from Fig.6 that
when N ≤ C , the cognitive users transmit at their maxi-
mum power at the NE point. The reason can be explained
by Theorem 2 and Theorem 4. That is, in equally loaded

FIGURE 8. The network throughput for the JID and the JIDEE with
different number of power control strategies. (N = 10, C = 4).

or underloaded scenarios, when
∑

i∈Fn(s∗n)
pigin + I

s∗n
b ≥

max[I1b · · · I
sn
b ], each channel is occupied by at most one

cognitive user, and each cognitive user will transmit at its
maximum power when achieving the NE point.

The convergence behaviors of the JIDEE and the JICEE
with random initial channel selection are shown in Fig.6 and
Fig.7, respectively. The presented results are obtained by
simulating 100 independent convergence curves. It can be
seen from the two figures that through continuous exploration
and exploitation, the system utility keeps increasing, and
finally reaches the maximum value, which corresponds to the
optimal NE point.

B. IMPACT OF DIFFERENT PARAMETERS
At different parameter values, we examine the network
throughput, convergence speed and system utility for the
proposed algorithms.

Fig.8 shows the network throughput performance for the
JID and the JIDEE with different number of power control
strategies. The results are obtained through the expectations
of 200 independent trials. As can be seen from the figure,
for the JID, with the increase in the number of power control
strategies, the average system utility does not increase. But
for the JIDEE, with the increase in the number of power
control strategies, the average system utility increases. When
K is large enough (K ≥ 600), the JIDEE converges to the
optimal NE point, which can be explained by Theorem 9.

Fig.9 shows the network throughput performance for the
JICwith different step size δ. For each step size δ, we simulate
2 independent convergence curves. The figure shows that
different δ may converge to different NE point, even for the
same δ, different initial conditions may converge to different
results. It can also be seen that when converging to the same
NE point, the larger δ, the faster the convergence speed.
It should be noted that the parameter δ should not be set too
large, so as not to make the value of power negative according
to Eq. (41).

Fig.10 shows the system utility for the JICEEwith different
step size δ. For each step size δ, we draw any one random
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FIGURE 9. The network throughput for the JIC with different step size δ
(N = 10, C = 4).

FIGURE 10. The system utility for the JICEE with different step size δ
(N = 10, C = 4).

convergence curve. As can be seen from the figure that what-
ever δ is, the JICEE algorithm will eventually converge to the
optimal NE point. Also, it can be seen that as δ increases,
the convergence speed becomes faster. As with the JIC, the
step size δ for the JICEE cannot be set too large to make the
value of power negative.

C. THROUGHPUT PERFORMANCE
In this subsection, we evaluate the throughput performance
of the proposed algorithms. For comparison, two other
approaches are considered: the Maximum power algorithm
and the trial and error (TE) algorithm. 1) Maximum power
algorithm: each terrestrial cognitive user always transmits
with its maximum power, maximizes the utility function (5)
presented in this paper, and selects the channel with the
best response algorithm. 2) TE algorithm proposed in [27]:
each user transmits with the maximum power, maximize its
throughput, and selects the channel with the TE algorithm.
The step size δ for the JIC and the JICEE is set to 0.5, and the
number of power control strategies for the JID and the JIDEE
is set to 6. In addition, as in [27], the learning parameter ε for
TE algorithm is set to 0.005.

FIGURE 11. The comparison of the network throughput when varying the
number of cognitive users in an square area 200m ∗ 200m (C = 4, δ = 0.5,
K = 6).

FIGURE 12. The comparison of the network throughput when varying the
number of cognitive users in an square area 400m ∗ 400m (C = 4, δ = 0.5,
K = 6).

Fig.11 and Fig.12 show how network throughput varies
with the number of cognitive users in different size regions.
As can be seen from the two figures, compared with the Max-
imum power algorithm and the TE algorithm, our proposed
algorithms achieve better network throughput performance.
The reason is that both the Maximum power algorithm and
the TE algorithm do not consider the coupling characteristic
between the channel selection and power control. Besides,
each cognitive user optimizes its own throughput without
considering the cooperation between the cognitive users
in the implementation of the TE algorithm. Therefore, the
throughput performance of the TE algorithm is the worst.

As can be seen from Fig.11 and Fig.12, the system through-
put does not always increase with the increase in the number
of cognitive users. The reason is that as the number of cog-
nition increases, the interference between them will become
more serious, especially in a smaller area (200 ∗ 200).
Fig.13 shows how network throughput varies with the

number of available channels. As can be seen from the
figure, the network throughput increases with the number
of available channels, and our proposed algorithms achieve
better performance in network throughput than theMaximum

129458 VOLUME 8, 2020



J. Wang et al.: Distributed Collaborative Game-Theoretic Approach in Cognitive Satellite Communication Networks

FIGURE 13. The comparison of the network throughput when varying the
number of available channels (N = 10, C = 4, δ = 0.5, K = 6, the square
area is 200m ∗ 200m).

power algorithm and the TE algorithm. It should be noted that
with the increase of available channels, the throughput perfor-
mance of each algorithm gradually approaches. As described
in Theorem 7, when the number of available channels is equal
to or greater than the number of terrestrial cognitive users
and the condition

∑
i∈Fn(s∗n)

pigin + I
s∗n
b ≥ max[I1b · · · I

C
b ] is

satisfied, each cognitive user occupies a channel alone. At this
time, the network throughput reaches the maximum.

VI. CONCLUSION
In this paper,We studied the spectrum sharing in the cognitive
satellite communication system, using a game-theoretic solu-
tion. The terrestrial cognitive users suffer from co-channel
interference from other cognitive users and inter-beam inter-
ference. By taking the coupling characteristic of channel
access and power control into account, we first formulated
the channel access and power optimization problem as a
joint channel access and power optimization game. It was
proven to be an exact potential game and accordingly has at
least one pure Nash Equilibrium (NE) point. The sufficient
conditions for interference-free between cognitive users and
the sufficient conditions for maximizing the system utility
were given, and the performance bounds of the NE were
theoretically analyzed. Then, for the case of discrete power
control strategies, two distributed algorithms were proposed
to converge to the general and optimal NE, respectively.
Besides, these two algorithms were extended to the case
where the power control strategies are continuous. Simulation
results confirm the effectiveness of the formulated game and
the feasibility of the proposed algorithms.
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