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ABSTRACT Millimeter-wave (MMW) radar hand gesture recognition technology is becoming important
in many electronic device control applications. Currently, most existing approaches utilize the radical and
micro-Doppler features from single-channel MMW radar, which ignores the different importance of the
information contained in the micro-Doppler feature background or target areas. In this paper, we propose
an algorithm for hand gesture recognition jointly using multi-channel signatures. The algorithm blends the
information of both micro-Doppler features and instantaneous angles (azimuth and elevation) to accomplish
hand gesture recognition performed with the convolutional neural network (CNN). To have a better features
fusion and make CNN focus on the most important target signal regions and suppress the unnecessary
noise areas, we apply the channel and spatial attention-based feature refinement modules. We also employ
gesture movement mechanism-based data augmentation for more effective training to alleviate potential
overfitting. Extensive experiments demonstrate the effectiveness and superiorities of the proposed algorithm.
Thismethod achieves a correct classification rate of 96.61%, approximately 5% higher than that of the single-
channel-based recognition strategy as measured based on MMW radar datasets.

INDEX TERMS Hand gesture recognition, multi-channel signatures, channel and spatial attention mecha-
nism, convolutional neural network, data augmentation.

I. INTRODUCTION
It is essential for human hand gesture recognition to be exten-
sively applied for several important tasks in areas such as
electronic device control, biomechanics research, and virtual
reality gaming [1], [2]. It is convenient for users to control
equipment using hand gestures. For instance, for safe driving,
the hand gesture is designed as a control method in vehicles
that can avoid undesirable physical touching of buttons [17].

In the last decade, various techniques have been applied in
the area of hand gesture recognition. Multitudinous computer
vision-based optical methods utilizing RGB cameras [10] and
depth cameras [3], [4] perform well with respect to gesture
tracking [5], [6]. The fusion information of the RGBDgesture
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data and upper-body skeletal motion data is fully utilized
through a CNN for Italian sign language gesture classifi-
cation in [7]. Nevertheless, because of the very large vari-
ance of light intensity, dependability in extreme environments
remains an issue, for instance, under conditions of strong
light and darkness [17]. Moreover, when the hand moves
rapidly, it is necessary to usemore numerous pixels and frame
rate optical sensors for the recognition task, and stronger
computing power is also required [14]. In addition to optical
sensing methods, some passive sensing methods, including
pyroelectric infrared sensing and WiFi signal sensing, etc.,
also exhibit good performance [8], [9].

Compared with passive sensing methods, since the trans-
mitting waveforms can be artificially designed accord-
ing to different tasks, active sensing methods, such as
sound [11], magnetic field [12] and radio frequency (RF) [13]
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technologies, are more robust under complex circumstances,
which leads to widespread interest [21]. Magnetic sensing
performs well for gesture tracking; however, the demand
for fingers to be equipped with sensors is usually undesir-
able [12]. Ultrasonic active sensing can acquire Doppler and
range profile features from the echoes, which are appropriate
for the hand gesture recognition task [13]–[15], [21]. Never-
theless, the detection distance limitation of ultrasonic sensing
technology would restrict its applications in different realistic
scenarios.

Unlike themethods above, the performance ofMMWradar
applied in hand gesture recognition is not as restricted by the
lighting conditions and sensing distance. Moreover, owing
to its capability to penetrate objects, the miniaturized radar
can be embedded within the equipment to achieve robust
and convenient operation. Micro-Doppler signatures on spec-
trograms have been used to train a CNN [17], [25]–[28],
which reflects the powerful feature extraction ability of
the CNN. The temporal information within the gesture pro-
cess is also utilized to achieve dynamic continuous hand
gesture recognition based on sequential models in [29]–[33].
Radar I-Q channel signals or signals received by multiple
sensors are jointly studied in [16], [34], where successful
classification performance is obtained under widely vary-
ing lighting conditions. These existing schemes of gesture
recognition only use the micro-Doppler signatures measured
by radar, which would be unfavorable to strong directional
gesture discrimination. Moreover, the presence of noise and
clutter in target echoes will affect both the feature extraction
and correct recognition.

On the other hand, there are many different situations for
gesture recognition, such as different people’s gestures dif-
fering slightly from each other, different positions of hands,
different speeds of hand movements, etc., so it is difficult
to obtain measured data covering various situations. Several
data augmentation strategies have been put forward to hinder
CNNs from overfitting when trained by a variety of restricted
training data [18]–[20]. Krizhevsky et al. [18] employ three
kinds of image enhancement methods on the training images
to train a CNN for generalization improvement and bet-
ter classification. Similar spatial data augmentation is also
applied on the video data to reduce the overfitting for human
activity recognition [14], [20]. Because there are neither
strong physical mechanisms nor interpretability for these
data augmentation methods, we propose a data augmentation
method based on the gesture movement mechanism for effec-
tive training and interpretability which is also suitable for the
measured MMW radar dataset.

To solve the problems mentioned above, in this paper,
we propose a gesture recognition algorithm using atten-
tion mechanism and multi-channel MMW radar features
to adapt to the complex hand gesture recognition scenes.
Multi-channel wide-band MMW radar is used to acquire
echo signals of gestures. Clutter cancellation is applied to
eliminate the influences of stationary objects and background
scenes. To focus on the important features and suppress the

unnecessary ones along the channel and spatial dimensions
of CNN, we apply the attention mechanism [37] to blend
cross-channel and spatial information together and increase
the model’s representation power. Furthermore, considering
the strong directionality of most hand gestures, we blend
the azimuth and elevation angle information, as well as the
micro-Doppler signatures from multi-channel MMW radar
acquired via the CNN, to fully extract the discriminative
features, which can effectively distinguish the directional
characteristics of gestures and improve the recognition
performance. Moreover, according to certain physical
mechanisms, we augment the data by corresponding scal-
ing transformation to improve the model’s generalization
and prevent CNN overfitting. Compared with conventional
single-channel methods, the proposed multi-channel MMW
hand gesture recognition offers superiorities of both com-
petitive recognition performance and adaptation to complex
scenes.

The main contributions of this work can be concluded
as follows. (1) To emphasize the meaningful features and
weaken the impacts of unimportant areas along the spa-
tial dimensions and improve the adaptive feature fusion
along the channel of the CNN, we introduce the channel
and spatial attention modules. (2) To fully utilize the ges-
ture direction information, we synthesize a multi-channel
feature by integration of the micro-Doppler, elevation and
azimuth angle information, effectively enhancing the recog-
nition performance and robustness. (3) To account for dif-
ferent micro-Doppler features in various complex scenes and
reduce the extra work of training data acquisition, we propose
a two-dimensional scaling-based data augmentation method
according to the gesture movement mechanism.

This paper is organized as follows. We first introduce
multi-channel MMW radar signal processing in Section 2.
Our enhanced hand gesture recognition method is then pre-
sented in Section 3. In Section 4, our proposed models and
reported experimental results on measured hand gesture data
are evaluated. Section 5 concludes our work.

II. RELATED WORK
Recently, there have been several attempts [40]–[44] to utilize
attention mechanism to improve the performance of mod-
els in the optical image or video gesture recognition task.
Peng, et al. [40] utilize the Residual Attention Network which
has an encoder-decoder style attention module to perform
gesture recognition. By refining the feature maps, the model
can perform well even with noisy inputs. Instead of directly
computing the 3D attention map, we decompose the process
to learn the channel and spatial attention separately. This
separate attention generation process can have much less
computational and parameter overhead.

Several works [41]–[44] try to introduce different com-
pact modules to exploit the spatial-temporal relationship
in the video gesture recognition task. But their attention
modules mainly contribute to the temporal fusion along
with the recurrent steps to learn long-term spatiotemporal
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features when taking spatial or spatiotemporal features as
input. In work [41], G. Zhu, et al. use global average-pooled
features to compute the channel-wise attention. However,
it is shown that those are suboptimal features, so we
use max-pooled features as well to infer a better channel
attention.

In our model, we exploit a channel-wise attention to
achieve a more efficient multi-channel radar echo features
fusion. Different from the optical image gesture recognition
task, the clutters and noise always have an obvious influence
on the performance, so we utilize a spatial attention to make
the CNN focus on the most important target signal regions
and suppress the unnecessary clutter areas.

III. MULTI-CHANNEL MILLIMETER WAVE RADAR SIGNAL
PROCESSING
This section mainly introduces the multi-channel MMW
radar system settings and data preprocessing for radar gesture
recognition.

A. SPECIAL ARRANGEMENT OF THE RADAR SYSTEM
The radar system for hand gesture recognition data acquisi-
tion is a two-transmitter and four-receiver system. Through
the special arrangement of transmitting and receiving anten-
nas, the receiving antenna has freedom with respect to
azimuth and elevation, which can measure the azimuth and
elevation angle of a hand gesture at a certain time. The
specific arrangement of the antennas is shown in Figure 1.
In this radar system, receiving antennas Rx1 and Rx2 are
placed vertically with wavelength distance between them,
so the freedom of elevation angle measurement is obtained.
In addition, receiving antennas Rx2, Rx3 and Rx4 are arranged
in parallel with the interval of one-half of a wavelength,
and therefore, the freedom of azimuth angle measurement is
achieved.

FIGURE 1. Diagram of the specific antenna arrangement: (a) antenna
layout array with two transmitting antennas and four receiving antennas.
(b) Physical map of the radar system.

It is well known that the time of the gesture echo reach-
ing different antennas is related to the spatial positioning
of antenna and hand. When a hand is not directly in front
of two radars, there will be a wave path difference in
the distance of the echo signal to each antenna, which is
reflected in the different initial phase modulations of the
signals received by each antenna. Considering the previous
analysis, the phase differences between different channels can

be obtained according to the micro-Doppler results of the
echo signal. Then, the azimuth and elevation angles corre-
sponding to the gesture can be acquired by using the spatial
analysis method according to the phase difference of azimuth
and elevation.

In this work, frequency modulated continuous wave
(FMCW) radar is used to obtain gesture echoes. We set the
initial frequency of the radar, the frequency modulation slope
and the sampling rate of the intermediate frequency (IF)
signal after mixing as fc, K and fs, respectively. The number
of signal samples in each FMCW transmission cycle is Nsp,
while the effective bandwidth of the radar transmission signal
is B = Nsp

fs
K and the range resolution of the radar is Rres =

c
2B , where c is the speed of light. We design the transmission
signal of the radar as follows:

ST
(
t, t̂
)
= exp

(
j2π

(
fct +

1
2
γ t̂2

))
, (1)

where γ is the frequency modulation slope and t̂ is the fast
time, i.e., the time in a transmitting waveform cycle. The
bandwidth of the transmitted signal is B = γ ∗ t̂ .

Supposing that there are Ns stationary targets and Nm mov-
ing gesture targets within the radar detection range, the echo
received by the radar is SR = Ss + Sm, where Ss is the
echo summation of the stationary targets and Sm is the echo
summation of the moving targets. Ss can be expressed as

Ss =
Ns∑
s=1
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(
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whereRs is the distance of the sth stationary target to the radar
and as is the echo amplitude of the sth stationary target. Sm
can be calculated as
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(3)

where Rm is the distance of themth moving target to the radar
and am is the echo amplitude of the mth moving target.

The mixer in FMCW radar mixes the received signal SR
with the transmitted signal ST to obtain the IF signal, i.e.
SIF = SR × conj (ST ), where conj (·) denotes conjugation.
In this way, the IF signal after mixing can be expressed as

SIF =
Ns∑
s=1

asexp
(
j
(
−
2πγ (2Rs)

c
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+

Ns∑
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(
j
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−
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+
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(
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−
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+
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(
j
(
−
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λ

))
. (4)
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Pulse compression is then carried out. Figure 2(a) shows
the range compression results of double hand shaking
measured by MMW radar in complex scenes. It con-
tains the echo information of static scenes and moving
hands.

FIGURE 2. (a) The range compression results of double hand shaking in
complex scenes. (b) The static scene cancellation result of double hand
shaking IF echo.

B. PREPROCESSING OF CLUTTER SUPPRESSION AND
MOVING TARGET INDICATION
In the process of data acquisition, the echoes of radar include
the echoes of moving gesture targets and static scenes, among
which static scenes will degrade the gesture recognition per-
formance and belong to clutter. Therefore, in order to enhance
the signal to clutter ratio, it is necessary to eliminate the
radar echoes of static scenes. Since the distance between the
static scene and the radar remains unchanged, the Doppler
frequency is zero. Moreover, because the position of the static
target is constant with respect to the radar, the echoes of the
static targets are the same for the two adjacent radars, except
for noise, while the echoes of the moving target exhibit the
wave path difference of the range change. Utilizing these
characteristics, the static scene echoes can be eliminated by
subtracting the echoes received by the two adjacent radars,
while the echoes of the moving target can be retained. Fig-
ure 2(b) shows the static scene cancellation result of the
double hand shaking IF echoes. Compared with Figure 2(a),
we can find that most of the static scene echoes have been
cancelled, and only the echoes of the double hand shaking
are retained.

IV. MULTI-CHANNEL MMW RADAR HAND GESTURE
RECOGNITION
Through experimentation, we find that it is difficult to rec-
ognize gestures with strong directionality when using only
micro-Doppler features, since the general structures of dif-
ferent directional gesture micro-Doppler images are very
similar. Furthermore, we propose a recognition method based
on multi-channel fusion features of micro-Doppler, elevation
and azimuth angle information. Tomake themodel adaptively
focus on the important target signal region and make better
use of the features, we introduce the attention mechanism to
the CNN.

A. MICRO-DOPPLER FEATURES
In this paper, inspired by the phenomenon of signal Doppler
frequency shift, we transform the signal Doppler frequency
shifts of different gestures into gesture Doppler information
images utilizing pulse compression and moving target indi-
cation (MTI) in FMCW radar technology. When the trans-
mitting signals encounter the gesturing human hands, there
will be Doppler shifts in the echo signals. If the direction or
speed of the hand movement changes, the Doppler shift will
inevitably change. Namely, the Doppler shift can successfully
express the information of hand movements.

B. 3-D FEATURES SYNTHESIS
For strong directional gestures, because of the similar
general structures of their micro-Doppler images, it is
difficult to recognize them using only their micro-Doppler
features. Thus, considering their strong directionality,
we introduce elevation and azimuth angle information, which
is conducive to gesture recognition. First, we acquire the
micro-Doppler information of each channel gesture echo
through the multi-channel MMW radar with special place-
ment. Then, through static scene cancellation, only the echo
information in the perception area of the moving target is
analyzed by the micro-Doppler channel. According to the
phase difference information of the micro-Doppler channel,
the corresponding azimuth and elevation angle of the gesture
can be obtained and analyzed. Finally, inspired by RGB chan-
nels of natural images, these three different feature images
can be concatenated as a three-dimensional matrix to express
the spatial direction information of the gesture motion and to
achieve more precise gesture recognition.

C. CNN FOR MULTI-CHANNEL HAND GESTURE
RECOGNITION
For the task of data-driven hand gesture recognition, given
a set of multi-channel features X =

{
x(1), x(2), . . . , x(D)

}
,

suitable features Z =
{
z(1), z(2), . . . , z(D)

}
are automatically

extracted via a CNN with the network parameters W which
will then be fed into a classifier to predict the corresponding
labels C =

{
c(1), c(2), . . . , c(D)

}
, c(i) ∈ {0, 1}S . For con-

venience of calculation, we down-sample the original 3 ×
128 × 128 pixel features to 3 × 32 × 32 pixels. To enable
our gesture classifier to converge more rapidly, we normalize
each channel of three-dimensional features to fall within the
range of 0 to 1.

Our CNN classifier is composed of two convolution layers,
each of which is followed by the max pooling operator. The
outputs of the second convolutional layer are fed into the
following two fully-connected layers (FCLs) with 120 and
84 neurons, as introduced in [14], [22]. Finally, the corre-
sponding class probabilities p (C |x,W ) for the ten kinds of
gestures are achieved by the softmax layer. The architecture
of the CNN is shown in Figure 3. The class label is predicted
by

c∗ = argmax p (C |x,W ) . (5)
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FIGURE 3. The employed CNN architecture.

FIGURE 4. The overview of CBAM. The module has two sequential
sub-modules: channel and spatial.

Rectified linear unit (ReLU) activation functions are
applied in all layers of the CNN, except for the softmax layer:

f (z) = max (0, z) . (6)

We compute the corresponding class probabilities as:

p (C |x,W )=
exp (zC )∑
k exp (zk)

, (7)

where zq is the qth neuron of the output layer.
Afterward, the network is trained by minimizing a cost

function with respect to the parameters W over the training
dataset Dtr . The cross entropy between the true labels and
the output of the softmax classification is selected as the cost
function:

L (W ,Dtr ) =
|Dtr |∑
i=0

y(i) log
(
p
(
c(i)

∣∣∣x(i),W ))
, (8)

where y(i) is the corresponding true label.

D. CONVOLUTIONAL BLOCK ATTENTION MODULE
To further reduce the impacts of noise and clutter, the atten-
tion mechanism is integrated with the original CNN to
enable it to adaptively focus on important features and sup-
press unnecessary ones. Specifically, each layer of the CNN
described in the previous section is replaced by the convolu-
tional block attention module, as follows.

Given an intermediate feature map z ∈ RB×H×V as input,
we infer a channel attention map Mc ∈ RB×1×1 and a spatial

attention map Ms ∈ R1×H×V as shown in Figure 4, which
can be described as

z′ = Mc (z)� z

z′′ = Ms
(
z′
)
� z, (9)

where� denotes element-wise multiplication, and B denotes
the number of channels of the feature map. For the
element-wise multiplication, the attention values are broad-
casted (copied) in a way that the spatial attention values are
broadcasted along the channel dimension, and vice versa. The
operation process is shown in Figure 5. The details of the
process are described in the following.

FIGURE 5. Diagram of channel and spatial attention modules. (a) The
process of channel attention. (b) The process of spatial attention.

1) CHANNEL ATTENTION MODULE
Since each channel of a feature map can be regarded as a
feature detector [39], we apply channel attention to focus
on ‘what’ is meaningful in an input 3-D gesture feature.
The average pooling and max pooling operation are used
simultaneously to infer finer channel-wise attention, as in a
previous work [37].

Taking one layer of CNN as an example, given the output
feature map z of the previous layer, we use average pooling
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and max pooling operations to obtain two different spatial
context features zcavg and z

c
max , respectively. They are then sent

together into the same multilayer perceptron (MLP), which
has one hidden layer, to generate the channel attention map
Mc ∈ RB. Supposing that the hidden layer size is h, the chan-
nel attention can be described by the following equation:

Mc (z) = σ (MLP (AvgPool (z))+MLP (MaxPool (z)))

= σ
(
W1

(
W0

(
zcavg

))
+W1

(
W0

(
zcmax

)))
, (10)

where σ denotes the sigmoid activation function, and W0 ∈

Rh×B and W1 ∈ RB×h denote the MLP weights.

2) SPATIAL ATTENTION MODULE
To focus on ‘where’ an informative region is in the input 3-D
gesture feature, we produce a spatial attentionmap by extract-
ing the inter-spatial relationships of features. First, we obtain
the average-pooled and max-pooled features zsavg and zsmax
along the channel dimension, the effectiveness of which has
been proven in highlighting informative regions [37].We then
concatenate them and apply a one layer convolution to obtain
a spatial attention map Ms ∈ RH×V , which can represent the
region to be emphasized or suppressed. The spatial attention
can be obtained as

Ms (z) = σ
(
f 7×7 ([AvgPool (z) ;MaxPool (z)])

)
= σ

(
f 7×7

([
zsavg; z

s
max

]))
, (11)

where σ denotes the sigmoid activation function and f 7×7 (·)
denotes a convolution layer with the convolution kernel size
of 7× 7.

E. DATA AUGMENTATION
Since the number of the CNN’s parameters is huge, a large
quantity of training data covering diverse situations is needed
to avoid over-fitting. However, there are only 20 samples for
each kind of gesture. At the same time, if the elevation angles,
users or speeds of the same gestures are different, the gesture
echoes will also exhibit some differences. It is difficult to
take all possible situations into account when we collect the
measured data. Therefore, the training dataset of the same
gesture needs to be augmented according to the mechanism
of gesture movement. In particular, we perform certain scale
transformations of the micro-Doppler characteristics of the
hand gesture to simulate the same gesture under different
circumstances.

1) DIFFERENT ELEVATION ANGLES
When the elevation angles of the same gestures are different
relative to the radar, the measured radial velocities of the
gestures are different. That is, the smaller the elevation angle
of a hand gesture is at the same height relative to the radar,
the larger the radial velocity component, so their speeds
reflected in the micro-Doppler features are distinct. The scale
transformation of the micro-Doppler feature in the velocity
dimension can be used to simulate the changes on account of

the same gestures with different elevation angles, as shown
in Figure 6.

FIGURE 6. The data augmentation method for the case of different
elevation angles.

2) DIFFERENT USERS
When different people make the same kind of gestures, due
to the different lengths of the fingers, although the angular
speeds of the finger movements are the same, the speeds
of the finger tips are diverse and the motion cycles are the
same. Therefore, the effect can be reflected by the scale
transformation of the micro-Doppler feature in the Doppler
dimension and constancy in the time dimension, as shown
in Figure 7.

FIGURE 7. The data augmentation method for the case of different users.

3) DIFFERENT SPEEDS
When the same person performs the same gestures at different
speeds, as the spatial range of the gestures is fixed, the ges-
ture cycles become different. Thus, the compression of the
micro-Doppler feature in the speed dimension and elongation
in the time dimension, or the opposite, are carried out to cover
these situations, as shown in Figure 8.
As discussed above, we augment the training dataset

in the following way. First, we concatenate a 128 × 128
micro-Doppler signature of a gesture cycle with the corre-
sponding azimuth and elevation angle signature as a 3-D
feature image. Then, based on the image center, we remove a
128× n× 3 and a 128×m× 3 part along the time dimension
and velocity dimension, respectively, where m, n ∈ [0.6, 1]
and the change interval is 0.1. Then, for each original 3-D
feature image, we can obtain 24 augmented images.

V. EXPERIMENTS
A. MEASURED MULTI-CHANNEL MMW RADAR GESTURE
DATASET
1) MEASURED DATA
We employ MMW radar to obtain micro-Doppler features
of ten hand gestures from a single participant or multiple
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FIGURE 8. The data augmentation method for the case of different
speeds.

participants. In our experiments, IWR1642 radar operating
at 77 Ghz is employed, the configuration of which is shown
in Table 1 [23]. The average output power of this radar
is 12 dBm. The radial velocity range this radar can sense
covers 2.6 cm/s to 2.6 m/s, and the antenna beam width
is 120 degrees, which is suitable for hand gesture measure-
ment [17]. The hand motions are measured in the main lobe
of the radar antenna, the average distance from which to the
radar is approximately 30 cm.

TABLE 1. IWR1642 radar chirp parameters.

2) EXPERIMENTAL SETUP
The ten hand gestures employed in this experiment are (a)
swiping from left to right, (b) swiping from left to right,
(c) swiping from lower left to upper right, (d) swiping from
lower right to upper left, (e) swiping forward, (f ) swiping
backward, (g) waving left and right, (h) double finger click-
ing, (i) clenching and opening fists and (j) snapping fingers.
The employed gestures are depicted in Figure 9.

FIGURE 9. The ten hand gestures employed.

To analyze micro-Doppler features, we employ short-time
fast Fourier transform (FFT) to acquire the spectrograms of
gestures. The window size of the FFT and the time step
of the non-overlapping samples are set as 256ms and 1ms,
respectively. The acquired spectrograms of the ten gestures
are shown in Figure 10. We can find that the micro-Doppler
features of different gestures represent some diversities in
the joint time-frequency domain. In particular, the general
micro-Doppler image structures of the gestures (a) ∼ (d)

FIGURE 10. Examples of the spectrograms of the ten gestures.

and (g) are very similar: only the intensity variations of the
signal amplitudes are different. This is because the radial
velocities are analogous, even though the directions of the
motions are distinct. In the experiment, each kind of gesture
is measured 50 times for each of the 10 participants; in this
way, we can obtain an augmented dataset with 120000 3-D
feature images in total by means of the data augmentation in
section 3.

B. SEPARABILITY OF THE EXTRACTED FEATURES
To further demonstrate the prominent separability of the fea-
tures extracted by our algorithm, Figure 11 compares the

144616 VOLUME 8, 2020



C. Du et al.: Enhanced Multi-Channel Feature Synthesis for Hand Gesture Recognition

FIGURE 11. The separation of (a) the original data samples and
(b) feature samples extracted by our method.

separation of the original data and the features extracted
by our CNN utilizing t-SNE [24] to reduce them to two
dimensions. Compared with the original data, our CNN can
fully extract the discriminative features to reduce the gesture
sample distances within a class and increase the sample dis-
tances between classes.

C. RECOGNITION PERFORMANCE
Among the 120000 3-D feature images from ten participants,
60% of them are used as training data and 40% as test data.
Valid accuracy is assessed via the 5-fold validation method,
which divides the measured data into five different training
datasets and test datasets. This leave-one-subject-out cross
validation method is utilized to evaluate our hand gesture
recognition algorithm’s performance on the measured gesture
dataset.

1) WITH OR WITHOUT MULTIPLE CHANNELS
It is proven that CNNs are effective in combining data from
different sources [16]. In this experiment, we compare the
classification performance of our model with that of another
model, [17], which does not utilize the azimuth and ele-
vation information of gestures. In Table 2, we present the
average classification accuracy of our method trained with
different input modalities. We can see that, individually, our
3-D feature gesture recognition algorithm (accuracy =
96.61%) performs better than the only micro-Doppler feature
(accuracy = 91.34%) method, which proves that the intro-
duction of azimuth and elevation information is helpful for
the gesture recognition.

TABLE 2. The average classification accuracy of our algorithm trained
with different input modalities.

2) WITH OR WITHOUT DIRECTIONALITY
To further analyze how the introduction of azimuth and
elevation angle information affects gesture recognition,
we divide the gesture dataset into two categories. The gestures

in Figure 10 (a) ∼ (g) represent strong directional gestures,
and the others in Figure 10 belong to the class of weak direc-
tional gestures. The training and testing processes of these
two datasets are respectively carried out, and the results are
shown in Table 3.We find that the recognition performance of
our algorithm applied on the strong directional gesture dataset
is more obviously improved by introducing multi-channel
information than in the case of the weak directional gestures.
Since the azimuth and elevation information mainly reflect
the directional characteristics of gestures, the gestures with
strong directionality are made more separable.

TABLE 3. The effect of introducing multi-channel features to strong and
weak directional gestures.

3) WITH OR WITHOUT TRAINING DATASET AUGMENTATION
In Table 4, we present the correct classification rates of
our method with and without data augmentation. The results
show that the training error increases upon enabling data aug-
mentation, while the test error decreases. This demonstrates
that the proposed data augmentation method can reduce over-
fitting and improve the generalization of the gesture classifier
by simulating the mechanisms of different gesture move-
ments and covering a wider range of possible situations.

TABLE 4. The training and test classification accuracy of our algorithm
with and without data augmentation.

4) AVERAGE CLASSIFICATION ACCURACY
For the ten investigated kinds of gestures, the average classifi-
cation accuracy of the CNN trained by the 3-D gesture feature
dataset is 96.61%. The 5-fold validation accuracies are shown
in Table 5. To analyze the misclassification, the classifica-
tion accuracy confusion matrices (%) of the single-channel
and multi-channel methods are presented in Figure 12.
In Figure 12, we can see that when utilizing the
single-channel classification method, gestures (a) ∼ (d) are
easily confused with each other because they have similar
micro-Doppler structures, as shown in Figure 10. However,
when using the multi-channel method, the classification
accuracies are greatly improved. Due to the introduction of
azimuth and elevation angle information, their directional
characteristics can be better distinguished.
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TABLE 5. The 5-fold validation accuracies of our algorithm.

FIGURE 12. The confusion matrices of the classification accuracy. (a) The
single-channel method; (b) the multi-channel method.

TABLE 6. The results of our model compared with some competitive
methods.

Table 6 compares the results of our model with some
competitive methods with respect to our challenging mea-
sured gesture dataset with the same conditions. As shown
in Table 6, because of CNN’s deep nonlinear mapping,
strong feature extraction and data representation ability [17],
the CNN-based method performs better than the methods
based on K-nearest neighbor (KNN) [35] and support vector
machine (SVM) [36]. Our method exhibits the best perfor-
mance, since it offers the CNN’s strong feature extraction
ability and the excellent azimuth and elevation information
separability. Moreover, with the attention mechanism, our
model can learn what and where to emphasize or suppress
and refine intermediate features effectively.

D. THE ROLE OF THE ATTENTION MECHANISM
For qualitative analysis, we apply Grad-CAM [38] to our
trained models, whose results can clearly represent the
attended regions. Through analyzing the regions in the 3-D
gesture features that the models have considered as important
for correct prediction, we attempt to find out how the models
make full use of the features.

In Figure 13, we can see that the Grad-CAM masks of
the CNN with attention mechanism cover the target object
regions more reasonably than the original CNN. Specifically,
the original CNN devotes more attention to the noise and

FIGURE 13. The micro-Doppler feature regions of different gestures considered important by different models. The figures above show the results of the
original CNN. The figures below show the results of the CNN with attention mechanism.
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weak echo areas of micro-Doppler features than the CNN
with attention mechanism. That is, the CNN with attention
mechanism effectively learns to utilize the important informa-
tion in the target signal regions and suppress the nonessential
information from the noise areas.

VI. CONCLUSION
We propose an enhanced 3-D micro-Doppler feature synthe-
sis method for hand gesture recognition with attention mech-
anism based on CNN. The proposed classifier uses fused
multi-channel micro-Doppler features, along with elevation
and azimuth angle information. To focus on the important fea-
tures and suppress the unnecessary ones, we apply the atten-
tion mechanism to blend the cross-channel and spatial infor-
mation together. Furthermore, movement mechanism-based
data augmentation is developed to cover different complex
measurement situations and alleviate overfitting.

By means of extensive evaluation, we demonstrate that
the combination of multi-channel features improves classi-
fication accuracy considerably. We further demonstrate that
the proposed data augmentation technique plays an important
role in achieving superior performance. For the challenging
measured dataset, our algorithm achieves a classification
accuracy of 96.61%, approximately 5% higher than that of
the single-channel method. Our future work will investigate
and utilize the temporal information during the hand gesture
process to further improve the performance.
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