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ABSTRACT In this paper, a method of multi UAV cluster control based on improved artificial potential
field (APF) is proposed. The k-means method is used to integrate and optimize the attractive force between
UAVs, and the concept of virtual core is introduced to realize the cluster control and adaptive formation
flight of multiple UAVs. The attractive disturbance component of the target point is introduced and the
backtracking-filling method is proposed to solve the local minimum problem in the APF. The repulsion
force in the APF can realize obstacle avoidance and collision avoidance, and the virtual core can control the
UAV cluster to fly to the target point under the attractive force of potential field, so as to realize the track
planning and multi aircraft cooperative task. In the process of cluster flight when the UAV fails, merges or
dispatches, the method can realize cluster reconfiguration and the cluster control effect and task execution
success rate can be improved. The simulation experiments in virtual APF and urban environment APF show
the effectiveness of this method.

INDEX TERMS Cluster control, virtual core algorithm, cluster reconstruction, track planning,
improved APF.

I. INTRODUCTION
With the rapid development of sensor, cloud computing and
communication technology, UAV system is widely used in
military and civil fields. However, the task execution abil-
ity and efficiency of a single UAV is limited, and the task
environment is increasingly complex. Therefore, UAV cluster
control technology has been widely studied. The mission
process of multiple UAVs includes formation control, track
planning, obstacle avoidance of single UAV, collision avoid-
ance of multiple UAVs, collaborative execution and other
links.

In order to accomplish multi UAV tasks intelligently
and efficiently, the importance of formation control is
self-evident. Feasible formation control methods mainly
include: leader follower, virtual structure and behavior-based
method [1]. Based on the event triggering control strategy
of internal and external loop control, the consistency and
formation of VTOL UAV cluster are solved [2]. Through the
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design of the intermediate attitude composed of the desired
attitude and position information, an attitude based coupled
trajectory tracking scheme is completed to realize the trajec-
tory tracking and formation tracking of the VTOL UAV [3].
Based on the nonsmoothed consistent backstepping design,
the master-slave distributed formation control of multiple
four rotor aircraft are realized [4]. The leader followermethod
has the disadvantages of decentralized layout and no feedback
information between drones, which leads to the increase of
collision probability between drones [5]. In [6], a distributed
control architecture is designed based on the dynamic system
theory to realize the formation control based on behavior.
Based on the demonstration of formation flying performance,
the dynamic performance of UAV is reflected through the
information sharing system of sensors on the UAV and forma-
tion flying algorithm [7]. The above research about formation
control algorithm has achieved a good formation configura-
tion, but it cannot guarantee the flexibility in the complex task
environment.

When the UAV is performing tasks in unstructured envi-
ronment, track planning, obstacle avoidance of single UAV
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and collision avoidance of multiple UAVs are very important
issues. Based on the three-dimensional probability road map,
multi trajectory planning is carried out for UAV group to
deal with urban building emergencies [8]. By introducing
additional control force to improve APF, UAV path planning
can be effectively and conveniently realized [9]. Particle
swarm optimization fuzzy control method [10], [11], arti-
ficial potential tangent vector method [12], improved APF
method based on case reasoning [13] and other applications
in path planning of mobile robots provide experience for
UAV path planning. The ellipsoid is used as the restricted
area of the obstacle, and the geometric characteristics of the
ellipsoid are used to search the path of obstacle avoidance,
so as to realize the obstacle avoidance of UAV [14]. The
obstacle avoidance beetle antenna search (OABAS) algo-
rithm is a new path planning algorithm based on the bio-
logical heuristic algorithm, which is applied to the global
path planning of UAV to achieve obstacle avoidance [15].
With the popularization of large-scale Internet of things (IOT)
application, deep learning (DL) technology has become a
promisingmethod to improve the real-time obstacle detection
and collision avoidance of highly autonomous UAV [16].
Iovino et al. [17] proposed a distributed flocking algorithm
with obstacle avoidance capability for UAV swarming. It con-
sists in an additional control added to solve both the limita-
tion about the obstacles shape and the risk for the flock to
come into the so called ‘‘stuck situations’’. The APF method
is applied to the field of obstacle avoidance and collision
avoidance of UAV, and satisfactory results are obtained in
some researches. Pan et al. [18] combined the improved
APF with PID algorithm, Wang et al. [19] combined the
improved APF with collision prediction model, or realized
the obstacle avoidance of UAV with bearings only measure-
ment [20]. If the UAV companion is regarded as a dynamic
obstacle [21], [22], or a dynamic APF [23] is established,
the collision avoidance between UAVs can be solved in the
improved APF [24]. To sum up, the APF method has good
effect in route planning and obstacle avoidance, and is less
used in cluster control. Moreover, few researchers have tried
to overcome the local minimum problem of potential field
caused by concave obstacles.

The cooperation between UAVs is an important factor to
ensure the high quality of tasks. Zhang et al. [25], based on
the consistency bundling algorithm, introduces the concept
of asynchronous task allocation, and studies the task plan-
ning of UAV group in dynamic environment. The combi-
nation of virtual structure and path tracking method has a
good performance in crowd collaborative control of mobile
machines [26], [27]. The combination of virtual force method
and rolling time domain method improves the efficiency
of multi UAV cooperative search [28]. Shirani et al. [29],
using Udwadia–kalaba method, proposed a distributed con-
troller for collaborative task allocation of multiple UAVs.
Andrade et al. Proposed a cooperative nonlinear model pre-
dictive control method for multiple UAVs using particle
swarm optimization technology [30]. To solve the problem

of UAV cooperative search task planning, Zhen et al. [31]
and Huajun [32] proposed an ant colony algorithm based
on APF using distributed architecture. Swarm intelligence
algorithm is a goodway to solve the optimization problem in a
fixed environment [33], but the traditional swarm intelligence
algorithm is difficult to track the changing optimal solution.

On the basis of the above research, in order to improve the
success rate of multiple UAVs in mission execution, ensure
good cluster control effect, and have flexible and changeable
formation ability, this paper proposes a multi UAV cluster
control method based on virtual core in improved APF, and
realizes UAV cluster real-time path planning. The main con-
tributions of this paper are as follows: 1) the concept of virtual
core based on local potential field between UAVs is pro-
posed. The location of virtual core is determined by k-means
method, and the calculation of attractive field between UAVs
is optimized. 2) a backtracking-filling method of APF is
proposed, which solves the local minimum problem caused
by compact concave obstacles in APF, and improves the APF
method. 3) breaking through the fixed formation configu-
ration, a UAV cluster formation control algorithm based on
virtual core is proposed, which improves the cluster control
effect and realizes the dynamic real-time flexible formation
of multiple UAVs.

The structure of this paper is as follows: the second section
introduces the problem description andAPFmethod; the third
section focuses on the multi UAV cluster control model and
algorithm based on the improved APF method; the fourth
section simulates and verifies the algorithm; the fifth part
summarizes the work, points out the limitations of this paper
and the future work.

II. PROBLEM DESCRIPTION AND APF PRINCIPLE
A. PROBLEM DESCRIPTION
On the basis of considering the maneuverability and threat
avoidance requirements of UAV, this paper uses typical data
elements such as obstacles and targets to establish the cor-
responding repulsion field and attraction field, and then ana-
lyzes the forces and motion of UAV group in the force field.
Compared with the traditional method, the algorithm struc-
ture ofAPFmethod is clearer, the amount of intermediate data
is relatively less, and the fault tolerance is higher. Thismethod
takes the track generated by global planning as the reference
route, and quickly generates feasible route according to the
dynamic change of flight environment, so as to ensure the
safety of flight and the efficiency of mission execution.

This paper assumes that the UAV exists in the form of
particles in the potential field. When there are many "parti-
cles" in a potential field, each particle can be regarded as a
search individual in the three-dimensional search space and
the current position of the particle is an input parameter of
the track planning problem. The motion process of particles
is the evolution process of the system. Particles have only two
attributes: position and repulsion factor. Position is the rela-
tive position of particles in the potential field, and repulsion
factor is the interaction factor of particles. Finally, the optimal

131648 VOLUME 8, 2020



E. Wu et al.: Multi UAV Cluster Control Method Based on Virtual Core in Improved APF

solution satisfying the termination condition is obtained by
iterating and updating the position.

Aiming at the control mode of UAV cluster, this paper
expects to achieve the following goals based on APF method:
1) the UAV can realize cluster flight by controllable forma-
tion. 2) the problem of local minimum of APF is overcome,
especially for concave obstacles. 3) the UAV group success-
fully reaches the target point and completes the task. 4) fault
tolerance or re import in the group can be realized.

Based on the analysis of the above cluster control objec-
tives, a scheme of APF method for UAV cluster is proposed.
The synthetic APF in space is the union of the repulsion field
of obstacles, the attraction field of target points, the repulsion
field between UAVs and the attraction field between UAVs.
In the scheme, four kinds of APFs in space are classified
first, then the force of UAV in each potential field is solved
and superposed, finally the motion scheme of the UAV is
calculated. Firstly, according to the action range of potential
field internal force, the potential field in space is divided into
two groups: inter-UAV potential field and global potential
field. It is assumed that the attractive force and repulsion
force generated by inter-UAV potential field are only valid
within the range, and do not affect the global potential field.
Because this grouping scheme is based on the action range
of the force, from a global point of view, there is an intersec-
tion between the groups in the spatial position, which is not
mutually exclusive. The force field satisfies the linear vector
super-position mode, which can reduce the calculation load
of the system. Secondly, the UAV is attracted or repulsed by
the inter-UAV potential field, and is attracted by the target or
repulsed by obstacles in the global potential field. The vector
method is used to calculate the resultant force of the UAV at a
certain point in space. In order to simplify the calculation of
inter-UAV attraction field and improve the effect of cluster
control, it is assumed that there is a virtual core of UAV
cluster, and the position of the virtual core is calculated by
k-means method to realize the formation flying around the
core of multiple UAVs. Thirdly, the flight speed and direction
of UAV are calculated by the mode value and phase angle of
resultant force to realize the optimal path planning.

B. APF PRINCIPLE
Traditional simple APF is established by global calculation
of obstacles in the system. With the known starting point,
terminal point and obstacle location, an APF is constructed
to imitate the existing potential energy mechanism in nature.
Themoving object in the environment is regarded as a particle
in the APF, which moves in the APF established by the global
calculation of obstacles. The virtual force field is obtained
by negative gradient calculation. The virtual force field is
composed of the attraction field towards the target point and
the repulsion field far away from the obstacle.

The resultant potential field is calculated according to the
following equations:

U (q) = Uatt (q)+ Urep (q) (1)

F (q) = −∇U (q) (2)

FIGURE 1. Local minimum in APF: (a) Sparse obstacles; (b) Dense
concave obstacles.

The position of particle in space is q (x, y, z), and the classical
attraction potential function is:

Uatt (Q) =
1
2
ξρ2

(
q, qgoal

)
(3)

where ξ is the scale factor of attraction, ρ
(
q, qgoal

)
is the

relative distance between the particle and the target qgoal . The
corresponding attraction Fatt (q) is the negative gradient of
the potential field function of the target, and the direction
points to the point of the target. In the process of the UAV
flying to the target point, the attraction converges to zero
linearly.

Fatt (q) = −grad [Uatt (q)] (4)

The classical obstacle repulsion potential function is:

Urep (Q) =


1
2
η

[
1

ρ (q, qobs)
−

1
ρ0

]2
ρ ≤ ρ0

0 ρ > ρ0

(5)

where η is the scale factor of attraction, ρ (q, qobs) is the
relative distance between the particle and the obstacle qobs,
and ρ0 is the radius of influence of the repulsive force of
the obstacle. The corresponding repulsive forceFrep (q) is the
negative gradient of the target potential field function.

Frep (q) = −grad
[
Urep (q)

]
(6)

C. THE LOCAL MININUM PROBLEM OF APF METHOD
AND ITS IMPROVEMENT ANALYSIS
The traditional APF method has the problem of local mini-
mum. On the premise that the potential energy of the target
point is not the global minimum or there is a local minimum
in the global potential field, when the UAV reaches the local
minimum position with the guidance of the potential field,
it probably cannot escape from the area, which leads to the
failure of route planning. The local minimum in the APF can
be divided into two cases, as shown in Figure 1.

In Figure 1a, at the intersection of the repulsive field
boundaries of two obstacles, if the resultant force on the UAV
is exactly zero, the UAV will fall into the local minimum of
the APF. In order to avoid this local minimum phenomenon,
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FIGURE 2. Schematic diagram of APF.

a disturbance component is introduced into the attraction
field of the target point, which directly affects the attraction
generated by the target point. When the UAV falls into the
local minimum point, the speed of the UAV will be reduced
to a relatively small range. When this low speed state is main-
tained for a certain period of time, the disturbance component
will start to affect the attraction. The increase of attraction
will readjust the localminimumvalue ofAPF, so that theUAV
can escape from the original local minimum value point.

In the process of UAV running from the starting point to
the terminal point, when encountering the compact concave
obstacles as shown in Figure 1b, the above method to solve
the local minimum value will be invalid. Because with the
increase of disturbance component, UAV is getting closer
to the obstacle, but it can’t pass through the dense obstacle,
so the UAV can’t escape from the local minimum. In order to
solve this local minimum problem, we propose a backtrack-
ing-filling algorithm. The main idea of this method is as
follows: after the UAV falls into the local minimum value,
it will return to a certain point in the previous path, and then
fill the local minimum point with virtual obstacles to update
the original obstacle potential field, so that the UAV will not
fall into the local minimum again.

III. MATHEMATICAL MODEL
Themap of the single potential field (global and UAV related)
and their union is shown in Figure 2. The attraction field of the
target point is a global potential field. The farther away from
the target point, the stronger the attraction field intensity is.
The attraction field of the virtual core is a local potential field,
and its intensity increases with the increase of the distance
from the core. The repulsive field of the obstacle or the
inter-UAV is a smaller local potential field. The potential field
strength of repulsion field decreases gradually from the center
to the outside. In Figure 2, the darker the color is, the stronger
the potential field intensity is.

Set the number of UAVs to be dispatched as N , divide
the UAVs into k different groups according to the task
requirements, and record the u-th group as Gu,where u =
1, 2, 3, . . . , k , and the number of drones in u-th group is Nu.
The movement of the UAV in the potential field when the
number of groups is 1 is analyzed, and the state of the UAV
at this time is described as a single groupmodel. According to

the movement of the UAV in potential field when the number
of teams is more than 1, the state of the UAV at this time is
described as a multi group model.

The forces on the UAV in the group Gu are defined as
follows:
FG−rep : The inter-UAV repulsion force drives UAVs in

the same group to separate from each other to avoid collision
between them. FG−rep has a range of action ρ0, when ρ >

ρ0,FG−rep = 0.
FGC−att : The UAVs in the group Gu are attracted by the

virtual core of the group to ensure that they can maintain the
trend of convergence.
Fnew−att : The attraction of the target point on the UAV is

calculated by the improved APF method to ensure that each
UAV can move towards the target.
Frep : The combined repulsion force generated by all

obstacles in the APF drives the UAV to avoid obstacles.
FOv−rep : The repulsion force between the current UAV

and the v-th obstacle, with the action range ρ1. When ρ >ρ1,
FOv−rep = 0.

A. ATTRACTIVE FORCE CALCULATION AND
SIMPLIFICATION BETWEEN UAVS
Any two UAVs in the same group Gu have mutual attraction,
and the attractive force ensures that the two UAVs cannot be
separated from the team. Let q (x, y, z) be the position of a
UAV in space Q in the group Gu, where q1q2. . .qn∈ Gu, n is
the number of UAVs in the u-th groupGu, then the directional
distance between the i-thUAVand the j-thUAV is represented
by ρij = ρ

(
qi, qj

)
. ρij satisfies the following equation:∣∣ρij∣∣ = √(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (7)

Then the attractive potential field function of the i-th UAV
generated by the j-th UAV at the point qi is as follows:

Uatt
j (i) =

1
2
ξ · ρ2

ij (8)

where ξ is the proportion factor of the inter-UAV attraction.
The attractive force of the i-th UAV generated by the j-th UAV
at point qi is as follows:

Fatt
j (i) = −∇U

att
j (i) = ξ · ρij (9)

Therefore, the attractive forces between a group of UAVs
at the same time can be expressed as:

Fij =

∣∣∣∣∣∣∣∣∣∣
0 F12 F13 . . . F1n
F21 0 . . .

F23 . . . 0 . . .

. . . . . . . . .

F2n . . . . . . F(n−1,n−1) 0

∣∣∣∣∣∣∣∣∣∣
(10)

where Fij = Fatt
j (i). So, the combined attractive force of the

i-th UAV at point qi by other UAVs in group Gu is:

Fatt (i) =
∑n

j=1
Fattj (i) (11)

When calculating the attractive force between UAVs, a UAV
needs to obtain the location information of all UAVs in its
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group at the same time. The complexity of data exchange
in each control cycle is O(N 2), which has higher require-
ments for data exchange and is not convenient for distributed
management. At the same time, in view of the single UAV
failure, the traditional data transmission mode cannot timely
feedback and update the UAV failure status, which may cause
the global calculation abnormal. We ropose the concept of
virtual core to simplify the traditional attractive field between
UAVs.

If the virtual core position is set as qcore (x0, y0, z0), then
the attractive potential field function generated by the virtual
core at the point of qi is as follows:

Uatt
core (i) =

1
2
ξ · ρ2 (i, core) (12)

The attractive force is:

Fattcore (i) = ξ0 · ρ|ρ=ρ(i,core) (13)

Order Fattcore (i) = Fatt (i),to exit (x0, y0, z0) and ξ0.
In the group Gu, there must be a point qcore (x0, y0, z0)

that holds the equation ∀Fattcore (i) = Fatt (i) forever. Then set
point qcore is the virtual center of the group Gu. Therefore,
the Fatt (i) of the i-th UAV calculated in the force field can
be reduced to Fattcore (i). Where Fattcore (i) is the attraction value
of the i-th UAV calculated from the attraction field generated
by the geometric center qcore (x0, y0, z0) of the group Gu.

In order to determine the virtual core of regional poten-
tial field more conveniently, we use the k-means method to
calculate the center position and range. This is a classical
algorithm to solve the clustering problem. In this method, N
objects are divided into K clusters, and the center of each
cluster is represented by the mean value of the objects in
the cluster, which is iterated many times until the objects in
each cluster no longer change. At this time, the square error
criterion function is optimal, that is, the similarity of objects
in the cluster is high, and the similarity between clusters is
low. With this method, N UAVs in space can be divided into
K groups quickly, and the virtual core of each cluster can be
calculated.

The process of the UAV clustering and virtual core of each
cluster iterative calculation is described as follows:

1) Among the N objects, K objects are randomly selected
to represent the initial position mean or geometric cen-
ter of K clusters.

2) Calculate the Euclidean distance between the rest of the
objects and the centers of the above clusters. According
to the principle of closest distance center, the rest of
the objects are automatically added to the cluster with
the shortest distance. Update the composition of each
cluster last time, and iterate out new K clusters.

3) The average position of all objects in each cluster is
calculated as the center of each cluster after iteration.
This center is the virtual core of the current cluster.

4) Repeat step 2) 3) until the center of each cluster con-
verges to its fixed position, and the clustering ends.

At the same time, the virtual core of each group is
determined.

According to the principle of nearest distance center, the
distance measurement equation is as follows:

d (x1, x2) =

√∑n

i=1
(x1i − x2i)2 (14)

where x1, x2 represents two n-dimensional data objects, and
d (x1, x2) represents the distance between x1 and x2. Accord-
ing to Euclidean distance, the distance between each data
object and each cluster center is calculated. The k-means
algorithm uses the square error criterion function to evaluate
the clustering performance, that is to say, after clustering, all
clusters are evaluated by the equation. The selection equation
of criterion function is as follows:

E =
∑k

i=1

∑
p⊂Gu
|p− Cu|2 (15)

where E is the sum of the square errors of all the objects in
the database, p is the given data object, and Cu is the mean
value of cluster Gu.
The mean value of all objects in each cluster is used as

the cluster center, and the calculation equation of the cluster
center is as follows:

Cu =
1
n

∑
p⊂Gu

p u = 1, 2, 3 . . . k (16)

Inspired by the clustering problem, k-means algorithm is used
to find the virtual core of a group of UAVs, simplify the
inter-UAV machine attractive force in APF, and reduce the
complexity of data exchange in each control cycle. The UAV
is constrained by virtual core attractive force, and realizes
cluster flight in APF. In addition, this method can flexibly
provide cluster grouping, task allocation, track planning and
other schemes by adjusting the calculation logic and parame-
ters of k-means algorithm for hundreds of UAV groups. It has
good performance in the intelligent, adaptive and redundancy
reduction of the system.

B. REPULSION BETWEEN UAVS
Any two UAVs in the same group Gu have mutual repulsion.
The repulsion force between UAVs ensures a certain distance
between UAVs and avoids the collision between UAVs. The
directional distance between the two UAVs is represented by
ρ = ρ (q1, q2).

Urep (q) =


1
2
· η ·

[
1
|ρ|
−

1
ρ0

]2
ρ ≤ ρ0

0 ρ > ρ0

(17)

where η is the gain coefficient of repulsion, ρ0 is a constant
representing the influence distance of repulsion force. The
repulsion force is the negative gradient of the repulsion field,
and the direction is far away from the UAV as a dynamic
obstacle. The position of the current i-th UAV is set as qi, and
the position of the j-th UAV as a dynamic obstacle is set as qj.
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Then, when q 6= qgoal, the repulsion force F
rep
i

(
qj
)
of the i-th

UAV caused by the j-th UAV can be written as follows:

Frepi
(
qj
)
= −grad

[
U j
rep (qi)

]
=

{
Freij ρ ≤ ρ0

0 ρ > ρ0
(18)

Freij = η ·

[
1∣∣ρij ∣∣ − 1

ρ0

]
·

1∣∣ρij ∣∣2 (19)

whereU j
rep(qj) is the repulsion field function generated by the

j-th UAV, and the vector Freij is from the j-th UAV to the i-th
UAV.

At the same time, the repulsion force of the i-th UAV
caused by the repulsion field of other UAVs is:

FG−rep (i) =
∑n

j=1
Frepj (i) =

∑n

j=1
Freij (20)

C. ATTRACTION OF TARGET POINT TO UAV
The UAV is attracted by the target point in the potential
field, which enables the UAV to shuttle between the peaks
and troughs formed by obstacles and advance towards the
target point. The directed distance between the UAV and
the target point qgoal (x0, y0, z0) is expressed by ρgoal(i) =
ρ
(
qi, qgoal

)
, then the attractive potential field function gen-

erated by the target point qgoal at qi is as follows:

Uatt (i) =
1
2
ξ · ρ2

goal (i) (21)

where ξ is the attractive scale factor. The attractive force
produced by the target point qgoal at point qi is as follows:

Fatt (i) = −grad [Uatt (i)] = ξ · ρ|ρ=ρgoal (i) (22)

D. REPULSION BETWEEN UAV AND OBSTACLE
It is assumed that the directional distance between the i-th
UAV and obstacleO is represented by ρiO = ρ (qi,O). Then,
the repulsion field intensity generated by obstacle O at point
qi of the i-th UAV is as follows:

Urep (q) =


1
2
· η ·

[
1
|ρ|
−

1
ρ0

]2
· ρσ (q, qgoal) ρ ≤ ρ0

0 ρ > ρ0

(23)

where η is the repulsion gain coefficient and ρ0 is a constant
representing the influence distance of obstacles. σ is an arbi-
trary constant greater than zero, which is used to introduce
the relative distance between the UAV and the target point,
so as to ensure the global minimum of the whole potential
field only at the target point qgoal . The repulsion force is the
negative gradient of the repulsion field, and the direction is
away from the obstacles. Relative to the i-th UAV, Set the v-th
obstacle asOv, where v = 1, 2, 3 . . . ,V . When q 6= qgoal, the
repulsive force F repi (Ov) of the i-th UAV caused by obstacle
Ov can be written as follows:

Frepi (Ov) = −grad
[
Urep (Ov)

]
=

{
Freiov ρ ≤ ρ0

0 ρ > ρ0
(24)

Freiov = η ·

[
1∣∣ρio∣∣ − 1

ρ0

]
·

1∣∣ρio∣∣2 · ρσ
(
q, qgoal

)
(25)

where Urep (Ov) is the repulsion field function generated by
obstacle Ov, and the vector Freiov points from obstacle Ov to
the i-th UAV.

At the same time, the resultant force of repulsion force on
the i-th UAV generated by repulsion field of V obstacles is:

FO−rep (i) =
∑V

Ov=1
Frepi (Ov) =

∑V

Ov=1
Freiov (26)

The state of APF is updated by combining the original APF
with distributed information. The obstacle information and
position information fed back by all UAVs in the whole
system are collected in real time through the central control
system. The UAV obtains the relative position of the obstacle
target through the visual image data, and then converts it
into geographic coordinates. The central operating system
obtains the obstacle coordinates, and updates the potential
field status.

The specific coordinate updating method is as follows:
UAV calculates the length, width and height information

of obstacles through current position information and visual
depth sensor. The obstacle information is the cross-section
information of UAV’s direction. Through the current depth
data, the UAV rotates the obstacle information into the end-
point information in the UAV coordinate system and uploads
it to the cloud server. According to the coordinates of end-
point location information and the UAV location information,
the cloud server service program constructs cuboid obstacles.
The obstacle section is L in length, W in width and H
in height. According to the obstacle information, the cloud
service program divides the cuboid into small cuboids. The
length, width and height of the small cuboid are l, w, h.
The obstacles are divided into basic units. The cloud service
program takes a, b, c obstacle points on the length, width and
height of the obstacles respectively. Taking the length direc-
tion as an example, the number of obstacle points is calculated
by the following equation. Then the global potential field is
updated according to the obstacle points.

a =
[
L
l

]
(27)

E. THE METHOD TO OVERCOME LOCAL MINIMUM
In this paper, we consider that there are two kinds of local
minimum problems in the traditional APF method, which
are caused by sparse obstacles and dense concave obstacles.
In the flight process of UAV, the reason of local minimum
value is judged by searching the number of obstacles around,
and then different methods are used to make the UAV escape
from the local minimum value.

In order to solve the local minimum problem caused by
sparse obstacles in APF, the disturbance component is intro-
duced into the attraction field of target point, and the follow-
ing improved design is carried out:

Fnew−att (q) =
(
µp + µt

)
· Fatt (q) (28)
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where µp is the positive weight factor, which means that the
attraction of the current target increases with the increase of
the target distance, so as to ensure that the UAV can fly along
the reference route in the case of no new threat. µt is the time
disturbance component weight factor of the target attractive
force. When the speed of UAV is in the normal range, the
value of µt is zero. When the speed of UAV is reduced to a
certain range and the state is maintained for a certain time, the
value of µt increases with time. The disturbance component
µt is defined as follows:

µt =

{∫ t
t0
εd (t) {t > t0, dρ/dt < v0}

0
(29)

In order to solve the local minimum problem caused by dense
concave obstacles in APF, a backtracking-filling method is
proposed. The implementation steps of this method are as
follows:

1) Judge and determine the local minimum value of UAV
falling into dense obstacle.

2) Determine the location of the obstacle with the mini-
mum distance to the UAV.

3) Taking the obstacle point as the center, a virtual obsta-
cle with radius of R1 is placed, and then the APF is
updated.

4) UAV group location backtracking. Each UAV in the
group will return to the position on its own path where
the distance from any obstacle in the potential field is
greater than R2.

5) Continue the APF method.
Among them, step 1) can be evaluated by the number of obsta-
cles in a certain range around the UAV by searching. Step 4)
ensure that each UAV can avoid the new virtual obstacles.
R1 is the radius of virtual obstacle, which is determined by
UAV detection radius, obstacle repulsion radius and repul-
sion coefficient. R2 is the backtracking coefficient, which is
determined by R1, the repulsion radius of the obstacle and the
repulsion coefficient.

Using the APF method based on virtual core, the UAVs
in the group can fill virtual obstacles at the local minimum
value of the original potential field respectively when the
UAV cluster performs tasks, which improves the efficiency
of path planning in the updated APF.

F. THE RESULTANT FORCE OF UAV AND PARAMETRIC
CONSTRAINT EQUATIONS
In order to ensure the moving object moving towards the
target point, the component of repulsion force in the direc-
tion of attractive force is required to be smaller than that
of attractive force, and the next track point is closer to the
target point than the previous one. From these two conditions,
the constraint equation of the two-dimensional space track
planning parameters can be deduced.

Let the Fatt be the attractive force, the Frep be the repulsive
force, δ be the step length, and θ be the angle between the
attractive force and the repulsive force. The component of

vector Frep in the direction of Fatt is Frep · cosθ . In order
to ensure that the aircraft flies towards the target point, when
θ ≤ π

/
2, the UAV can fly towards the target point; when

θ > π
/
2 it must meet the following requirements:

Frep · cosθ < Fatt (30)

Let the distance between the current position (x, y) of the
UAV and the target point

(
xgoal, ygoal

)
be ρ. In order to ensure

that every step of the UAV is closer to the target point, that is,
ρnew < ρ.

In order to ensure that the UAV flies to the target point,
the range of the attractive coefficient katt can be obtained by
using the attraction equation as follows:

katt > Frep ·
cos θ

ρ
(
x, xgoal

) (31)

All the attractive forces and repulsive forces on the UAV
are decomposed to x and y axes respectively to obtain
Fax ,Fay,Frx ,Fry. The resultant force of the UAV is:

F = (Fax + Frx)2 + (Fay + Fry)2 (32)

Then the increment of UAV in x and y directions are as
follows:

xnew = x + δ ·
Fax + Frx

F
, ynew = y+ δ ·

Fay + Fry
F

(33)

By substituting the inequality ρnew < ρ, we get:

δ < 2(1+ k)
Fa
F
ρ
(
x, xgoal

)
(34)

where katt = min(kx , ky), kx , ky are the scale factors:

Frx = kxFax ,Fry = kyFay (35)

In order to ensure that every step of UAV planning is closer to
the target point, the component of repulsion force in x and y
direction is required to be smaller than the attractive force
component. Route planning parameters shall meet the follow-
ing constraints:

δ < 2(1+ katt )
Fatt
F
ρ
(
x, xgoal

)
katt > Frep ·

cosθ

ρ
(
x, xgoal

) θ > π/2 (36)

IV. SIMULATION AND ANALYSIS
In order to verify the effectiveness of the improved APF
method based on virtual core in the control of multiple
UAVs, we design a simulation experiment based on the phys-
ical model of quad-rotor UAV. Compared with fixed wing
UAV, smart car and other agents, quad-rotor UAV has faster
response speed, especially in lateral movement. In the follow-
ing, UAV refers to quad-rotor UAV. In the simulation, we use
the mass free and volume free protons to simulate the UAV.
Considering the actual volume of UAV, the minimum safety
interval is set in the algorithm. The simulation experiment
uses MATLAB platform, the computer processor is Intel
Xeon e3-1230 v5 @ 3.4GHz, the memory is 16GB, and the
system is windows 10 professional.
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TABLE 1. Parameter values and definitions of the APF.

The attraction gain coefficient of target point determines
UAV’s tendency UAV to the target point. If the figure is too
small, the UAV will not be able to reach the target point. The
core attraction gain coefficient determines the tendency of
multiple UAVs aggregation. If the figure is too small will
lead to poor UAV cluster effect. The gain coefficient and
action radius of the repulsion force of obstacles determine
the safe distance between the UAV and the obstacle. If the
figure is too small, the UAV will collide with the obstacle.
The gain coefficient and action radius of repulsion force
between UAVs determine the repulsion force, safety distance
and group uniformity between UAVs. If the figure is too small
repulsion force will lead to collision between UAVs. The
moving step length of the UAV refers to the maximum run-
ning distance of UAV in each iteration, which determines the
running speed and obstacle avoidance accuracy of the UAV.
The setting of motion step size is limited by the computing
speed of the computer. If the movement step size is too large,
the cluster control and path planning cannot be carried out
effectively.

The simulation performance of the algorithm is described
in two simulation scenarios: self-built APF and real scene
conversion APF. The simulation results include: 1) the basic
performance of the model. The force data of UAV are ana-
lyzed. The simulation results show that three UAVs have
successfully completed the mission by controlling the flight
in clusters. 2) performance of the virtual core. The distance
between UAV and virtual core is analyzed. By changing
the four factors of inter-UAV attraction, repulsion, starting
point position of and target point position, the performance
of virtual core algorithm in multi UAV cluster control is
demonstrated by using the method of limited variable simula-
tion. 3) cluster reconfiguration performance. The simulation
results show the flight effect of cluster reconfiguration when a
UAV fails or a new UAV joins in the flight process. 4) simula-
tion analysis of backtracking-filling method. The simulation
results of UAV escaping from the local minimum point in the
APF with dense concave obstacles are given. 5) simulation
results of real scene. This paper presents the effect of cluster
flight and mission execution in the APF simulation scene of
the National Olympic Village in Beijing.

A. MODEL FOUNDATION PERFORMANCE ANALYSIS
1) SIMULATION SCENE
In this paper, the APF is established in the area of 100m
times 100m. In this area, 1000 times 1000 grids are defined in

FIGURE 3. APF of irregular obstacles: (a) 3D visualization model;(b)
Direction of resultant force in cross section of APF.

steps of 0.1m. Three groups of randomly distributed irregular
obstacles are set in the potential field, and multiple evenly
distributed sampling points are set on each obstacle. On each
grid, the repulsion force generated by all sampling points of
an obstacle is calculated and superposed, and the combined
repulsion force of the obstacle at this grid is obtained. Then
the repulsion field of the whole area can be approximately
expressed as a two-dimensional matrix of the repulsion mod-
ulus of all the obstacles on all the grids, and then the APF
model of irregular obstacles is established.

Firstly, the direction of the resultant force applied on the
UAV is analyzed to guide the UAV path planning. Secondly,
when two UAVs are performing tasks, the distance between
them and the force data of each UAV are obtained by sim-
ulation. Finally, when three UAVs are performing tasks, the
cluster effect and the results of target tasks are obtained by
simulation.

2) SIMULATION RESULTS
Figure 3 shows the APF of irregular obstacles. In Figure 3a,
the height of the protuberance in the potential field represents
the size of the repulsion field. The color changes from dark to
light, which means the repulsion field changes from weak to
strong. In the potential field, the x-axis direction and y-axis
direction are 100m respectively, and the minimum potential
grid is 1m times 1m.

In a cross section of the potential field, with (0,0) as the
starting point and (95,97) as the target point of the UAV’s
mission, through the comprehensive analysis of the repulsion
force of the obstacles in the potential field to the UAV and
the attraction of the target point to the UAV, the resultant
force direction diagram of the UAV is obtained, as shown in
Figure 3b. In Figure 3b, the red area represents the resultant
force of the trend target point, the blue area represents the
resultant force of the departure obstacle, and the depth of
color represents the magnitude of the resultant force. After
the UAV takes off from the starting point, it mainly moves
in the direction guided by the resultant force of the red area.
When approaching the obstacle, the UAV will fly along the
canyon at the junction of red and blue areas. Under the action
of the resultant force, the UAV track planning is realized and
reaches the target task point.
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FIGURE 4. Cooperative flight of two UAVs: (a) 2D track visualization;
(b) Distance between two UAVs.

FIGURE 5. Forces on UAVs.

Taking two UAVs as an example, the force of UAV during
flight is analyzed. Two UAVs start from (0,0) and fly to
(95,97) target point. It can be seen from Figure 4a that the
two UAVs reach the target point in the form of maneuvering
formation. Figure 4b shows the change curve of the distance
between twoUAVswith the flight time. The distance between
the two UAVs is stable at about 5m, which reflects the control
effect of mobile formation based on virtual core.

Figure 5 shows the force situation of two UAVs in the
potential field during the mission execution. Among them,
the red line indicates the attractive force by the target point
to the UAV, the green line indicates the attractive force by the
virtual core to the UAV, the blue line indicates the combined
repulsion force by all other objects to the UAV. In the process
of mission flight, the forces of two UAVs are basically the
same, which can be extended to the mutual forces of multiple
UAVs, thus reflecting the effectiveness of cluster control
method based on virtual core.

Three UAVs take off from (0,0), fly around the irregular
obstacles, and go to the target point (95,97) to perform the
task. The navigation trace and task execution effect are shown
in Figure 6. According to the 3D simulation results, the three
UAVs not only keep the formation around the virtual core,
but also have high maneuverability in the formation, which
shows excellent cluster control effect.

B. VIRTUAL CORE PERFORMANCE ANALYSIS
1) SIMULATION SCENE
In the scene of irregular obstacle potential field in Figure 3,
control variable method is used to carry out multiple

FIGURE 6. 3D simulation of three UAVs performing tasks.

comparative simulation experiments to verify the perfor-
mance of virtual core. Variable factors include: inter-UAV
repulsion force, virtual core attraction, starting position of
each UAV.

Firstly, for three UAVs taking off from the same start-
ing point to perform tasks, the following four aspects are
compared and simulated: whether there is rejection between
UAVs, whether virtual core is attractive to the UAV. Secondly,
for three UAVs taking off from different starting points to
carry out tasks, the following four aspects are compared and
simulated: whether there is rejection between UAVs, whether
virtual core is attractive to the UAV. The function of virtual
core is analyzed by the task completion and the data of
distance between UAVs. Finally, by analyzing the distance
from eachUAV to the virtual core, the cluster formation effect
and maneuverability of the control algorithm are verified.

2) SIMULATION RESULTS
When three UAVs take off from the same starting point under
different forces conditions, Figure 7 shows the 2D visual task
execution process, Figure 8 shows the variation curve of the
distance between UAVs.

The comparative analysis is as follows: 1) when there is
no repulsion force between UAVs, Figure 7a and Figure 7c
show that the flight path of UAVs basically coincides shortly
after takeoff. Figure 8a and Figure 8c show that the minimum
distance between aircrafts is 0.3m or 0m, which is far less
than the minimum safety distance. After taking off, UAVs
collided with each other, and the mission could not be com-
pleted. 2) when there is repulsion between UAVs, but there
is no attraction of virtual core to UAVs, Figure 7b shows
that although some UAVs have the possibility of completing
tasks, the formation flying is disordered. Figure 8b shows
that the distance between drones fluctuates in a large range
from 10m to 45m, without cluster effect. 3) when the UAV
has both repulsion and core attraction, Figure 7d shows that
the UAV can complete the task, and Figure 8d shows that the
distance between UAVs is about 6m, which fluctuates in a
small range compared with figure 8b, with obvious clustering
effect and mobile formation characteristics. When multiple
UAVs take off from the same starting point to perform tasks,
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FIGURE 7. 2D visualization of task execution process with different
forces at the same starting point: (a) No repulsion and no core
attract-tion; (b) Repulsion but no core attraction; (c) No repulsion but
core attraction; (d) Repulsion and core attraction.

FIGURE 8. UAV spacing during different force tasks from the same
starting point: (a) No repulsion and no core attraction; (b) Repulsion but
no core attraction; (c) No repulsion but core attraction; (d) Repulsion and
core attraction.

the core attraction ensures the cluster control effect, improves
the success rate of task execution, and improves the cluster
maneuver performance.

When three UAVs take off from the different starting points
under different forces conditions, Figure 9 shows the 2D

FIGURE 9. 2D visualization of task execution process with different
starting points and different forces: (a) No repulsion and no core
attract-tion; (b) Repulsion but no core attraction; (c) No repulsion but
core attraction; (d) Repulsion and core attraction.

visual task execution process, Figure 10 shows the variation
curve of the distance between UAVs.

The comparative analysis is as follows: 1) when there is
no repulsion force between UAVs, Figure 9a and Figure 9c
show that after the UAV group takes off, whether there is core
attraction or not, the flight path will coincide before reaching
the target point. Figure 10a and Figure 10c show that the
distance between aircrafts after the flight path is overlapped
is close to or equal to 0 m, far less than the minimum safe
distance. The mission could not be completed due to the
collision of UAVs. 2) when there is repulsion but no core
attraction between UAVs, Figure 9b shows that UAVs finally
reach the target point. However, the three UAVs fly indepen-
dently, and the termination point is a certain distance from
the target point, so there is a greater risk of mission failure.
Figure 10b shows that the distance between UAVs decreases
gradually in the course of flying towards the target point,
and finally fluctuates in a wide range of 20-30 m without
cluster effect. 3) when the UAV has both repulsion and core
attraction, Figure 9d shows that the UAV can complete the
task. Figure 10d shows that the distance between UAVs is
basically stable at about 6m, which proves the effectiveness
of the algorithm in terms of cluster effect and formation
mobility.

After taking off from (0,0), the three UAVs fly around
the irregular obstacles and go to the target points (95,97) to
perform tasks. Figure 11 shows the flight path, UAV cluster
flight effect and mission completion. In Figure 11, the black
line represents the trajectory of the virtual core during flight.
In the whole process of mission execution, three UAVs have
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FIGURE 10. UAV spacing during task execution with different starting
points and different forces: (a) No repulsion and no core attraction;
(b) Repulsion but no core attraction; (c) No repulsion but core attraction;
(d) Repulsion and core attraction.

been around the virtual core, showing the characteristics of
mobile formation with the change of potential field. Finally,
the task was completed.

There are many classic designs of UAV path planning
based on APF method, which aim at single UAV. Refer-
ences [20] and [21] have carried out obstacle avoidance
research on multiple UAVs. They regard UAVs as dynamic
obstacles, but only introduce repulsion between UAVs, which
cannot realize cluster and formation control. The simulation
performance is shown in Figure 7b and Figure 9b. In this
paper, the core attraction is introduced into the APF method.
On the basis of the original function, it can achieve better
cluster control effect. The simulation performance is shown
in Figure 7d and Figure 9d.

Figure 12 shows the variation trend of distance between the
three UAVs and the virtual core during the whole flight.

With the advancement of flight process, the distance
between UAV and virtual core will fluctuate slightly due to
the influence of obstacles in potential field. This distance has
been maintained at about 3m, which shows that the virtual
core has a strong binding force on three UAVs, but also
reflects a strong formation adaptive ability.

Figure 13 shows the relative position of the three UAVs
and the virtual core at eight time points during the flight.
According to the corresponding analysis of Figure 12, it is
more intuitive to show that the virtual core has strong cluster
flight control ability and formation adaptive ability for three
UAVs. Figure 14 shows the smooth change trend of the
distance from the three UAVs to the target point during the
flight.

FIGURE 11. 3D and 2D visualization of cluster effect based on virtual
core: (a) 3D visualization; (b) 2D visualization.

FIGURE 12. Distance from each UAV to the virtual core.

C. CLUSTER RECONFIGURATION PERFORMANCE
ANALYSIS
1) SIMULATION SCENE
In the scene of irregular obstacle potential field in Figure 3,
taking four UAVs as an example, the cluster reconstruction
performance of the algorithm is verified by simulation from
the following three aspects: 1) in the process of four UAVs
cluster flight execution, when one UAV fails due to external
factors, the cluster flight and task execution effect of the
remaining three UAVs after the reorganization. 2) in the pro-
cess of three UAVs cluster flight andmission execution, when
the fourth UAVs is ordered to join, the four UAVs cluster
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FIGURE 13. Instantaneous position relationship between three UAVs and
virtual core: (a) 0s; (b) 50s; (c) 100s; (d) 150s; (e) 200s; (f) 250s; (g) 300s;
(h) 400s.

FIGURE 14. Distance from each UAV to the target point.

flight and mission execution effect after reorganization. 3) in
the process of four UAVs cluster flight execution, when one or
more UAVs are dispatched to perform other tasks, the cluster

FIGURE 15. Performance of algorithm in UAV cluster reconfiguration:
(a) Failure of a UAV; (b) One other drone enters; (c) Dispatch a UAV to
(0,90); (d) Dispatch two UAVs to (90,0).

FIGURE 16. Distance from each UAV to the core when the new UAV enters.

flight and task execution effect of the remaining UAVs after
reorganization.

2) SIMULATION RESULTS
Figure 15 shows the performance of cluster reconfigure-tion
when a UAV fails, merges or schedules in the process of
executing cluster tasks. In Figure 15a, an UAV fails in 200s
due to external factors. In Figure 15b, when the original
cluster flew to 100s, the fourth UAVwas instructed to import.
In Figure 15c and Figure 15d, the UAV gets the schedul-
ing instruction at 200s and goes to other target points to
perform tasks. The simulation results show that when a
UAV fails, merges or schedules, the cluster control algo-
rithm has good performance of cluster reconfiguration, which
makes the UAV cluster maintain a good flight formation and
success-fully reach the target point to complete the task.

In addition, Figure 15b shows that when the cluster flies
to 100s, four UAVs receive the new UAV import command at
the same time. However, the original three UAVs clusters are
not eager to merge with the fourth UAV for reconstruction,
but according to the track planning to the target point, choose
the right time to reconstruct the cluster, which reflects the
good performance of the multi UAV cluster control method
based on the virtual core in the improved APF in the track
optimization. Figure 16 shows the distance curve from each
UAV to the virtual core when the fourth UAV enters.
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FIGURE 17. Simulation performance of UAV falling into and escaping
from local minimum value (a) Single UAV falling into; (b) Single UAV
escaping; (c) UAV group falling into; (d) UAV group escaping.

In [23], based on the second-order consensus algorithm and
leader follower strategy, the obstacle avoidance problem of
UAV group is studied. However, when a UAV in the unit fails,
especially the leader failure, it will bring great trouble to the
cluster control, and even lead to mission failure. In contrast,
the proposed method in this paper has better performance
in cluster reconfiguration performance, and the simulation
results are shown in Figure 15.

D. BACKTRACKING-FILLING METHOD SIMULATION
ANALYSIS
1) SIMULATION SCENE
In the classical APF method, there is a local minimum prob-
lem. It is more difficult to solve the local minimum problem
caused by dense concave obstacles. In order to verify the
applicability of backtracking filling algorithm, a compact
concave obstacle is set up in the area of 100m multiplied
by 100m, and the APF is established. From the following
two aspects, the simulation verifies and compares the effect
of backtracking filling method in solving the local minimum
problem inAPF: 1) single UAVperforms tasks. 2) threeUAVs
cluster to perform tasks.

2) SIMULATION RESULTS
Figure 17 shows the simulation performance of the UAV
falling into the local minimum value leading to the mis-
sion failure and the UAV escaping from the local minimum
value to complete the task in the APF of concave obstacles.
In Figure 17a and Figure 17c, the UAV is trapped in the local
minimum of the APF without the backtracking-filling algo-
rithm, and the mission fails. In Figure 17b and Figure 17d,
backtracking-filling algorithm is used to overcome the local
minimum problem. When the UAV reaches the local mini-
mumvalue of APF, the virtual obstacle is placed, and theUAV
returns to a position on the original path, and the distance
from the position to the nearest obstacle is greater than R2.

FIGURE 18. Establishment of real scene simulation potential field:
(a) Beijing National Olympic Village; (b) Realistic APF.

Then the APF is updated and the path is re planned until
the UAV successfully escapes the local minimum value. Each
tree-like line from the top to the root in Figure 17b is a process
of backtracking and new path. Compared with Figure 17b and
Figure 17d, it can be seen that the backtracking-fillingmethod
has higher efficiency in path planning when multiple UAVs
cluster to perform tasks.

At present, there are a lot of researches on the local
minimum caused by coefficient obstacles or compact con-
vex obstacles in APF, but few are focused on compact con-
cave obstacles. In [17], when the UAV group enters a concave
obstacle which is represented by two finite walls forming
an angle 120 ◦, the algorithm guides the UAV group to turn
right and escape the so-called "stuck state" by inserting an
additional control. This method is only discussed and studied
for simple concave obstacles. In contrast, the backtracking
filling method proposed in this paper can be applied to com-
plex concave obstacles. In addition, when a UAV in the group
has filled a local minimum point in the APF, other UAVs will
not fall into the local minimum point again, which improves
the efficiency of path planning. However, this method has the
possibility of further optimization in reducing search time and
parameter selection rules.

E. REAL SCENE SIMULATION ANALYSIS
1) SIMULATION SCENE
In practical application, the UAVs may encounter different
kinds and density of obstacles. In order to prepare for the real
experimentation in the future, this paper takes the National
Olympic Village in Beijing as an example, a 1000m times
1000m area is selected to establish an APF, and carries
out simulation research. The real area includes residential
buildings, hotels, office buildings, monuments, tennis courts,
badminton courts, basketball courts, roads, trees, squares and
other factors, as shown in Figure 18a. In this paper, without
considering the height difference, we select 24 complete
buildings as obstacles, set 1m times 1m as the minimum
potential grid, and build the APF, as shown in Figure 18b.

2) SIMULATION RESULTS
In the real scene simulation APF, we take three UAVs cluster
as an example to carry out simulation verification. The simu-
lation experiment is divided into two groups according to the
different target points, one is set as (900,900), the other is set
as (400,900). We divide each group of experiments into two
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FIGURE 19. 2D visualization of multi UAV mission in urban environme-nt:
(a) Same takeoff point to (900,900); (b) Different takeoff point to
(900,900); (c) Same takeoff point to (400,900); (d) Different takeoff point
to (400,900).

categories according to different takeoff bases, and carry out
comparative simulation. One is that three UAVs take off from
the same base to perform tasks, the other is that three UAVs
take off from three different bases to perform tasks.

Figure 19 shows a 2D visualization of the simulation of
multiple UAVs performing tasks in an urban environment
under different conditions. Four simulation results show that
the UAV successfully reaches the target point and completes
themission after the flight process ofmobile formation. Com-
pared with Figure 19c and Figure 19d, it can be seen that the
flight priority of the cluster formation is higher than that of the
track planning on the premise that the number of individuals
in the cluster does not change. Thewhole flight process shows
excellent cluster control effect. The formation shape changes
adaptively according to the influence of obstacles. The above
simulation results verify the effective-ness of the multi UAV
cluster control algorithm based on virtual core.

V. CONCLUSION
This paper presents a virtual core based multi UAV cluster
control algorithm in improved APF. We propose the con-
cept of disturbance component and the backtracking-filling
method to solve the problem of minimum value of traditional
APF. Based on the consideration of potential field repulsion,
this paper integrates the attraction of UAV, introduces the
concept of virtual core, and constructs the virtual core of
multi UAV cluster control. The repulsive force of the artificial
potential field can achieve the collision avoidance between
the UAVs while avoiding the collision between the UAV and
the obstacle and then achieve the purpose of avoiding the
obstacle. The virtual core attraction guides multiple UAVs to

enter the cluster formation flying, so as to realize the uncer-
tain formation shape of the cluster. This method improves
the adaptability of the cluster and reduces the useless energy
consumption. The attraction of the target point can make
the UAV avoid every local minimum position around the
obstacle and continue to move towards the target point by
bypassing the obstacle. In addition, this paper proposes a
cluster reconfiguration mechanism, which realizes the fault
tolerance operation, import and scheduling of UAV in the
process of cluster flight, and improves the flexibility and
success rate of task execution. In the self-built APF and the
simulation potential field based on the urban environment,
a variety of simulation experiments are carried out to verify
the effectiveness of the algorithm in the multi UAV cluster
control. However, the algorithm does not consider the height
difference of obstacles, and with the increase of potential
field area, it highly depends on the computing performance of
the processor. In the future, on the basis of further research,
integrating the factors such as obstacle altitude difference and
flight altitude, we will carry out the real experimentation of
UAV cluster.
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