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ABSTRACT The ELM constructed based on the least squares loss function and ±1 label has poor
generalization in the classification of data containing noise. The introduction of square pinball loss function
can improve the robustness of ELM. However, the algorithm based on the squared loss function and the
±1 label imposes a margin of 1 for all training samples. At the same time, due to the unbounded nature of the
loss function, the generalization of the algorithm in the classification problem is reduced. This paper proposes
a soft threshold square pinball loss (SSP-Loss) function. This function can set more flexible thresholds for
training samples while maintaining the robustness of the square pinball loss function. The soft-threshold
square pinball loss function can approximate the bounded loss function in stages to further improve the
classification performance of the algorithm. The performance of ELM based on the soft pinball loss function
on several benchmark data sets proves the effectiveness of our proposed algorithm. More importantly, the
excellent robustness and classification performance of the algorithm is very suitable for aeroengine gas path
fault diagnosis, and is expected to become its candidate technology.

INDEX TERMS Extreme learning machine, fault diagnosis, aircraft engine, machine learning.

I. INTRODUCTION
Due to the harsh working environment, large number of parts
and complicated internal structure of the aeroengine, perfor-
mance degradation inevitably occurs during operation, so it’s
important to take some measures to get these signs of degra-
dation in advance to get the rest of the engine’s life, hence the
field of engine performance parameter prediction appeared.
The physical model of the engine is very complicated, and
the correlation between several parts is complicated, so it is
very difficult to establish the model to predict the parameters.
In recent years, with the development of machine learning
methods, data-driven prediction methods have attracted more
and more researchers’ attention. Data-based methods do not
require complex research models, and the accuracy of their
predictions depends heavily on historical data. In the field of
engine health detection, more and more data-based methods
have been applied [1]–[5], these studies also prove that the
correct use of data-basedmethods can effectively improve the
accuracy of diagnosis.

Extreme learningmachine (ELM) is a neural network train-
ing method proposed by Huang [6] in 2006. Since it was
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proposed, it has been widely used in classification, prediction
and other fields due to its fast learning speed and good
performance. However, two important problems restrict the
application of ELM in more complex practical scenarios.
One is its sensitivity to noise data, that is, poor robustness;
the other is its poor generalization. These deficiencies are
particularly fatal in the field of aircraft engine fault diagnosis.
The data collected by sensors of aeroengines often contain a
lot of noise with outliers, some of these abnormal data can
be eliminated through preprocessing, but others cannot be
eliminated. Therefore, the algorithm that can be used in the
field of aircraft engine fault diagnosis must have excellent
robustness. At the same time, in view of the importance of
fault diagnosis for aviation safety, the algorithm in this field
has higher requirements for classification accuracy. It is of
great research significance to have good classification per-
formance under the premise of stickiness.

As an algorithm for learning based on square loss, ELM
is extremely sensitive to noise data, and its poor robustness
restricts its application in many scenarios with noise data.
In order to solve the shortage of the square loss function,
many scholars have made a breakthrough in the study of
the loss function, and proposed many new loss functions
with good robustness. For example, the Hinge loss-based
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SVM (Support Vector Machine) [7], [8] which adopts the
truncation strategy to enhance the robustness of the func-
tion; SVR(Support Vector Regression) based on insensitive
ε loss [9], [10]; the least-squares based truncation square
loss SVM [11]; multiclass capped `p-norm SVM [12] et al.
The above algorithms have achieved performance that can
obtain better training effects under the interference of noise
by modifying the loss function to some extent. The two
typical ones are correntropy-induced loss (C-loss) function
and pinball loss (P-loss) function. C-loss function was first
proposed by Singh [13] to be applied in pattern classification,
the neural network based on C-loss function shows better
robustness and classification performance; Xu et al. [14] then
applies the C-loss function to the study of the kernel method
and proposes a robust C-loss kernel classifier; Chen et al. [15]
made a further expansion, expanding the C-loss function into
the case of central variability, in this article, he first mentioned
the introduction of C-loss function into ELM for the analysis
of regression problem; Zhao et al. [16] set the specification
parameter of C-loss as 1 and introduced it into ELM to
systematically deduce the solution process of ELM based on
C-loss on the regression problem. The core idea of P-loss is to
learn based on quantile distance [17]–[20], Huang et al. [18]
first introduced this idea into SVM. Compared with the
C-loss function, the research on the P-loss function is more
mature. In recent years, many scholars have kept studying
it [21]–[27] and made some progress. Wang and Ding [28]
proposed a square P-loss (SP-loss) function based on the
existing progress in 2019, and introduced the loss function
into the learning of ELM, and obtained SPELM, showing
superior robustness on the regression problem. However,
whether it is C-loss function or SP-loss function, there is still
a lack of research on type ELM. Based on these two new
loss functions, we study their performance in classification
problems.

Another problem that restricts ELM in complex practical
applications is its generalization. It is not difficult to find
through research that ELM is a square-based learning algo-
rithm, which on regression problems will not restrict its gen-
eralization. However, when learning classification problems,
no matter which loss function is used, ±1 labels are usually
used as the output to learn the two classification problems.
The training method based on square learning will force the
margins of all training samples to approach 1, which on the
one hand does not meet the maximum margin learning idea
similar to SVM in statistics, and the unbounded square loss
function greatly reduces its generalization [29], on the other
hand, will increase the risk of algorithm overfitting. The ELM
algorithm based on square pinball loss function and C-loss
function is proposed for two kinds of classification.

In order to improve the limitations of ELM robustness and
versatility, we propose an ELM based on the soft pinball
loss function (SSPELM). By introducing the square pinball
loss function to improve the robustness of ELM, and by
introducing a relatively flexible margin to make the square
loss function approximate the bounded function in stages to

improve its generalization ability, the main contributions of
this paper can be summarized as follows:

1) The ELM algorithm based on the two classifications of
square pinball loss function and C loss function is studied;

2) An ELM algorithm based on soft threshold pinball loss
function is proposed to solve the classification problem;

3) The algorithm is experimentally verified on several
benchmark data sets, and the experimental results prove the
superiority of the algorithm.

4) The new loss function ELM is used for fault diagnosis
of aero-engine air circuits, and has achieved good diagnostic
results.

II. RELATED WORK
A. EXTREME LEARNING MACHINE (ELM)
In this section, we briefly review ELM. Assume the data to
be trained is (x, t), dimension for N × (m+1), x is the sample
input data, t is the sample output data, N is the number of
samples, m is the dimension of the sample input data, that
is, the number of input features, the number of neurons in
the hidden layer is M , the connection weight of the input
layer of ELM to the hidden layer is A, the dimension is
M ×m, the threshold value is B, and the dimension isM × 1,
the activation function of hidden layer is expressed as h(x),
and the output of hidden layer can be expressed as follows:

H = h(AxT + B) (1)

Next, to solve the connection weight of the hidden layer to
the output layer β. In the network training stage, the network
output is known, that is, T is known, and β is to be solved.
Solving β is equivalent to solving the optimal solution of the
following loss function:

min
β
‖T − t‖22 = min

β
‖Hβ − t‖22 (2)

According to the least square method, it is not difficult to
obtain the final solution of β as follows:

β = H†T (3)

where H+ Represents the Moore–Penrose generalized
inverse of H.

B. REGULARIZED EXTREME LEARNING MACHINE (RELM)
In this section, we review RELM [30]. According to for-
mula (2), the solution of ELM is a process to minimize the
empirical risk. But in some cases, this solution presents the
problem of overfitting, scholar Deng introduced structural
risk to avoid overfitting, and updated the loss function of
ELM as follows:

min
β

1
2
‖Hβ − t‖22 +

C
2
||β||22 (4)

C is the regularization parameter. According to the least
square method, the final solution of equation (4) is:

β =


(HTH +

I
C
)−1HT t, N ≥ M

HT (HHT
+

I
C
)−1t, N < M

(5)
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I is the unit matrix whose dimension is the number of
neurons in the hidden layer. In general, the solution obtained
in equation (5) has better performance than that obtained
in equation (4), with more-sparse and does not increase too
much in computational complexity, which is a good choice in
practical applications.

III. ELM BASED ON THE NEW LOSS FUNCTION
ELM and RELM both adopt the weight solving algorithm
based on square loss, although the algorithm based on the
square loss function is a very common method, it is limited in
many complex practical applications due to its sensitivity to
noise. In order to improve the robustness of ELM, we intro-
duce the P-loss function and C-loss function to improve ELM
in this section. The P-loss function is a loss function proposed
in recent years and has made some progress in the application
of SVM.C-loss function is a loss function developed based on
entropy theory. ELM based on C-loss shows better regression
effect and robustness than ELM and RELM in the regression
problem. Studies on the classification of C-loss ELM are still
lacking. The square pinball loss function (l-sp) and the C-loss
loss function (l-c) are as follows:

lsp(ei) =

{
pe2i , ei ≥ 0
(1− p)e2i , ei < 0

(6)

lC (ei) = 1− exp(−
e2i
2σ 2 ) (7)

In equation (6), 0 ≤ p ≤ 1, based on equation (6),
we can obtain the loss function of ELM based on P-loss,
and the solution objective becomes minimized under certain
conditions:

min
β,ei

1
2
‖β‖22 +

C
2

N∑
i=1

lsp(ei)

S.t. h(xi)β = ti − ei, i = 1, 2, . . .N (8)

The solution of equation (8) is not complicated. Lagrange
multiplier method can be used to better solve this problem.
We can get:

β =


(HTWH +

I
C
)−1HTWt, N ≥ M

HT (WHTH +
I
C
)−1Wt, N < M

(9)

where W is a diagonal matrix, which can be evaluated as
follows:

W = diag(wsp1 ,w
sp
2 , . . .w

sp
N ) (10)

wspi =
1
2
∂lsp(ei)
∂ei

ei
=

{
p, ei ≥ 0,
1− p, ei < 0

(11)

By solving the above equation iteratively, the final conver-
gent solution can be obtained. The iteration stop condition can
be set as the difference between β obtained by two solutions
is less than the set threshold ε, or the iteration times reach the
set maximum itMax. We can summarize the algorithm flow
of SPELM as follows:

Algorithm 1 SPELM

Input: Training sample set {(xi, ti)}Ni=1; activation func-
tion;
parameters: p,C,M , ε, itMax.
Output: β
Initialize:
calculate the hidden nodes output matrix H ;
let k = 0, calculate β according to (5);

Denote wspi =

{
p, ei ≥ 0,
1− p, ei < 0,

W =

diag(wsp1 ,w
sp
2 , . . .w

sp
N );

While k < itMax and
∥∥∥βk − βk−1∥∥∥ > ε

calculate β according to (9);
calculateW according to (10), (11);
k = k + 1;
End while

The loss function of CELM is based on equation (8),
replace the square pinball loss function (l-sp) in the equa-
tion with the C-loss function (l-c). Since non-convex loss
function is used, semi-optimal algorithm is needed to solve
the problem. There is a detailed derivation process in litera-
ture [31], which will not be described in this paper. However,
for different parts of classification problem and regression
problem, error e is determined in a different way. The e
calculation of classification problem is carried out according
to the following formula:

ei = 1− tih(xi)β, i = 1, 2, . . .N (12)

CELM’s algorithm is summarized as follows:

Algorithm 2 CELM

Input: Training sample set {(xi, ti)}Ni=1; activation func-
tion;
parameters: σ,C,M , ε, itMax.
Output: β
Initialize:
calculate the hidden nodes output matrix H ;
let k = 0, calculate β according to (5);

While k < itMax and
∥∥∥βk − βk−1∥∥∥ > ε

ei = 1− tih(xi)β, vki = − exp{−
e2i
2σ 2
}, i = 1, 2, . . .N ;

� = diag{−vk1,−v
k
2, . . .− v

k
N };

βk =


(HT�H +

I
C
)−1HT�t, N ≥ M

HT (�HTH +
I
C
)−1�t, N < M

k = k + 1;
End while

IV. ELM BASED ON SOFT SQUARE PINBALL LOSS
Both ELM and RELM based on least square loss, or SPELM
based on pinball loss and CELM based on C-loss func-
tion, that make Hβ approach t, which is reasonable in the
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regression problem, because t is a continuous value at this
time. When we do binary classification problems, usually use
the label ±1 to represent t, at this point, the discriminant
function is different from the regression problem, and the
following equation is generally used for the discrimination
of ±1 category:

f (xi) = sign(h(xi)β), i = 1, 2, . . .N (13)

When the value in parentheses of equation (13) is not less
than 0, f (x) = +1, otherwise it’s−1, As for the loss function
of ELM mentioned above, we can find that: in the classifica-
tion problem with ±1 label, if the algorithm is based on the
square loss function, the square of the network output of all
samples will approach 1. However, according to formula (13),
it can be seen that for +1 label samples, as long as the
network output is greater than 0,and for −1 label samples,
the network output is less than 0, and it is not necessary to
force that the square of all sample network output is equal
to 1. This kind of hard threshold reduces the generalization of
the algorithm and does not conform to the maximum margin
principle of SVM algorithm. In this paper, we introduce a
more flexible threshold determination method, based on this
threshold determination method, the soft square pinball loss
function ELM (SSPELM) is proposed. The loss function of
SSPELM can be expressed as follows:

min
1
2
‖β‖22 +

C
2

N∑
i=1

lsp(ei), i = 1, 2, . . .N

S.t.Hβ + e = t � δ (14)

In formula, � represents the Hadamard product, δ =
[δ1, δ2, . . . δN]T, δ represents the threshold values of some
columns introduced, for each training sample there is a δ
corresponding to it, SSPELM is SPELM when all δ = 1,
so SPELM is a special case of SSPELM.

The idea of solving equation (14) is to adopt the two-step
iterative solution method. In the first step, we first assume
that δ is known after the Kth iteration, and then solve for β.
At this time, the solution idea is the same as SPELM, by using
Lagrange multiplier method, we can get:

βk+1 =


(HTWH +

I
C
)−1HTW (t � δk ), N ≥ M

HT (WHTH +
I
C
)−1W (t � δk ), N < M

(15)

The determination of W in the equation is still calculated
according to equations (10) and (11). Slightly different from
SPELM, e is calculated when calculating W. For the i-th
training sample, the corresponding ei is calculated as follows:

ei = tiδi − h(xi)β, i = 1, 2, . . .N (16)

In the second step, given the β of k + 1 iteration, solve δ:
At this time, the network prediction value of each training

sample can be calculated with determination. We define a
variable:

sk+1i = tif k+1(xi) = tih(xi)βk+1, i = 1, 2, . . .N (17)

Then, we take the value calculated in equation (17) as
the classification standard, and update δ according to certain
rules [32]:

(1) If sk+1i > 1,this situation indicates that the i-th training
sample has been correctly classified and the output of the
network is greater than 1, which far meets the margin require-
ment of equation (13), therefore, the threshold corresponding
to the i-th sample of the next iteration can be set as:

δk+1i = sk+1i (18)

(2) If 0 6 sk+1i 6 1, in this situation, it means that
although the i-th training sample has been correctly classified,
the network output is between 0 and 1, and the margin is
slightly insufficient. Therefore, the threshold corresponding
to the i-th sample in the next iteration can be set as:

δk+1i = 1 (19)

(3) If sk+1i < 0, in this situation, it means that the i-th train-
ing sample is misclassified, and the threshold corresponding
to the i-th sample in the next iteration can be set as:

δk+1i = sk+1i + 1 (20)

According to equations (18) to (20) above, we can obtain
the threshold vector δ corresponding to the next iteration. The
above three expressions can be summarized as the following
update rules:

δk+1i = sk+1i +max{0,min{1, 1− sk+1i }} (21)

In the first iteration, we initialized δ as all 1 vectors, which
β can be initialized according to formula (5). The algorithm
of SSPELM can be summarized as follows:

Algorithm 3 SSPELM

Input: Training sample set {(xi, ti)}Ni=1; activation function;
parameters: p,C,M , ε, itMax.
Output: β
Initialize:
calculate the hidden nodes output matrix H ;
let k = 0, δ = 1, calculate β according to (5);
ei = tiδi − h(xi)β;

Denote wspi =

{
p, ei ≥ 0,
1− p, ei < 0,

W =

diag(wsp1 ,w
sp
2 , . . .w

sp
N );

While k < itMax and
∥∥∥βk − βk−1∥∥∥ > ε

calculate β according to (15);
ei = tiδi − h(xi)β;
calculateW according to (10), (11);
calculate δ according to (21);
k = k + 1;
End while
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TABLE 1. Data set settings.

V. NUMERICAL EXPERIMENTS
In order to verify the effectiveness of the algorithm,
we selected a typical UCI [33] benchmark data set for
numerical experiments, including ELM, RELM, CELM,
SPELM and SSPELM. The selected data set information is
as TABLE 1:

For each data set, we randomly divided it according to the
proportion of 60% training samples and 40% test samples,

and conducted 10 experiments for each data set. For the
model parameters in RELM, CELM, SPELM and SSPELM,
we confirmed the training samples in the first randomized
experiment with K-CV [34] verification. Take K as 5, the val-
ues of parameters σ and C are from {2−5, 2−4 . . . 24,25},
the value of p is determined from {0, 0.1, 0.2 . . . 0.9, 1},
the number of neurons in the hidden layer was set as 20, itMax
was set as 100, and ε was set as 10−10. The activation func-
tion takes sigmoid function and Sine function respectively
for the experiment. During the experiment, the input of all
data is normalized to [0, 1], and the output is normalized
to {−1, +1}. For the case of multi-classification, this paper
adopts the ‘‘one-to-many’’ approach, that is, one category of
multiple categories is taken as one class at a time, and all
other categories are taken as another class for training. After
the training of multiple classifiers, ‘‘voting’’ is adopted to
determine the category of test samples.

All experiments were conducted in the following test
environment: Intel(R)Core(TM)i5-8265U CPU @1.60 GHz,

TABLE 2. The experimental results of sigmoid activation function are noiseless.
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TABLE 3. The experimental results of sine activation function are noiseless.

8.00GB memory, and Windows 10 operating system in
MATLABR2016a environment. The two activation functions
are calculated as follows:

Sigmoid: h(x) =
1

1+ exp[−(AxT + B)]
(22)

Sine: h(x) = sin(AxT + B) (23)

The evaluation indexes of classification effect are as
follows:

ACC =
TP+ TN

TP+ FN + TN + FP
(24)

F1 =
2TP

2TP+ FP+ FN
(25)

MCC =
TP× TN − FP× FN

√
(TP+FP)× (TP+FN )×(TN+FP)×(TN+FN )

(26)

ACC means accuracy, F1 score is the harmonic mean of
precision and sensitivity, MCC means Matthews correlation
coefficient. A sample labeled +1 is called a positive sample,
a sample labeled−1 is called a negative sample, in equations
(24) to (26), TP represents the number of positive samples
correctly classified, TN represents the number of negative
samples correctly classified, FP represents the number of
positive samples incorrectly classified, and FN represents the
number of negative samples incorrectly classified. The larger
of those index, the better.

The numerical experiments performed on six data sets are
briefly described below:

(1) The experiment of classification data set was carried out
without adding any noise data: According to the proportion
of 60% of the training samples and 40% of the test samples,
the model parameters are selected from the values determined
by K-CV for the training samples in the first randomized
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TABLE 4. Add noise to experimental results under sigmoid activation function.

experiment. The results of the three indicators and the model
parameters of the algorithm obtained under the two activation
functions are shown in Table 2 and Table 3;

(2) Add noise data subject to N (0,0.5) distribution to the
input characteristics of each dataset: In the input charac-
teristics of the original data, gaussian white noise obeying
a certain distribution was added, and then the classifica-
tion experiment was carried out. Other Settings remained
unchanged. The results of the three indicators obtained are
shown in Table 4 and Table 5;

(3) Consider the computational complexity of the algo-
rithm: The iterations of CELM, SPELM and SSPELM,
as well as the training time and test time of the five algo-
rithms, are recorded. The indicators related to the calculation
time consumption are shown in Table 6.

By analyzing the experimental results obtained in Table 2
and Table 3, the following conclusions can be obtained: for
the algorithm SSPELM proposed in this paper, four of the
six data sets have the optimal classification performance, it is

proved that SSPLEM algorithm is universal and superior to
the other four algorithms; The six data sets contain binary and
multi-classification situations. The index results in the table
prove that SSPELM has excellent performance in both binary
and multi-classification situations; In the case of binary clas-
sification, the input characteristic dimension of the data set
increases successively from 4 to 40. However, in the range
of this extensive input characteristic dimension, SSPELM
performs better than the algorithm of ELM, RELM, CELM
and SPELM, which proves the universality of the algorithm
from another level; The sample size of the data set was from
300 to 1300, and the algorithm obtained good predictive
performance by learning under different training samples.
The number of hidden layer neurons has a great impact
on the performance of ELM. We sequentially increased the
number of hidden layer neurons of the five algorithms from
10 to 100, and verified the classification performance of
several algorithms on several data sets. Figures 1 to 6 show
the performance of several algorithms in one experiment.
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TABLE 5. Add noise to experimental results under sine activation function.

FIGURE 1. Breast cancer-sigmoid.

By analyzing Figures 1 to 6, we can conclude that the
classification accuracy of the SSPELM, RELM, and CELM
algorithms improves with the increase in the number of

FIGURE 2. Breast cancer-sine.

hidden layer neurons, and ELMwill exhibit abnormal perfor-
mance degradation. Performance degradation also appears on
the data set. On all data sets, SSPELM always performs better
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TABLE 6. The experimental results.

TABLE 7. Aeroengine air path fault information.

than SPELM, and on most data, it can still maintain a high
classification accuracy under different numbers of neurons.
The performance of some data sets is comparable to CELM
and RELM, but most of the data have better performance than
the other four algorithms.

But in the actual application, in most cases we are unable
to get data of no noise interference, discrete label data might
be relatively simple to remove noise, but once input char-
acteristics of the continuous data are polluted by noise or

outliers, it is often difficult to peel off the noise data. In this
paper, two new types of loss functions are introduced to study
in order to develop a classification algorithm that can still
perform well under the interference of noise. This plays an
extremely important role in fault diagnosis of aeroengines,
so we added gaussian white noise data subject to N (0,0.5)
distribution to the input characteristics of the six data sets,
and kept the other parameter Settings unchanged for the
experiment.
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TABLE 8. Aeroengine air path fault data set.

FIGURE 3. Biodeg-sigmoid.

FIGURE 4. Biodeg-sine.

By analyzing Table 4 and Table 5, we can draw the fol-
lowing conclusions: Adding random white noise to the input
characteristics of the training samples degrades the predic-
tive performance of all algorithms. However, on the whole,
under the two activation functions, SSPELM still maintained
the optimal performance on most data sets, which proved
the robustness of SSPELM; Compared with the experiment
under the condition of no noise, the performance of SSPELM
significantly decreased, while the performance of CELM and

FIGURE 5. Audit_Risk-sigmoid.

FIGURE 6. Audit_Risk-sine.

SPELM improved under the condition of noise, which on the
one hand proved the superior robustness of C-loss function
and square marble loss function. Although the introduction of
soft threshold can improve the classification accuracy of the
algorithm, it also affects the robustness of the loss function.

Following is a simple analysis of the computational
complexity of several algorithms. ELM and RELM are
non-iterative training algorithms. Once the model parameters
are determined, the training time of the algorithm is very

VOLUME 8, 2020 131041



Y. Cao et al.: Gas Path Fault Diagnosis of Aeroengine Based on Soft Square Pinball Loss ELM

TABLE 9. Aeroengine air path fault results.

fast; CELM, SPELM and SSPELM are iterative training
algorithms because they involve multiple variables to be opti-
mized, and the training time must be increased compared
with non-iterative training algorithms. However, since no
adjustment has been made to the network structure, the real-
time performance of several algorithms in the test should be
better. We recorded time-related indicators such as training
time and test time, as shown in Table 6. The experiment was
conducted in a noiseless environment.

Based on the analysis of Table 6, we can draw the fol-
lowing conclusions: Although CELM, SPELM and SSPELM
are iterative training algorithms that consume more train-
ing time, however, in most data sets, the test time did not
change too much, showing the same speed as RELM, CELM
and SPELM. This performance ensured the real-time per-
formance of the algorithm in practical application. In the
multi-classification data set, because the ‘‘one to many’’
strategy is adopted, the training time is the longest. But,
on the test set, SSPELM still shows considerable real-time

performance. The main factor influencing the training time
of the algorithm is the sample size of the training data. When
the sample size is large, the time consumption of SSPELM
compared with other algorithms will also increase.

VI. AIR PATH FAULT DIAGNOSIS OF AEROENGINE
Through the previous numerical experiment results, it can be
concluded that the SSPELM algorithm has excellent robust-
ness and higher classification accuracy, and the number of
hidden layer neurons will not affect these advantages. These
characteristics make SSPELM very suitable for For the diag-
nosis of aero engine faults, a small number of hidden layer
neurons can be used to obtain excellent diagnostic results, and
the operation safety of the aero engine can be ensured when
a small amount of memory is required. To further illustrate
these advantages of the SSPELM algorithm in this section,
we make air path fault diagnosis for the aeroengine. The
selected working conditions are the standard cruise working
conditions of a certain aero engine:H= 10700m, flight Mach
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number Ma = 0.395518, and thrust FN = 47.01kn. Five
typical air path fault data were selected, as shown in Table 7,
500 of each fault data were selected. In order to verify the per-
formance of the algorithm under noise interference, we added
the gaussian white noise following N (0,0.5) and N (0.1,0.5)
to the input characteristics of the original aeroengine air
path fault data, and generated air path fault data under three
states, each of which is shown in Table 8. Input characteristic,
selection of high-pressure rotor speed N1, low pressure rotor
speed N2, fan pressure πF , pressurized pressure ratio πLC ,
compressor pressure ratio πHC , total inlet temperature of
high-pressure compressor T25, low pressure turbine exhaust
temperature T5, and fuel consumptionWf .
The multi-classification problems of aeroengine air path

fault diagnosis, we adopt the method of ‘‘one to many’’
training, for each data set, we randomly according to the
proportion of 60% for training samples and 40% for testing
samples, each 10 times experiment data sets, the other param-
eters selection and set up and numerical experiment set the
previous section, using K-CV to select parameters, K take
5 fold, the experimental results are shown below:

By analyzing Table 9, we can draw the following conclu-
sions: SSPELM did not perform optimally under the Sigmoid
activation function for the original noise-free aeroengine’s
air path data. SSPELM performed optimally under the Sine
activation function. However, with the addition of gaussian
white noise data to the input characteristics, the superior-
ity of SSPELM is shown. With the addition of two kinds
of noise, SSPELM still maintains a high diagnostic perfor-
mance. In order to show the performance comparison of
several algorithms more intuitively, we make the following
figure to illustrate.

Fig.7 to Fig.9 respectively represent the evaluation indexes
of ACC, MCC and F1 of the five algorithms in air path fault
diagnosis. By analyzing the three graphs, it is not difficult

FIGURE 7. Engine air path fault diagnosis ACC.

FIGURE 8. Engine air path fault diagnosis MCC.

FIGURE 9. Engine air path fault diagnosis.

to draw a conclusion: SSPELM has the best performance
in most cases; Under different activation functions of the
same dataset, SSPELM showed greater advantages over the
other four algorithms when Sine was used as the hidden layer
activation function thanwhen Sigmoidwas used as the hidden
layer activation function; With the increase of noise data
intensity, the diagnostic accuracy of the algorithm tends to
decline. However, compared with other algorithms, this trend
is not obvious, which proves the excellent performance of the
SSPELM algorithm in the aeroengine air path fault data set.

For aeroengine fault diagnosis, the diagnosis of the real-
time performance is more important, so to test time has the
certain requirement of the algorithm, the algorithm of the
training time is less, the better, the longer training time is bad
for us to add new data in the practical application, is unfa-
vorable to expand into the online learning process, we here
about the training time of the algorithm and the experiment
of testing time, also in the above three data sets, the parameter
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TABLE 10. Aeroengine air path fault results.

Settings are unchanged, training and testing of an algorithm,
10 times results will be recorded in Table 10.

By analyzing Table 10, we can draw the following con-
clusions: In terms of training time, SSPELM takes longer,
because SSPELM needs to consume more iterations to meet
the convergence condition. The same is true for CELM, both
of which require more training time than SPELM; On the test
of time, SSPELM no significant degradation of performance,
in some cases, even showed the optimal test time, partly
to ensure the algorithm in the actual application of aero-
engine fault diagnosis, because SSPELM algorithm of real-
time not received too big impact, as well as maintaining high
robustness and classification accuracy, is a really feasible
aeroengine fault diagnosis algorithm.

VII. CONCLUSION
As a training algorithm based on the squared loss function,
ELM’s poor robustness and generalization limit its practical

application in complex situations to a certain extent. In order
to solve these two limitations, we introduce the non-convex
loss function C-loss loss function and pinball loss function to
obtain two robust algorithms, CELM and SPELM; in order
to solve the problem of generalization, we find that The main
reason for the poor generalization is that the algorithm based
on the square-type loss function will force the squares of all
training samples to approach 1 when performing {−1, +1}
-type label binary classification. According to the analysis of
the nature of the sign discriminant function, it is not necessary
to force all the training sample margins to equal 1. When
the positive sample margin is greater than 0 and the negative
sample is less than 0, the algorithm can obtain better per-
formance. The introduction of this soft threshold can further
improve the generalization of the algorithm. Driven by the
above two solutions, we propose a new soft threshold squared
pinball loss function for classification. The contributions of
this paper can be summarized as follows:
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1) The ELM algorithm based on the square pinball loss
function and the C-loss loss function for two classifications
is studied;

2) An ELM algorithm based on soft threshold pinball loss
function to solve the classification problem is proposed;

3) The proposed algorithm is verified by numerical exper-
iments on several benchmark data sets. The experimental
results demonstrate the excellent robustness and generaliza-
tion of the proposed algorithm;

4) The new loss function ELM is used in the aero-engine
gas path fault diagnosis, and has achieved good diagnostic
results.
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