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ABSTRACT Nonnegative matrix factorization-based image representation algorithms have been widely
applied to deal with high-dimensional data in the past few years. In this paper, we propose a graph
regularized constrained nonnegative matrix factorization with L, Smoothing (GCNMFS) for image repre-
sentation. Specifically, the main contributions of the proposed GCNMFS method include as follows: firstly,
the geometric manifold structure hidden in data is effectively exploited by adopting a graph regularizer.
Secondly, the label information of labeled samples is incorporated into the model of NMF without additional
parameters. Finally, the L, smoothness constraint is used to constrain the basis matrix, and thus a smooth
and more accurate solution is produced. Moreover, an effective optimization scheme is presented to solve
the proposed model. Extensive experiments on several image datasets show the proposed GCNMFS method

can achieve better performance than other state-of-the-art methods in clustering.

INDEX TERMS Image representation, manifold structure, graph, label information, L, smoothness.

I. INTRODUCTION

Data representation has received considerable attention in
practice for many years. Many popular data representation
methods, such as principal component analysis (PCA) [1],
linear discriminant analysis (LDA) [2], independent com-
ponent analysis (ICA) [3], singular value decomposition
(SVD), [4] non-negative matrix factorization (NMF) [5], [6]
and concept factorization (CF) [7], have been used to solve
many problems in the real world.

In the past few decades, as a well-known data rep-
resentation method, NMF seeks to approximate the data
matrix using the product of two nonnegative low rank matri-
ces. Since NMF only performs the additive operations, not
subtraction operations, it is a parts-based representation
method. Due to the strong interpretability in psychologi-
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cal and physiological [8], NMF has been widely applied
in various fields, e.g., text analysis [9] and data cluster-
ing [10]-[12], image analysis [13]-[17] and face recogni-
tion [18]. Xu and Gong [7] proposed a concept factorization
(CF) method to apply the document clustering. One of the
advantages is that CF can deal with the data matrix con-
taining negative elements due to noise. Therefore, it is more
beneficial to apply real problems in practice. Recently, var-
ious constraints are imposed on the original NMF model,
and its goal is to improve the performance by making
full use of the prior knowledge of data. To consider the
sparseness of coefficient, Liu et al. [19] proposed a sparse
NMF method via imposing sparseness constraints explic-
itly. Qian et al. [20] proposed a sparsity-constrained NMF
method for hyperspectral unmixing by imposing the /;,2
sparsity constraint. Cai et al. [21] proposed a graph regu-
larized non-negative matrix factorization (GNMF) method
by constructing a nearest neighbor graph to model the
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manifold structure of data. Sun et al. [22] proposed a sparse
dual graph regularized NMF method that takes advantage
of the dual manifold structure and the sparseness of the
coefficient matrix. To consider the label information among
data, some semi-supervised and supervised methods were
proposed in recent years. Liu er al. [17] proposed a con-
strained non-negative matrix factorization (CNMF) that uses
the label information of the labeled samples with parameter-
free. In CNMEF, the labeled samples from the same category
are projected into the same point in the low-dimensional
representation space. Therefore, it can effectively improve
the representation power in clustering. To increase the dis-
criminative ability, Lu ef al. [23] proposed a nonnegative
discriminant matrix factorization (NDMF) by simultaneously
incorporating the nonnegativity, orthogonality constraints,
and discriminative information. Sun et al. [24] proposed a
graph regularized and sparse nonnegative matrix factorization
with hard constraints method. The manifold structure and
discriminative structure of data can be discovered by jointly
integrating a graph regularizer and label information as
well as sparseness constraint. However, the above-mentioned
methods neglect the smoothness of the basis matrix. Many
studies have shown that the smoothness assumption plays an
important role in data representation [25]-[29]. To solve this
issue, Leng et al. [28] proposed to constrain the basis matrix
with the L, smoothing. Therefore, it can generate a smooth
and more accurate solution for the model. Salehani and
Gazor [29] proposed to simultaneously explore the sparseness
and smoothness of the abundance matrix in hyperspectral
unmixing.

In this work, we propose a novel method, called graph
regularized constrained nonnegative matrix factorization with
L, smoothing (GCNMFS)), for data representation. GCNMFS
takes advantage of more prior knowledge of data compared
with other competitors. In addition, we present an efficient
optimization algorithm based on the multiplicative updating
algorithm to solve the proposed model. Experiments on sev-
eral benchmark datasets show that our proposed method is
superior to related state-of-the-art methods.

The main contributions of this work can be summarized as
follows:

(1) Compared with traditional NMF methods, the pro-
posed GCNMFS method effectively exploits more
prior knowledge hidden in data. Specifically, the geo-
metric manifold structure embedded in data is explored
using regularization technology. The label informa-
tion of known labeled samples is utilized with resort
to the hard constraint without parameters. A more
stable and accurate solution of the model is derived
by imposing the L, norm constraint on the basis
matrix. Therefore, the proposed GCNMFS method
can show more representation ability in clustering
applications.

(2) We present an efficient optimization scheme to solve
the proposed GCNMFS method, and prove their con-
vergence. The extensive experimental results on several
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benchmark datasets manifest the effectiveness of the
proposed method.

The remainder of this paper is organized as follows:
Section 2 briefly reviews the related works. Section 3 intro-
duces the proposed GCNMFS algorithm. Section 4 con-
ducts the experiment results, and Section 5 concludes the

paper.

Il. RELATED WORKS
In this section, we briefly review some related works to our
method.

A. NMF
Consider a case that there is a non-negative matrix X =
[xij] € R™" from c categories. NMF aims to find two
non-negative matrices U = [ux] € R™F and V =
[vik] € R™K such that their product approximates the orig-
inal data matrix X. Using the Euclidean distance to measure
the approximation error, the objective function of NMF is
expressed as follows:
o TN \2 T|?
Omur = Y3 (X5 — (WVDy? =[x — V7|
33—y :

5..U>0, V>0, 1

where ||| is the Frobenius norm. It is arduous to solve
the problem (1) for U and V together due to its non-
convexity. The multiplicative iterative algorithm proposed
by Lee and Seung [6] is used to solve the problem (1).
Therefore, the updating rules of Eq. (1) can be derived as
follows:

(XV)jj

xTU);
Uik <— Ujj m )

<« VU—(VUTU)U' )

Vik
B. GNMF

According to manifold learning theory, Cai et al. [21] pro-
posed the GNMF method, which takes the intrinsic geometric
structure of the data as a regularization term to constrain the
model of NMF. The graph regularization term is given as
follows:

-

al 2
> v =i W
=1

N

T T
v; viDjj— Z v; viWj
j=1 ji=1

=Tr(VIDV) — Tr(VIWV)
= Tr(VILV), 3)

Il
M=

where Tr(-) is the trace of the matrix. v; and v; can be regarded
as the new representation of these two points x; and x; in
the new feature space. W is the affine matrix of the nearest
neighbor graph, and L = D — W is a Laplacian matrix, where
D is a diagonal matrix, D = }_; W;.
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By imposing the graph regularization term constraint on
the model of the original NMF, the objective function of
GNMF is given as follows:

2
OGNMF = HX —uvT HF FATr(VILY)
st.U>0, V>0. 4

Using a similar optimization scheme, the updating rules of
the problem (4) are derived as follows:

XV);; XTU 4+ AWV);
Uy < Uy XV);i ( + )i

G e Ve — 7 (5
Y(UvTv) v Y(VUTU + ADV); ®)

lll. THE PROPOSED METHOD
In this section, we introduce the proposed GCNMFS method
in detail.

A. CONSTRUCTION OF AUXILIARY MATRIX

Given a non-negative matrix {x;}}_, from ¢ categories,
the first / samples are labeled and the remaining n — [ samples
are unlabeled. The labeled samples are all marked as one of
these clusters. Assume x; is marked as the j-th cluster, then
mjj = 1, otherwise m;; = 0. Therefore, the indicator matrix A
is constructed as follows:

M 0
A= , 6
( 0 In—l) ©)

where [,_; is an identity matrix. To utilize the label infor-
mation of the labeled samples, a label constraint is imposed
by introducing an auxiliary matrix Z. The Eq. (7) is given as
follows:

V =AZ. @)

From Eq. (7), we can see that the high-dimensional data
from the same category are projected at the same point in
low-dimensional representation space.

B. OBJECTIVE FUNCTION OF GSNMFS

To make full use of the prior knowledge, in this paper, we pro-
pose the GCNMFS method to deal with high-dimensional
data. The objective function of the proposed GCNMFS
method is given as follows:

Ocenmrs = | X — UZTAT |12 +aTr(2T AT LAZ)
+2u 1 U P, 3
where A and p are two nonnegative parameters, respectively.
The first term is the reconstruction error. The second term is

the graph regularization, and the third term uses L, norm to
constrain the basis matrix.

C. OPTIMIZATION

It is obvious that model (8) is non-convex, and thus cannot
find the global optimal solution. The multiplicative itera-
tive algorithm is used to solve the model (8). Therefore,
we can achieve a local minimum of Eq. (8). Then Eq. (8) can
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be further rewritten as follow:

OGcNMFs
= | X —UZTAT |2 +2Tr(ZTATLAZ) +- 210 | U P
=Tr(X —UzTAT(x — uzTAT)T)
+ATr(ZTATLAZ) + 20 | U |
=Trxx") — 21r(XAZUTY + Tr(UzTATAZUT)
+ATr(ZTATLAZ) +2u | U P 9)
Let ¢;; and ¢;; be the Lagrange multiplier for constraints

wj > 0,z; > 0,and ¥ = [g;], ® = [¢;], the Lagrange
function £ is given as follows:

¢ = Ogenmrs + Tr(WUT) 4 Tr(dzT) (10)

Taking the partial derivatives of U and Z for ¢, we have
ol
U
al
8z
According to KKT conditions v;u;; = 0 and ¢;v;; = 0,
Egs. (11) and (12) can be further rewritten as follows:

= —2XAZ +2UZTATAZ + 2uPUP~ ' + @ (11

= 2ATXTU +24TAZUTU + 22ATLAZ + © (12)

Ly (XAZ); (13)
) y (UZTATAZ + MPUP—])U’
A+ W XTU + AT WAZ)y . (14)
v Y(ATAZUTU + 2ATDAZ);;

D. CONVERGENCE ANALYSIS

In this section, we give the convergence proof of the proposed
model (8) using the updating rules (13) and (14). Before
giving the convergence proof, we introduce some related
definitions and lemmas.

Definition 1: G(x,x’) is an auxiliary function of F(x),
if G(x,x’) satisfies the conditions G(x,x’) > F(x) and
G(x,x) = F(x).

Now we use lemma 1 to give auxiliary functions.

Lemma 1: If G is an auxiliary function of F, then F'is a
non-increasing function under the update rule

x'*! = arg min G(x, x"). (15)
X

Proof: From Definition 1, we have
F'™) < GG x') < G, X'y = F(x').  (16)
Then we have
F("™*) < Fe

F,,, denotes the part of the objective function Ogcnmrs
which is only relevant to element U, in U. Thus, we have

00GCcNMFS

Fryy = (o2
= —2(XAZ +2UZTATAZ + 2uPUT Y, (17)
3*OGenmrs
"
F,,= (T)ab

= 2ZTATAZ)pp + 2 P(P — 1)U ). (18)
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Lemma 2: The function
Glu, uly) = Fuy, () + Fo, ()t — 1)
(ZTATAZ)gp + nP(UP Yy
+ t
Uab

(U - U
(19)

is an auxiliary function for F, .

Proof: Since G(u, u) = Fyq(u) is obvious, we only
need to prove that G(u, ”Zb) > F,, ). To achieve this
goal, we expand the Taylor series expansion of F, ,(u) as
follows:

Fu,(u) = Fy, () + F,;ab(u —uly)+ %F;/ab(u —uly)
= Fu () + F,,, (1 — )
+ [@TATAZYy + PP - DU 0]
(—u )2 (20)

Using Eq. (19) to prove G(u, u;b) > Fuqp(u) is equivalent
to:

(UZTATAZ)yp + nP(UP)

t
Uap

1.,
— 2 Uab
= (ZTATAZ)pp + uP(P — 1)UT?). 1)

We have
k
WZ"ATAZ)ay = Y (U)a(UZ" AT AZ)p

=1
ul (ZTATAZ)pp. (22)

v

The second term is obvious, and thus (21) holds.
Theorem 1: The objective function Ogenmrs in Eq. (9) is
non-increasing under the update rules (13) and (14).
Proof: Replacing G(u, u;b) in (15) by (19), we have

R Fap(ttg)
ab ab—Taby(UAZZT AT + pPUP-1),,
. (XZTAT)gp

. 23
Yab (UAZZTAT + nPUP-T)y, 23)

Since (19) is an auxiliary function for F,,, F,, is
non-increasing under this update rule. Similarly, we have
1 (UTX +2AZW)ap

ab = Vab T .

(UTUAZ + MAZD)y,

In summary, the convergence of the model (9) can be
guaranteed using the updating rules (13) and (14).

(24)

E. COMPUTATIONAL COMPLEXITY ANALYSIS

In this subsection, we discuss the computation complexity
analysis of the optimization scheme of the proposed model.
The big O notation is used to denote the complexity of the
algorithm. Tables 1 summarized the parameters used in this
work.
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TABLE 1. Parameters used in complexity analysis.

Parameters Description
m number of features for each data point
n number of data points
k number of factors
/ number of labeled data points
c number of classes
p the number of nearest neighbors, p= n

We can count the operation times of each iteration of
all methods. Table 2 summarized the results of the pro-
posed GCNMFS and other competitors. From Table 2,
it can be seen that the overall costs of our proposed
method are O(mnk). Although the proposed GCNMFS con-
siders more prior knowledge of data compared with other
methods, it still maintains the same overall computational
complexity.

IV. EXPERIMENT ANALYSIS

In this section, we carried out extensive experiments on PIE,
MNIST and COIL20 datasets, and verified the effective-
ness of our proposed method compared with other meth-
ods including k-means (KM), CF, NMF, GNMF, GCNMF
and GSNMF. In our experiments, two popular metrics
including accuracy (AC) and normalized mutual informa-
tion (NMI) were used to evaluate the performances of all
methods.

A. EVALUATION METRICS

AC is used to measure the proportion of samples with the
correct category information in the sample. Suppose given a
sample set, this includes n samples. For each sample, /; is the
class label obtained from the experimental prediction, and r;
is the correct label provided by the real dataset. Therefore,
we give the definition of AC as follows:

Yoy 8(ri, map(l))
n 9

AC = (25)
where 6(x, y) is a function equal to 1 when x = y, otherwise
it is set to 0. map(li) is a mapping function that maps each
cluster label r; to a given equivalent label.

NMI is adopted as the similarity measure between the test
sample set and the original sample set. Suppose two clusters
C and C’ are given, then the mutual information M1 (C ,C’ )
can be defined as follows:

plci, )

MI(C, C) = plen) - p()’

> pleic) - log

ci€G,cieG

(26)

where p(c;) and p(c;) denote the possibilities that an image
selected arbitrarily from the dataset belongs to the clusters c;
and c}, respectively, and p(c;, ¢}) denotes the joint possibility
that this arbitrarily selected image belongs to the cluster
c; as well as cg at the same time. NMI is formulated as
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TABLE 2. Computational operation counts for each iteration.

fladd flmlt fldiv overall
NMF 2mnk +2(m + n)k* 2mnk +2(m+n)k” + (m+n)k (m+n)k O(mnk)
GNMF 2mnk +2(m+n)k* +n(p+3)k 2mnk +2(m +n)k* +(m+n)k +n(p+ Dk (m+n)k O(mnk)
CNMF Qm+2n—1+c)(n—I+c)k + 2(m+n)k’ Q@m+2n—1+c)(n—I+c)k +2(m+n)k* +(m+n—I+c)k | (m+n—i+c)k | O(mnk)
GONMF 2m+2n—1+c)(n—I+c)k +2(m+n)k*
(2m+2n—l+c)(n—l+c)k+2(m+n)k2+n(p+3)k Hm+n—I+c)k +(m+n)k +n(p+1)k (m+n—I+c)k O(mnk)
(@m+2n—1+c)(n—I+c)k Q@m+2n—1+c)(n—I+c)k + 2(m+n)k* + (m+n—Il+c)k
GCNMFS 5 (m+n—I+c)k O(mnk)
+2(m+n)k” +n(p+3)k +mk +(m+n)k +n(p+)k+mk
follows: TABLE 4. The NMI of different methods on PIE dataset.
MI(C, C’
NMI(C, C/) — ( ) (27) ' KM NMF CF GNMF CNMF GCNMF GSNMF GCNMFS

max(H(C), H(C"))

B. PIE FACE DATABASE

PIE face database contains 41,368 multi-posture, light, and
expression facial images of 68 individuals. We selected
42 facial images with different light and illumination con-
ditions from each person. All grayscale face images were
resized as 32 x 32 pixies, and each image can be represented
by a 1024-dimensional vector. Fig.1 shows some samples
from the PIE database.

Fdl=d'= ¢ =Yz
G -3, _,._n‘ p

FIGURE 1. Some samples from PIE dataset.

TABLE 3. The AC of different methods on PIE dataset.

' KM NMF CF GNMF CNMF GCNMF GSNMF GCNMFS
10 0.208 0.378 0.219 0.404 0433 0.528 0.530 0.547
15 0.227 0316 0.191 0.463 0.391 0.530 0.486 0.537
20 0.211 0.289 0.186 0426 0430 0.542 0471 0.564
25 0.201 0.247 0.156 0466 0.382 0.521  0.490 0.517
30 0.220 0.230 0.133 0.435 0361 0.500 0.477 0.514
35 0.194 0.208 0.111 0.389 0.367 0.467  0.447 0.474
40 0.200 0.210 0.113 0.482 0.353 0.515 0.489 0.503
45 0.191 0.194 0.101 0423 0378 0429 0419 0.507
avg 0.206 0.259 0.151 0.436 0.387 0.504 0476 0.520

In this experiment, we randomly selected 7 categories
samples as the experimental sub dataset to evaluate the pro-
posed method. For each value of T, the average perfor-
mances were recorded as the final result after all methods
were repeated ten times. Tables 3 and 4 show the perfor-
mances of all methods. Tables 3 and 4, it can be seen that
the average performances of GNMF, CNMF and GSNMF
are significantly improved over NMF. This is because these
three methods consider more prior knowledge of data than

VOLUME 8, 2020

10 0.243 0.401 0.191 0.572 0.485 0.654  0.648 0.682
15 0254 0381 0.152 0.540 0.485 0.629 0574 0.634
20 0.303 0.395 0.181 0.616 0.530 0.663  0.638 0.665
25 0.297 0.389 0.179 0.590 0.535 0.654 0.618 0.651
30 0.333 0376 0.183 0.577 0.532  0.636  0.608 0.641
35 0.339 0373 0.174 0.541 0.550 0.633  0.592 0.632
40 0362 0.394 0.205 0.643 0556 0.666  0.618 0.667
45 0358 0.373 0.198 0.613 0572  0.627 0.614 0.681
avg 0311 0385 0.182 0.586 0.531 0.645 0.613 0.657

traditional NMF. Specifically, GNMF effectively discovers
the manifold structure of data using the graph regularizer.
CNMF is a semi-supervised learning algorithm and thus
makes full use of the label information among data. GSNMF
takes advantage of the properties of the solution. However,
our proposed GCNMFS method integrates the merits of the
above-mention three algorithms. It not only utilizes the geo-
metric manifold structure of data and the label information
of known labeled samples, but also adopts the LP smoothing
constraint to obtain a smooth and more accurate solution.

C. MINIST DATABASE

MNIST database includes a total of 70,000 handwritten digit
samples. The gray level of each sample in the database is 8§,
and each sample can be represented by a vector of size 784.
We randomly selected 50 training images from each category
samples as the data subset for experiments. Some images
from the MNIST dataset are shown in Figure. 2.

FIGURE 2. Some samples from the MNIST dataset.

In this experiment, 7 categories samples were ran-
domly selected as the data subset, and then mixed them
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TABLE 5. The AC of different methods on MNIST dataset.

7 KM NMF CF GNMF CNMF GCNMF GSNMF GCNMFS
0.573 0.540 0.523 0.602 0.610  0.633 0.597 0.638
0.591 0.597 0.564 0.664 0.610 0.726 0.668 0.726
0.574 0.559 0.539 0.655 0.611  0.690 0.655 0.692
0.566 0.549 0.540 0.633 0.609  0.672 0.619 0.674
0.561 0.533 0.533 0.623 0.607  0.648 0.613 0.654
0.559 0.522 0.521 0.611 0.601  0.624 0.603 0.629
10 0.554 0.515 0.508 0.591 0.593  0.622 0.587 0.627
avg 0.568 0.545 0.532 0.625 0.606  0.659 0.620 0.663

© 9 o »n A

TABLE 6. The NMI of different methods on MNIST dataset.

T KM NMF CF GNMF CNMF GCNMF GSNMF GCNMFS
4 0477 0438 0.426 0.543 0.492  0.554 0.545 0.559
5 0489 0.481 0452 0.583 0489 0.622 0.593 0.623
6 0.481 0457 0438 0576 0.494  0.587 0.578 0.590
7 0481 0.450 0.442 0.567 0492  0.585 0.567 0.587
8 0.476 0.437 0435 0560 0.494 0.570 0.560 0.573
9 0479 0.434 0430 0.557 0.594 0.555 0.558 0.559
10 0.480 0.431 0.423 0.545 0.492 0554 0.552 0.558

avg 0.480 0.447 0435 0.561 0.507  0.575 0.565 0.578

for clustering. All methods were repeated ten times, and
the average performances were recorded as the final result.
Tables 5 and 6 show the performances of all methods on
the MNIST dataset. It is obvious that the average per-
formance of our proposed GCNMFS method shows the
superiority in comparison to other methods. The main
reason is that our proposed method effectively learns
the manifold preserving representation of high-dimensional
data, and simultaneously considers the label information
of labeled samples and the smoothness of the solution.
However, other competitors fail to make full use of the
prior knowledge hidden in data compared with the pro-
posed GCNMFS method. Therefore, the proposed GCNMFS
method has shown the most representation ability among all
methods.

D. COIL20 DATABASE

COIL20 database includes a total of 1440 images from 20
categories. Each image was resized as a 32 x 32 pixel gray
image. Thus, the total samples of the COIL20 database can
be represented by a 1024 x 1440 matrix. Some samples from
COIL20 database are shown in Figure 3.

Similarly, we randomly picked out T categories samples
from COIL20 database to evaluate the proposed GCNMFS
method. The average results of all methods were reported
after they were run ten times. Tables 7 and 8 show the
performances of all methods in clustering. It can be seen that
GCNMF outperforms GNMF and CNMF in terms of the aver-
age AC and NMI. The probable reason is that both GNMF and
CNMF utilize only one of the prior knowledge of data, and
GCNMF simultaneously considers the manifold structure of
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FIGURE 3. Some samples from the COIL20 dataset.

TABLE 7. The AC of different methods on COIL20 dataset.

T KM NMF CF GNMF CNMF GCNMF GSNMF GCNMFS
5 0.684 0.686 0.635 0.828 0.686  0.824 0.836 0.826
7
9

0.585 0.619 0.631 0.821 0.587  0.898 0.823 0.904

0.745 0.731 0.640 0.889 0.705 0.912 0.878 0.923
11 0.689 0.732 0.688 0.812 0.650  0.805 0.811 0.934
13 0.707 0.780 0.629 0.857 0.783  0.851 0.855 0.934
15 0.694 0.702 0.647 0.839 0.696  0.825 0.840 0.824
17 0.607 0.685 0.576 0.815 0.642  0.807 0.817 0.809
19 0.632 0.640 0.594 0.754 0.711  0.759 0.751 0.808
avg 0.668 0.700 0.630 0.827 0.682  0.835 0.826 0.870

TABLE 8. The NMI of different methods on COIL20 dataset.

T KM NMF CF GNMF CNMF GCNMF GSNMF GCNMFS
5 0.730 0.722 0.673 0.876 0.721  0.881 0.884 0.886
7
9

0.584 0.590 0.670 0.800 0.568  0.856 0.803 0.9861

0.731 0.729 0.624 0.879 0.691  0.915 0.871 0.922
1 0.771 0.730 0.696 0.878 0.680  0.873 0.878 0.928
13 0.769 0.789 0.718 0.914 0.783  0.920 0914 0.944
15 0.727 0.718 0.671 0.878 0.717  0.878 0.881 0.882
17 0.703 0.746 0.627 0.865 0.714  0.885 0.867 0.884
19 0.725 0.716 0.675 0.851 0.768  0.862 0.857 0.876
avg 0.717 0.717 0.669 0.868 0.705  0.883 0.869 0.913

data and the label information of the labeled samples. It can
be observed that our proposed GCNMFS method is superior
to other competitors, mainly because it takes advantage of
the most prior knowledge of data, such as label information,
manifold structure information and smoothness of solution,
compared with other methods in clustering.

E. DISCUSSION ON PARAMETER SETTING

The proposed model contains three parameters A, i and P.
We carried out some experiments on PIE, MNIST and
COIL20 datasets to investigate the parameter sensitivity of
the proposed method. Specifically, one parameter is varied
when other parameters are fixed. The performance of our
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FIGURE 4. Clustering performance versus parameter 1 with different values: (a) PIE; (b) MNIST; (c) COIL20.

proposed method with different values of parameter A is
shown in Figure 4. We can see that the proposed GCNMFS
method consistently outperforms other competitors when the
values of parameter A is in most cases. The result of our pro-
posed method among various configurations of the parameter
w are illustrated in Figure 5. We find that the proposed method
is relatively consistent over a wide range of parameter .
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Figure 6 shows the clustering result of our proposed method
varies with the parameter P. It can be seen that GCNMFS
delivers stable results where P varied from 1.1 to 1.9.

F. EFFICIENCY ANALYSIS
In this subsection, we evaluate the efficiency of the proposed
GCNMFS method with other methods on different datasets.
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FIGURE 5. Clustering performance versus parameter p. with different values: (a) PIE; (b) MNIST; (c) COIL20.

The experiments were carried out on a Windows 10 machine
with Intel Core 2.4 GHz CPU and 16 GB RAM. We ran-
domly sampled 50, 8 and 19 categories from PIE, MNIST
and COIL20 datasets as the sub-datasets. We run all methods
ten times and reported their average time. The running time
of all methods is shown in Table 9. Obviouly, we can see

133784

that NMF, CF and GNMF take similar running time in three
datasets. It can be observed that both GCNMFS and GCNMF
methods take more running time than other methods in each
iteration than other methods. This is because they employ
more constraints to make full use of the prior knowledge
hidden in data.
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FIGURE 6. Clustering performance versus parameter P with different values: (a) PIE; (b) MNIST; (c) COIL20.

TABLE 9. The running time of each iteration (in milliseconds) of different methods.

PIE MNIST COIL20
NMF 1.9 2.3 2.1
CF 3.6 8.2 5.6
GNMF 5.8 2.0 34
CNMF 515 112.7 86.9
GCNMF 78.3 299.9 155.1
GCNMES 89.4 264.7 139.6

V. CONCLUSION

In this paper, we proposed a graph regularized con-
strained non-negative matrix factorization with Lp smoothing
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(GCNMFS) method for image representation. Compared
with traditional methods, the advantage of the proposed
GCNMFS method effectively explores the prior knowledge
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including the label information of labeled samples, the man-
ifold structure of data and the smoothness of the solution.
In addition, the efficient updating rules are provided to solve
the model of GCNMFS. Experimental results on benchmark
datasets demonstrate that the proposed GCNMFS method
outperforms other state-of-the-art methods for clustering.

However, there are still some aspects of the proposed
GCNMFS method that deserve further study. On the one
hand, it is an open problem how to consider the prior knowl-
edge of data with fewer parameters. On the other hand, we try
to seek a more efficient optimization algorithm to solve the
proposed model.
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